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Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial
systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions
is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent.
Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This
work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the
particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence
of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407
(2012)]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics,
even at average size changes as small as 1%. The accelerated dynamics is evidenced by (i) the higher short-time
diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc
crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in
lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence
of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence
must not affect the equilibrium properties, confirms that full equilibration has not been reached.
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I. INTRODUCTION

Open-porous, deformable particles are present widely in
biological systems, for instance, casein micelles in dairy
products, and in several industrial applications, for example,
microgel particles in cosmetics and paints [1–3]. Their
characteristic spongelike structure gives rise to elastic behavior
due to the elasticity of the supporting network material, while
at the same time the particle’s size change is hampered at high
deformation rates or induced by high packing densities, due
to the viscosity of the permeating solvent. Particles with these
properties are sometimes referred to as poroelastic particles
based on their internal structure [4,5]. On the other hand,
because of their rate-dependent deformability, spongy particles
are also known to be viscoelastic particles [6,7].

Particle systems, in general, show a transition from a
liquidlike to a solidlike behavior as the packing fraction
increases [8]. Particles are caged by their neighbors which
inhibit their mobility and effectively form a soft glass. Unlike
hard particle systems, soft particles can be packed at densities
higher than that for random close packing, which is 0.64 for
monodisperse hard spherical particles. High volume fractions
can be reached owing to the different origins of particle
softness. The elastic softness allows particles to elastically
change their shape, mostly at constant volume, upon contact
with their neighbors. In addition, as particles are pressed
against each other in a jammed state, viscous solvent is
squeezed out of the particle. This type of rate-dependent
particle softness enables particles to, over time, change their
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volume in response to, for instance, steric effects [9]. In the
absence of imposed deformation, the competition between the
size and position dynamics, hence, governs the behavior of
such jammed states.

Various modeling efforts have been dedicated to describing
the effect of the elastic softness of particles on the emergence
of solidity in suspensions of soft particles. The trap models
[10,11] are phenomenological models that describe the main
features of disordered systems, in particular, aging [11].
An element of these models is trapped in a cage formed
by the surrounding elements and, occasionally, this element
has enough energy to hop outside this cage due to thermal
activation. The soft glassy rheology model (SGR) [12,13]
assumes that hopping can be due to interactions between
particles. While these models are used to give insight into
the mechanical deformation and aging of these materials, they
do not provide any information about the structure. Another
limitation of both models is that the physical interpretation
of the model parameters is not trivial [13], and the latter are
not directly related to material parameters that describe the
effective, overall behavior of suspensions.

Particle-based methods, on the other hand, provide more
insight about the microscopic dynamics. They form another
family of models that are suitable for numerical simulations.
They can be categorized into athermal and thermal models.
For example, thermal systems consist of particles that are
small enough that they are affected by thermal fluctuations.
In this case, Brownian forces are relevant. This applies for
colloidal suspensions of particles which are a couple of
hundred nanometers in size. Although these models have
been the basis of the current understanding of the behavior of
suspensions of soft particles, they are limited to considering the
elasticity of the particle as the only origin of particle softness,
for example, using a soft interparticle potential [14–16].
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Spongy particles, however, can take up (expel) viscous solvent
from their interior allowing them to swell (shrink) depending
on their permeability, which renders their deformability rate
dependent. Modeling of such particles requires an additional
ingredient that is the particle size, to account for the rate-
dependent deformability of particles.

This paper aims at studying the effect of the internal struc-
ture of spongy particles, in particular the particle permeability,
on the equilibrium properties of suspensions of such particles.
Understanding the behavior in equilibrium is an essential
prerequisite for understanding the behavior under deformation
(e.g., shear). The actual approach towards low energy and
the corresponding equilibrium states in dense spongy-particle
systems are intricate, which motivates the work in this paper.
This is achieved by studying the relaxation of the system from
a high-energy initial state through a long-lived intermediate
state into a crystalline state, in terms of the transition time and
the average local-order parameter, as well as the final overall
properties of the system such as energy, stress, and diffusion
coefficient.

