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Anomalous diffusion and stress relaxation in surfactant micelles
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We investigate the mechanisms of anomalous diffusion in cationic surfactant micelles using molecular dynamics
simulations in the presence of explicit salt and solvent-mediated interactions. Simulations show that when the
counterion density increases, saddle-shaped branched interfaces manifest. In experiments, branched structures
exhibit lower viscosity as compared to linear and wormlike micelles. This has long been attributed to stress
relaxation arising from the sliding motion of branches along the main chain. Our simulations reveal a mechanism
of branch motion resulting from an enhanced counterion condensation at the branched interfaces and provide
quantitative evidence of stress relaxation facilitated by branched sliding. Furthermore, depending on the surfactant
and salt concentrations, which in turn determine the microstructure, we observe normal, subdiffusive, and
superdiffusive motions of surfactants. Specifically, superdiffusive behavior is associated with branch sliding,
breakage and recombination of micelle fragments, as well as constraint release in entangled systems.
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I. INTRODUCTION

Over the past decades, the structure, dynamics, and mechan-
ical properties of self-assembled aggregates of cationic surfac-
tants have been studied extensively [1–21]. Self-assembly of
cationic surfactant solutions can be controlled by manipulating
the solvent-mediated electrostatic interactions among the
surfactant molecules by altering the counterion concentration.
A rich variety of fluctuating micelle morphologies can thus be
formed, such as spheres, cylinders, wormlike chains, as well
as branched and loopy structures [8–10,12]. The aggregate
shape, which depends on the solution temperature as well as
the concentrations of the surfactant and the counterion, has
a profound effect on the rheological properties of micelle
solutions. Both experiments and recent simulations [8–10]
have shown the existence of branched structures in ionic
surfactant solutions. It has been hypothesized that, unlike in
branched polymers, thermal fluctuations can cause micelle
branches to slide along the contour of the main chain and
thereby provide an additional mechanism of stress relaxation
[9,11,20,21]. Electrostatic screening by counterions is known
to promote branch formation and an accompanying reduction
in the solution viscosity [8,11]. Despite the extensive literature
on branched micelle systems, two major questions regarding
their structure and dynamics remain unanswered:

(i) Mechanisms and energetics of branching. Branched
structures are formed in a cationic surfactant solution as the
salinity is increased [8–11]. However, the physical mecha-
nisms underlying their formation are unclear. Second, in this
paper we perform direct molecular-level visualizations to study
the energetics of branched structures. Third, direct evidence
of branch sliding and its influence on stress relaxation are
lacking in the literature. Quantifying such putative motions of
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micelle branches poses a great challenge to experiments and
molecular simulations. In this paper, we address the above
mentioned questions via coarse-grained molecular dynamics
(CGMD) simulations of cationic surfactant micelle solutions
of cetyl-trimethyl-ammonium chloride (CTAC) in the presence
of a binding organic salt sodium salicylate (NaSal), a widely
used system in experiments [3–5,11].

(ii) Anomalous diffusion. Anomalous diffusion is ubiqui-
tous in many phases of soft condensed matter. Subdiffusive
behavior is encountered in crowded systems due to topological
constraints, e.g., the reptative motion of polymer chains in an
entangled polymer melt. On the other hand, superdiffusion
is less common. Examples include molecular diffusion in
glass forming liquids [22], microscale particle diffusion in
bacterial suspensions [23], and spin transport in Heisenberg
quantum magnets [24]. Wormlike micelle solutions exist in a
dynamic equilibrium determined by breakage and recombina-
tion events and are inherently polydisperse. Such dynamics
and entanglement effects can cause large variations in the
mobility of individual surfactants within the system [17,18].
For instance, the lifetime of trapping due to entanglements
would depend on the micelle length, and hence the motion of
individual surfactant molecules could vary from one aggregate
to the other. In fact, Ott et al. [18] observed anomalous
self-diffusion of surfactants in a solution of cetyl trimethyl
bromide by measuring the diffusion of fluorescent probes
using the fringe-pattern photobleaching (FRAP) technique.
In this technique, the self-diffusion coefficient is measured by
tracking fluorescence probe molecules which are similar to the
cetyl-trimethyl-ammonium bromide (CTAB) molecules and
have the ability to associate with CTAB micelles. Specifically,
the mean-square displacement (MSD) of the probe molecules
was found to scale as 〈[�r(t) − �r(0)]2〉 ∼ tβ with β �= 1. For
times shorter than the reptation time (t � τr ), superdiffusive
behavior often was observed whereas subdiffusive behavior
was more common for t � τr . On the other hand, normal
(β = 1) and subdiffusive (β � 1) behaviors were observed in
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FIG. 1. Snapshots from simulations depicting the microstructure at the surfactant concentration of cD = 0.1 M and various salt to surfactant
ratios (R): (a) R = 0.2, (b) R = 0.4, (c) R = 0.6, and (d) R = 0.8. Color scheme: red (Sal−), yellow (hydrophilic part of the surfactant), and
cyan (hydrocarbon tail). For the sake of clarity, water molecules are represented by purple dots in the background.