In this paper, the dynamic two-scale model developed by
Hütter et al. [17] is applied to dense suspensions of spongy par-
ticles. Based on principles of nonequilibrium thermodynamics,
in particular the general equation for the nonequilibrium
reversible-irreversible coupling (GENERIC) [18–20], the model
accounts, in addition to the elastic origin of particle softness,
for the effect of the viscous background fluid by treating the
particle size of each particle as a separate degree of freedom.
The developed model is expressed in the form of stochastic
differential equations [17] suitable for particle-based simula-
tions, specifically Brownian dynamics simulations.

This paper is organized as follows. In Sec. II, the dynamic
two-scale model in the form of stochastic differential equations
is revisited and applied to the system of interest by making
a choice of the interaction potential. The numerical setup is
described in Sec. III, with a study of the effect of numerical
parameters. By making adequate choices of the numerical
parameters, the behavior of suspensions of spongy particles
is presented for different system densities in Sec. IV. The
crystallization of particles is studied in Sec. V. Finally, the
article is concluded with a discussion in Sec. VI.

II. EXTENDED BROWNIAN DYNAMICS MODEL

A. Particle interaction

In this section, a realization of the two-scale model
developed in [17] is presented in short. For more details, the
reader is referred to [17]. Consider a system of N spherical
particles in a Newtonian fluid with shear viscosity η. Each
particle i is described by the position of its center Qi and its
radius Ri . For convenience, a variable ξ of 4N dimensions is
defined to denote all particle degrees of freedom:

ξ = { Q1,R1, . . . , QN,RN }. (1)

The distribution function based on the microscopic states ξ

is denoted by p. In the absence of flow, the Fokker-Planck
equation describing the evolution of the distribution function
is expressed as

∂tp = −∇ξ · {μ · [−(∇ξ�)p − kBT ∇ξp]}, (2)

where μ is the symmetric and non-negative 4N × 4N mobility
tensor, kB is the Boltzmann’s constant, and T is the absolute
temperature. The driving force for ξ dynamics, −∇ξ�, is
derived from the potential energy of the system � for all
degrees of freedom. The equilibrium distribution for the
microscopic states is given by a Boltzmann distribution [17]

p = 1

Z
exp

( −�

kBT

)
, (3)

where Z is fixed by the normalization condition
∫

p dξ = 1.
In order to make the model more specific, choices have to be

made on the particle interaction potential. Dense suspensions
of soft particles are stabilized to prevent aggregation and
gelation by, for example, the attractive van der Waals forces
[21]. For instance, soft particles in the form of star polymers
or polymer-coated particles are stabilized by the outer layer
that ensures that the distance between particles is large enough
for attractive forces to be negligible [8,22]. To that end, the
interaction between the particles is assumed in this work to be
purely repulsive.

The elasticity of the particles gives rise to these repulsive
interactions and is manifested in two different forms. The first
form of elastic repulsive interactions is due to the fact that
particles are soft and impinging of a particle by its neighbors
is possible. The Hertzian potential describes this type of
contact energy [23]. The pairwise Hertzian contact interaction
potential, between a particle i and its neighbors j , is [24,25]

�Hz
ij (ξ ) = ER3

eq�̃
Hz
ij , (4)

with

�̃Hz
ij (ξ ) =

{
1

2(1−ν2)

(
1

R3
eq

∑N
j �=i Chn

ijR
3−n
c + k̃

)
if hij > 0,

0 otherwise,

(5)

where all particles have the same Young’s modulus E and
Poisson’s ratio ν. The freestanding equilibrium particle size is
the same for all particles and is denoted by Req. The symbol
˜(·) denotes the nondimensionalized (·). The contact size Rc is

defined as Rc = ( 1
Ri

+ 1
Rj

)
−1

where Ri and Rj are the current
particle radii of particles i and j , respectively. The overlap
between particles is defined as

hij = Ri + Rj − | Qij |, (6)

where the magnitude of the vector connecting particle i and j

is | Qij | = | Qi − Qj |. The dimensionless constants C and n

in Eq. (5) depend on the degree of overlap between a pair of
particles hij . The values of C, n, and k̃ used throughout this
work can be found in Appendix A.

The Hertzian potential interaction describes the force
developed when the particle centers approach closer than the
sum of their radii because the particles can deform. This
potential gives a nonzero contribution only when particles
are overlapping, while it vanishes when particles are not
impinging, such as in the case of dilute systems. In the
dilute limit, a particle with size that is different from its
equilibrium size Req will have a finite stored elastic energy
[26]. Minimization of this energy drives the particle to recover
its equilibrium size. In this work, we account for the stored
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elastic energy in the total potential. The stored elastic energy,
in this case, is

�vol
i (ξ ) = ER3

eq�̃
vol
i , (7)

with

�̃vol
i = 2π

9(1 − 2ν)

(
Vi − Veq

Veq

)2

, (8)

where Vi is the current volume of particle i, Veq is its volume
based on the equilibrium size, and (Vi − Veq)/Veq is the
volumetric strain. The total potential energy is defined, based
on (4) and (7), as

�(ξ ) =
∑
i �=j

�Hz
ij (ξ ) +

∑
i

�vol
i (ξ ) = ER3

eq�̃(ξ ). (9)

In practice, even if particles are not overlapping, an isolated
particle strives to attain its equilibrium size, whereas every
other (deviating) particle size is energetically penalized. This
is exactly what is accounted for by the additive contribution
in Eq. (9) as opposed to a total potential that consists of
only Hertzian-contact contributions with a density-dependent
prefactor. A density-dependent Hertzian potential automat-
ically implies that this potential is only active if particles
are impinging, while it vanishes in the dilute limit (i.e., for
nonoverlapping particles). In contrast, Eq. (9) ensures that
in the dilute limit a particle strives towards its equilibrium
size based on the minimization of �̃ = �̃vol. In addition, it is
mentioned for completeness that the density dependence of the
particle stiffness in the Hertzian interaction is incorporated in
our approach in an effective way by using piecewise different
expressions for the potential (5) (see Appendix A).

B. Particle dynamics

Equation (2) can be expressed in the form of stochastic
differential equations using the Itô interpretation [27]. The
position and size dynamics are, respectively, defined as

d Qi =
∑

k

μQi Qk
· (−∇ Qk

�
)
dt +

∑
k

μQiRk

(−∂Rk
�

)
dt

+ kBT [∇ξ · μ] Qi
dt + [BdW t ] Qi

, (10a)

dRi =
∑

k

μRi Qk
· (−∇ Qk

�
)
dt +

∑
k

μRiRk

(−∂Rk
�

)
dt

+ kBT [∇ξ · μ]Ri
dt + [BdW t ]Ri

, (10b)

where B satisfies the fluctuation-dissipation relation B · BT =
2kBT μ. The driving forces for position change and size change
are −∇ Qi

� and −∂Ri
�, respectively.

For simplicity and in order to focus on the effect of the
permeability, many-particle hydrodynamic interactions are
neglected, which implies that μQi Qk

is nonzero only if i = k,
specifically [28]

μQi Qk
= ζ−1

Qi
δik I with ζQi

= 6πηRi, (11)

where I is the second rank identity tensor, and ζQi
is the

single-particle friction coefficient. Furthermore, it is assumed
that the size dynamics of different particles are not coupled

hydrodynamically, which is a reasonable assumption since
the fluid is assumed to be (nearly) incompressible [17].
Therefore, one obtains μRiRk �=i

= 0, and the single-particle
mobility component can be expressed as [17]

μRiRk
= ζ−1

Ri
δik with ζRi

= 12πηR4
i

R3
eqχ

, (12)

where χ is a dimensionless quantity which depends on the
permeability of the particle. Using the theory of poroelasticity
[29], it can be shown that

χ = π2κ

R2
0

, (13)

where κ is the particle permeability and R0 is the initial
particle size which is equal to Req in this work (see Sec. III A).
Nonzero mobility components μQiRk

and μRi Qk
imply that

there is dynamic cross-coupling between size and position.
For this work, we assume that there is no cross coupling, that
is μQiRk

= 0 and μRi Qk
= 0.