dilute solutions for long times. These authors attributed the
superdiffusive motion to a Levy flight, a random walk with
a long-tailed probability distribution of step sizes, caused by
the reptation of shorter micelles. In this paper, we provide
an analysis of surfactant motion at various salt (cS) and
surfactant (cD) concentrations to understand the mechanisms
of anomalous diffusion in CTAC-NaSal solutions.

II. COARSE-GRAINED MOLECULAR DYNAMICS
SIMULATIONS

CGMD simulations of a model [6–8] of CTAC-NaSal solu-
tion in water are conducted using the LAMMPS [25] molecular
dynamics package. This model utilizes the MARTINI force
field [26] to represent the interactions among the CG beads.
Coarse-grained representations of surfactant, salt, water, and
ions can be found in our previous papers [6,8]. The nonbonded
interaction between any two beads is described by a truncated
Lennard-Jones potential,

VLJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
, (1)

with the cutoff at r = 1.2 nm. Here r is the center-to-center
distance between two beads, σ is the effective diameter, and ε

is the depth of the potential well, respectively. The parameters
σ and ε for different types of beads are defined in Ref. [26].

The connectivity between the bonded beads within the same
molecule is modeled via a harmonic spring potential,

Vb(r) = Kb

2
(r − r0)2. (2)

Here Kb = 1250 kJ mol−1 nm−2 is the spring constant. An
equilibrium distance of r0 = 0.47 nm is used for all bonds
whereas those within the benzene ring of Sal− are constrained
at r0 = 0.27 nm. The angle potential between three sequential
beads is modeled via

Va(r) = Ka

2
(cos θ − cos θ0)2, (3)

with the force constant of Ka = 25 kJ mol−1 and an equi-
librium angle of θ0 = 180. Finally, the electrostatic potential
between two beads with charges qi and qj is modeled via
φij = qiqj

4πε0εr r
where ε0 is the permittivity of the free space. The

relative dielectric constant of the medium is set to εr = 15 [26].
A particle-particle particle-mesh solver is used to compute
long-range electrostatic interactions. The equation of motion
is integrated with a time step of 	t = 15 fs for a constant NV T

ensemble with the temperature controlled via a Nosé-Hoover
thermostat.

III. RESULTS AND DISCUSSION

We conduct MD simulations at cD = 0.1,0.2,0.3M for
various R = cS/cD = 0.2,0.4,0.6,0.8 values to understand
the mechanisms of branch formation and stress relaxation in
micelles. The size of our simulation box is approximately
35 nm in each dimension and consists of approximately
5 × 105 CG beads including water, surfactants, salts, and ions
(see the details in Ref. [8]). Snapshots from the simulations
showing the microstructures at various values of R at a fixed
surfactant concentration of cD = 0.1M are displayed in Fig. 1.
It clearly illustrates a gradual change from cylindrical and
wormlike micelles to branched structures with increasing salt
concentration.