Based on the above-mentioned assumptions, Eqs. (10a) and
(10b) are simplified to

d Qi = ζ−1
Qi

ER3
eq

(−∇ Qi
�̃

)
dt +

√
2kBT ζ−1

Qi
[dW t ] Qi

,

(14a)

dRi = ζ−1
Ri

ER3
eq

(−∂Ri
�̃

)
dt + kBT

(
∂Ri

ζ−1
Ri

)
dt

+
√

2kBT ζ−1
Ri

[dWt ]Ri
. (14b)

These equations can be nondimensionalized if one scales
all involved length scales by Req:

d Q̃i = ζ−1
Qi

EReq
(−∇ Q̃i

�̃
)
dt +

√
2kBT ζ−1

Qi
R−2

eq [dW t ] Qi
,

(15a)

dR̃i = ζ−1
Ri

EReq
(−∂R̃i

�̃
)
dt + kBT R−2

eq

(
∂R̃i

ζ−1
Ri

)
dt

+
√

2kBT ζ−1
Ri

R−2
eq [dWt ]Ri

. (15b)

C. Time scales and dimensionless numbers

Equations (15) are expressed in terms two energy scales:
the elastic interaction energy ER3

eq and the thermal energy
kBT . The ratio between these energy scales defines the first
dimensionless parameter describing the elastic nature of the
particle softness, and is defined as

S∗ = kBT

ER3
eq

. (16)

This parameter is similar to the softness defined by Ikeda et al.
in [14] in terms of its physical interpretation, but we use a
different form of the interaction energy.

The effect of the suspending fluid is described by the
second dimensionless parameter, that is defined as the ratio
of mobilities in the size dynamics and position dynamics,
respectively,

ζ ∗ = ζ−1
Ri

ζ−1
Qi

∣∣∣∣∣
Ri=Req

= χ

2
. (17)
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It follows from (13) that this parameter is based on the initial
size of the particle as well as its permeability. Based on the
above dimensionless parameters, several familiar systems can
be recovered. For instance, hard particle systems are recovered
by setting S∗ = 0 and ζ ∗ = 0. Elastic (impermeable) particles
are obtained for a finite value of S∗ and ζ ∗ = 0, while nonzero
(S∗,ζ ∗) describe soft porous particles.

The energy scales define different time scales for the
position and size dynamics, respectively. The interaction
energy is dissipated through viscous damping over a time scale,
for position change and for volume change,

τQi
= ζQi

EReq
(18)

and

τRi
= ζRi

EReq
, (19)

respectively. The Brownian time scale is

τBr
Qi

= ζQi
R2

eq

kBT
, (20)

which is the time a particle takes to diffuse a distance
equivalent to its radius, while a particle relaxes its size under
the influence of thermal fluctuations over a time scale

τBr
Ri

= ζRi
R2

eq

kBT
. (21)

Equation (15) can be expressed, in terms of the previously
described time scales, as

d Q̃i = (−∇ Q̃i
�̃

) dt

τQi

+
√

2
[dW t ] Qi√

τBr
Qi

, (22a)

dR̃i = (−∂R̃i
�̃

) dt

τRi

+ (
∂R̃i

ln ζ−1
Ri

) dt

τBr
Ri

+
√

2
[dW t ]Ri√

τBr
Ri

.

(22b)

III. NUMERICAL SIMULATIONS

A. Temporal discretization and simulation parameters

Equations (22) are used to model a system consisting
of N particles in a cubic box. The simulation box is
subjected to Lees-Edwards periodic boundary conditions [30].
Monodisperse particles, with initial size R0 = Req, are initially
placed on a simple cubic (SC) configuration (unless otherwise
specified) in the simulation box, suspended in a solvent of
viscosity η. By changing the dimensions of the simulation
box, the density of the system is modified while keeping the
number of particles fixed. The parameters used throughout
this paper are listed in Table I. The characteristic time scales,
based on physical values in Table I, are shown in Table II.
A forward-Euler integration scheme is used to solve Eq. (15)
[31]. The time step used for the integration scheme, �t , should
be small enough to capture the fastest dynamics. Table II shows
that the smallest time scale is τQ. The time step is set to be two
orders of magnitude smaller, that is, �t = 3.5 × 10−6 s.

TABLE I. Model parameters.

Parameter Symbol Physical value

Equilibrium particle radius Req 2.5 × 10−7 m
Solvent shear viscosity η 10−3 Pa s
Poisson’s ratio ν 0.4
Young’s modulus E 100 Pa
Temperature T 293 K
Number of particles N 123 a

Softness, dimensionless S∗ 2.5 × 10−3

Permeability, dimensionless ζ ∗ {0,0.5,5}× 10−3

aAdditional simulations were performed for N = 223 with no
significant effect on the overall behavior (see Appendix B).

To provide an indication of typical values for the dimension-
less parameters, some examples can be found in literature. For
instance, the softness dimensionless number S∗ is estimated to
be 10−7 for oil-in-water emulsions and between 10−4–10−5 for
polyacrylamide particles (e.g., PNIPAM) [8,14]. Furthermore,
to get an estimate for the dimensionless permeability ζ ∗, the
permeability of polyacrylamide particles is considered (oil-in-
water emulsions are impermeable), which is estimated to be
higher than 10−17 m2 depending on the cross-link density [32].
For submicron-sized polyacrylamide particles, one finds that
ζ ∗ > 10−3 [14]. The model parameters in Table I correspond
to systems consisting of particles with permeability, and hence
ζ ∗, similar to the widely used polyacrylamide particles in water
[14,32]. On the other hand, for the purpose of visualizing
the particle-size change, the particle elastic properties, and
consequently S∗, in Table I are one order of magnitude softer
than those commonly reported for polyacrylamide particles.
The elastic properties in Table I are, however, similar to those
of systems used to mimic biological systems, for instance,
alginate hydrogels used for cell encapsulating scaffolds [33],
vinylpyridine (VP) microgels used in applications where
pH sensitivity is important [34], and polyisocyanides (PIC)
hydrogels used as a biomimetic system [35]. It is noteworthy
that, while S∗ given by (16) is convenient for scaling the
evolution equations, it is more physical to express S∗ in terms
of elastic energy for volume change, that is approximately
equal to kBT/(3ER2

eq�R) where �R is the radius change
with respect to Req. One finds that, for a radius change of
approximately 8 × 10−4Req, the elastic energy for volume
change is equal to the thermal energy kBT .

At high number densities and no external flow, particle
positions and sizes change as a result of interactions and
Brownian forces in order to reduce total energy of the system

TABLE II. Characteristic time scales based on the model param-
eters in Table I, using Ri = Req. Values for τR and τBr

R are based on
ζ ∗ in Table I.

Time scale Physical value (s)

τQ 1.88 × 10−4

τBr
Q 7.28 × 10−2

τR {∞,3.77 × 10−1,3.77 × 10−2}
τBr
R {∞,145.6,14.56}

012604-4



EFFECT OF PARTICLE-SIZE DYNAMICS ON . . . PHYSICAL REVIEW E 96, 012604 (2017)

FIG. 1. Evolution of energy per particle for a system with particle
with ζ ∗ = 0.005 and S∗ = 2.5 × 10−3. The volume fraction of the
system is ϕfree = 0.766 (n = 1.17 × 1019 m−3).

and to balance the forces acting on each particle. The evolution
of the system over time is measured in terms of the energy per
particle.