A. Energetics of branched micelles

We present typical examples of micelle-water interfaces in
Fig. 2 formed at different salt and surfactant concentrations.
Specifically, surfaces with positive, zero, and negative Gaus-
sian curvature K corresponding to spherical, cylindrical, and
branched micelles with saddle-shaped junctions are observed.
To understand the energetics of branch formation, we analyzed
the counterion distribution in a typical Y -shaped branched
structure shown in Fig. 2(c). We divided the micelle surface
into patches of a radius of ∼1 nm and calculated the effective
charge Q by summing over the partial charges within the patch.
We show the distribution of Q over the micelle surface in
Fig. 3(a). Surfactant head groups color coded with the Q value
on the surrounding patch are shown in Fig. 3(b). Three distinct
regions can be observed, namely, spherical caps (S), cylindrical
regions (C), and a saddle-shaped junction (B). We observe
that the counterion density is the maximum in the B region,
intermediate in the C region, and the least in the S region. At the
saddle junction, surfactant orientations are aligned closely with
the surface normal as shown schematically in Fig. 2(c). This
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FIG. 2. Hydrophobic-water interfaces of micelles at cD = 0.2M

with different Gaussian curvatures (K): (a) spherical, K > 0 [R = 0
(top), R = 1.2 (bottom)], (b) cylindrical (R = 1.2), K = 0, and (c)
hyperbolic (R = 1.2), K < 0. Changes in the shape and curvature
are induced by the condensation of the counterions as depicted in the
top panel. The color code for the various beads is the same as that in
Fig. 1.

enhances the electrostatic repulsion between the surfactant
head groups and makes the saddle geometry energetically
unfavorable. Furthermore, as inferred from Figs. 3(a) and 3(b),
a larger number of Sal− ions interdigitate among the surfactant
molecules within the branched portion as compared to those
in spherical and cylindrical regions. Hence, the additional
electrostatic repulsion facilitated by this increase in counterion
condensation at the micelle-water interface compounds the
unfavorable curvature energy of the saddles. Consequently,
the branches are inherently unstable and incessantly move
along the micelle contour as visualized in the Supplemental
Material [27:S1] for cD = 0.3 and R = 0.8. Quantitatively,
the branch shown in the movie moves ∼10 nm in 50 ns. We
tracked the potential energy (PE), which is the sum of the
nonbonded interaction energies among all the CG beads within
the branched structure, associated with this motion during
which counterions continually dissociate from and associate
with the structure. As shown in Fig. 3(c), the net effect of such
local concentration fluctuations is a reduction in the PE along
the direction of sliding. We note that fluctuations in counterion

concentration could render a given sliding path energetically
unfavorable, resulting in a reversal in the direction of branch
motion. The persistence time of the sliding motion along a
given direction is on the order of 10 ns.

B. Pathways of branch formation

From MD simulations, numerous pathways of branch
formation were identified including those involving multiple
linear and/or branched micelles resulting in a variety of micelle
morphologies.

We show a few pathways of branch formation in Fig. 4,
summarized as follows. (i) A kink in a wormlike micelle
grows to a Y -shaped structure. (ii) Three micelles form a
triple junction by losing their end caps, and further coarsening
results in a branched structure. (iii) A nonuniform density of
condensed counterions along a micelle surface creates special
points which merge with the end cap of another micelle to form
a branch. (iv) An X-shaped micelle forms by the coalescence
of a cylindrical micelle and a branched micelle. (v) Surfactant
exchange from the cylindrical portion of two micelles forms
an H -like junction and is similar to the ghostlike crossing
mechanism proposed by Appell et al. [5].

C. Branching and stress relaxation

To investigate the influence of micelle branching on
stress relaxation, we study the transient response of micellar
solutions after the cessation of a uniaxial extensional flow
at various surfactant concentrations: cD = 0.2M and 0.3M

for R = 0.6 and 0.8. We consider microstructures shown
in Figs. 5(a)(i) and 5(a)(ii) and 5(b)(i) and 5(b)(ii) which
clearly indicate an increase in the number of branch points
Nb with increasing R. Furthermore, the number of branch
points also increases with increasing surfactant concentration
cD at a given R. A large Nb should then decrease the
solution viscosity [14] as a consequence of the enhanced
diffusion of branch points. Therefore, one would expect a
direct dependence of stress relaxation and molecular diffusion
on the degree of micelle branching. To test this hypothesis, we
compute the viscosity η(t) for solutions with varying degrees
of branching [Figs. 5(a)(iii) and 5(b)(iii)] from the stress-
autocorrelation function η(t) = V