B. Evolution of energy

As a prototypical example, a system with number density
n = 1.17 × 1019 m−3 is simulated. In this example, particles
are initially placed randomly in the simulation box. The
volume fraction can be calculated, based on the equilibrium
size, as

ϕfree = 4
3πR3

eqn. (23)

That yields a volume fraction of 0.766 for this example. The
particles used are porous with ζ ∗ = 0.005. The simulation
time is chosen to be large enough to allow the particles to travel
longer distances than their own diameter. To obtain statistically
relevant data, simulations long compared to the Brownian time
scale τBr

Q are performed,

τsim = 28 s ≈ 384 τBr
Q , (24)

where τBr
Q = 7.28 × 10−2 s, rather than performing several

shorter simulations of independent systems.
Figure 1 shows the evolution of the energy per particle

for this system. Initially, the energy decreases slowly over a
period of approximately 45.3τBr

Q . This is followed by a drop in
energy of a value of �� ≈ 0.75 kBT per particle. This energy
drop is found to be related to a transition from a disordered
to an ordered state. This is confirmed by the snapshots of the
particle configuration in the simulation box at the beginning
and the end of the simulation shown in Fig. 2 and will be
discussed in more detail in Sec. V. Structural ordering was
observed in hard- and soft-particle systems. This phenomenon
depends primarily on the particle interactions [36–38] and
the size polydispersity [8,39]. Ordering occurs more readily
when repulsive interactions are dominant while polydispersity
inhibits crystal formation [8].

FIG. 2. Particle configuration at (a) t/τBr
Q = 0 and (b) t/τBr

Q =
384.6. Particle coordinates are scaled by the simulation box length
and the particle size is reduced for better visualization.

The time-dependent response of the material, as seen in
Fig. 1, implies that the simulation time should be long enough
to allow particles to find the lower-energy state. The transition
time involved in this process occurs at time scales significantly
larger than the Brownian time scale (see Table II). This long
transition time implies that the disordered state at intermediate
energy, which occurs at 5 � t/τBr

Q � 30, is considered a
long-lived glassy state. Intuitively, one expects that this slow
dynamics is accompanied by large energy barriers. The system
might be trapped in a metastable state and particles do not
have enough energy to cross a high-energy barrier to reach
a lower-energy state. However, such energy barriers were not
observed for the range of parameters studied. This suggests that
structural ordering occurs spontaneously and, therefore, small
differences might have a significant effect on the subsequent
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relaxation, which would imply a substantial dependence on
the sample history. For the systems examined in this numerical
study, the history represents the initial state of the system as
well as the pathway followed by the particles in the relaxation
process. History can be removed when deformation is applied
[40], however, in this work we are interested in equilibrium
properties where there is no applied deformation. In the case
of no applied deformation, care should be taken when drawing
conclusions about the absolute behavior of such systems as it
might be a direct effect of its history. To this end and in order
to isolate the effect of the history, the effect of the numerical
parameters on the simulation results is studied in detail next.

C. Effect of numerical parameters

This section is dedicated to analyze the effect of numerical
parameters on the behavior of the suspension at high volume
fractions. As the density of the system increases, particles
require more time to find a configuration that minimizes the
total energy of the system, i.e., the glassy state lives longer.
Dynamics is drastically slowed and the material increasingly
remembers its history. The history-dependent behavior dictates
a careful study of the simulation history that we identify as
the initial configuration, and the realization of the noise [i.e.,
the last terms in Eqs. (22a) and (22b)]. In order to examine
this slow relaxation towards equilibrium through or from
intermediate long-lived states, two types of well-defined initial
(high-energy) configurations are generated by (i) randomly
placing particle centers in the simulation box, and by (ii)
placing the particle on a simple cubic lattice. In both cases, a
long-lived (glassy) state develops relatively rapidly due to the
dynamics of the system (see Fig. 1, 5 � t/τBr