kBT

∑
i,j

∫ ∞
0 dt〈pij (t)pij (0)〉

with i �= j = x,y,z, where V is the system volume, kB is

FIG. 3. Charge distribution and energetics of a branched micelle obtained from equilibrium simulations at cD = 0.3M and R = 0.8.
(a) Distribution of net charge Q = ∑

qi over the micelle surface. The color map corresponds to the Q values of the abscissa. Labels: S

(spherical); C (cylindrical); and B (branch point). (b) Micelle surface color coded with Q values. (c) The potential energy of a branched micelle
as a function of time associated with the sliding motion.
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FIG. 4. Pathways of branch formation.

the Boltzmann constant, and T is the temperature. As shown
in Figs. 5(a)(iii) and 5(b)(iii), the zero-shear viscosity η0,
which is the plateau in η(t), decreases with increasing Nb

in accordance with previous studies [8,9,11]. To understand
the underlying mechanism for this reduction in viscosity and
the role of branching on stress relaxation, we study how an
externally imposed stress relaxes in such systems. Towards this
end, we deform the microstructures under a uniaxial tensile

strain at a constant strain rate in the x direction with zero
pressure in y and z. Such a flow stretches the microstructure
in the x direction whereas shrinks it in the other two directions
[14]. In all of the simulations, the applied deformation is such
that the equilibrium structures are stretched appreciably but
yet retained their original topologies. In Figs. 5(a)(iv) and
5(b)(iv), we plot the residual stress σxx(t) after the cessation
of extensional flow. In all cases, stress decreases exponentially
σxx(t) ∼ σxx(0)e−αt . We observed the following exponents at
various concentrations: (a) α = 0.05 and 0.17 for R = 0.6
and 0.8, respectively, at cD = 0.2M and (b) α = 0.10 and
0.18 for R = 0.6 and 0.8, respectively, at cD = 0.3M . Clearly,
stress relaxation is faster in a solution with a higher degree
of branching. Closer inspection of the individual micelles in
the simulations reveals that the branches indeed slide along
the main chain as conjectured by Appell et al. [5]. This paper
provides clear evidence that such sliding motion helps heal
stresses imposed on the system.

D. Anomalous diffusion of surfactants

Ensemble-averaged (EA) MSD of different molecules and
ions for cD = 0.1M and R = 0.2 is shown in Fig. 6. Diffusion
of the entire system is approximately Gaussian (β ∼ 0.98)
whereas those of the surfactants and Sal− counterions are
subdiffusive (β ∼ 0.74) which is consistent with the notion
that they constitute the self-assembled micellar structure.
However, persistent branch motion as well as breakage and
recombination of micelle fragments could result in marked
differences in the dynamics at the single molecule level. In or-
der to probe such dynamic heterogeneity, we analyze the time-
averaged (TA) MSD of the individual surfactants defined as

〈r2(	)〉 = 1

T − 	

∫ T −	

0
[r(t + 	) − r(t)]2dt, (4)

where r(x,y,z) is the position vector of the surfactant center of
mass and 	 and T are the lag time and total measurement time,
respectively. In all calculations reported here, T > 200 ns.
We show the TA MSD of representative surfactant molecules

FIG. 5. Stress relaxation simulations. (a) cD = 0.2M . (b) cD = 0.3M . (i) and (ii) Microstructures at different R values. (iii) Viscosity η as
a function of time for different concentrations. (iv) Time evolution of stress at different salt and surfactant concentrations after the cessation of
an imposed extensional deformation (semilog y plot).
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FIG. 6. EA MSD for different molecules and ions in a solution
for cD = 0.1M and R = 0.2 (log-log plot).

at various surfactant concentrations and R = 0.2, 0.4, and
0.8 in Fig. 7 along with the topological representations of
the corresponding microstructures (top row) constructed by
juxtaposing the three-dimensional micelle contour onto a
two-dimensional plane. The branch points are denoted by red
dots. The TA MSD plots show wide variation in surfactant
dynamics with a broad distribution in the exponent, i.e.,
0 � β � 2. Subdiffusive motion results from the trapping

of micelles in locally crowded environments and persists
at all concentrations. On the other hand, the mechanism
underlying superdiffusive motion is concentration dependent.
The MD trajectory of a surfactant molecule exhibiting
superdiffusive motion [corresponding to the topmost TA
MSD plot in Fig. 7(a)] is illustrated with red colored beads
in the Supplemental Material [27:S2]. A closer inspection
reveals that the corresponding micelle undergoes frequent
recombination and breakage with the surrounding micelles.
These observations indicate that superdiffusive motion in a
dilute solution arises primarily due to transient combination
and breakage of micelles. At intermediate concentrations
[Fig. 7(b)], micelles are relatively longer, and reptation
of micelle chains dominates the stress relaxation process.
However, recombination and breakage still occur among
shorter micelles. The TA MSD of a surfactant molecule
that belongs to a shorter micelle entrapped in entanglements
[signified by the plateau regions in Fig. 7(b)] exhibits
superdiffusive behavior when the topological constraints are
released and the micelle escapes the trap branched structures
from upon further increasing R. A few examples of the TA
MSD plots of individual surfactant molecules at R = 0.8 are
shown in Fig. 7(c). We often observe superdiffusive behavior
of surfactants belonging to one of the branches of a micelle as
shown in the Supplemental Material [27:S3] [the red colored

FIG. 7. First row: Microstructures for R = 0.2, 0.4, and 0.8 at cD = 0.1M . The number of branch points increases with increasing R as
shown by the solid circles. Second row: TA MSD of representative surfactants showing normal, subdiffusive, and superdiffusive motions.
(C-B): TA MSD of individual surfactant molecules in the solution belonging to a micelle that either combines with another micelle or breaks
apart into two micelles. (B): TA MSD of individual surfactant molecules belonging to a branched micelle. Thick solid lines (black) represent
normal diffusion, i.e., 〈r2(	)〉 ∼ t . Third row: Distribution of the diffusion exponent β.
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beads represent the surfactant corresponding to the topmost
plot in Fig. 7(c)]. It illustrates that superdiffusion also stems
from the sliding motion of micelle branches. Diffusion in a
micellar fluid occurs by solvent-mediated exchange of free
surfactants, recombination and breakage of micelles, sliding
motion of micelle branches, and reptation. Reptation inhibits
free diffusion of molecules whereas micelle combination and
sliding motion of branches enhance diffusion. Furthermore, the
distributions of exponent β shown in the bottom row of Fig. 7
show that the number of surfactants exhibiting superdiffusive
behavior increases with increasing R. This is consistent with
the notion that branch motion as well as combination and
breakage of micelles synergistically boost surfactant diffusion
at higher R, whereas combination and breakage are the
primary mechanism of superdiffusion at lower R.

IV. CONCLUSIONS

In conclusion, we have explored the dynamics of surfactant
molecules in micellar solutions with diverse morphologies.
Simulations have revealed multiple pathways of branch forma-
tion and provided direct visualizations of the sliding motion of
micellar branches. We also have identified the energetic driving
forces that induce incessant branch motion arising from an

excess counterion condensation at the branch points. Overall,
diffusion of surfactant molecules within a micelle solution
is strikingly heterogeneous as signified by the existence of a
broad range of subdiffusive, normal, and superdiffusive space-
time trajectories. Superdiffusion of surfactant molecules can
arise from three mechanisms: sliding motion of branches along
the micelle contour, breakage and recombination of micelle
fragments, and ballistic motion of short micelles that escape
from topological constraints. The latter mechanism is sup-
ported by FRAP measurements [18]. Finally, the CGMD sim-
ulations have provided clear evidence to validate a hypothesis
that was put forward almost three decades ago that an increase
in branch density facilitates faster stress relaxation in micellar
fluids.
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