Q � 30), which in
turn eventually evolves into a crystalline low-energy state (see
Fig. 1, t/τBr

Q � 60). The first relatively rapid transition from
the initial state is not of interest in this paper, but the main
focus is rather the transition from the long-lived intermediate
state towards the low-energy state. The realization of noise for
the thermal fluctuation terms in Eq. (22) can be changed by
varying the random number seed.

Two sets of simulations are performed for suspensions with
different particle volume fractions. The first set of simulations
is done for five different random initial configurations while
fixing the realization of the noise. In this case, the initial
particle size for all particles is the equilibrium size. In the
second set of simulations, the initial configuration is fixed by
placing particles in a SC configuration at different realizations
of the noise. The initial particle radius of porous particles
in both sets of simulation is set to the equilibrium size.
However, the initial size of impermeable particles is drawn
from a Gaussian distribution around the equilibrium size. The
reason for this is the following. Size dynamics allows for the
radii of permeable particles to conform to a certain, evolving
distribution. At equilibrium, this distribution is the Boltzmann
distribution given by Eq. (3). If one considers the volumetric
energy contribution only, Eq. (3) is reduced to

p = 1

Z
exp

(−�vol

kBT

)
. (25)

At equilibrium, the energy �vol
i and the driving force −∂R�vol

i

vanish up to noise contributions. Particle-size fluctuations

FIG. 3. Energy per particle for systems with different ζ ∗ and
ϕfree averaged over (a) five different initial configurations and certain
realization of the noise, (b) five different realizations of the noise
and a fixed initial configuration. The standard deviation of the data is
shown by the error bars.

around Req result in an average contribution to the energy
of kBT/2, based on the equipartition theorem. To account
for this finite energy contribution in the simulations with
impermeable particles, a Monte Carlo algorithm is used to
generate uncorrelated initial particle radii. The Monte Carlo
algorithm generates radii with a Boltzmann distribution around
Req with respect to the volumetric energy [Eq. (7)]. In so doing,
the simulations of permeable and impermeable particles can
be compared more easily.

The effect of the initial configuration and the realization of
the noise at different volume fractions are studied in terms of
the energy per particle (Fig. 3) and the transition time (Fig. 4).
The energy per particle is calculated based on the average
of energy over a period of tend − tstart = 96.2τBr

Q , with tstart >

τt. The transition time τt is defined as the time at which the
energy of the system is lowered as particles form an ordered
phase. It is obtained by fitting the energy-time curve with a
hyperbolic tangent function with the inflection point denoting
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FIG. 4. Transition time τt for systems with different ζ ∗ and ϕfree

averaged over (a) five different initial configurations and a certain
realization of the noise, (b) five different realizations of the noise and
a fixed initial configuration. The spread in data based on the standard
error is shown by dashed lines.

the transition time. It is noteworthy that, no overlap criteria
for placing the particles randomly in the simulation box is
imposed, the initial overlap and contact force can be large for
some configurations. Porous particles can change their size to
reduce these large forces. This is not the case for impermeable
particles and in order to resolve the dynamics, in this case,
the time step needs to be reduced significantly. Therefore, the
computational expense may become prohibitive. This is why
results for ζ ∗ = 0 are not shown in Figs. 3(a) and 4(a).

Figure 3 shows that the energy values are not affected by
the choice of initial configuration or realization of the noise.
This means that at longer times the history has already been
removed. In other words, the system is not quenched and its
history does not influence the behavior of the material, as far as
the energy value is concerned. However, this does not apply for
the transition time, Fig. 4. Initially, crystallization is slow, i.e.,
longer transition time, because of small saturation compared
to the freezing point, that is the first density at which a crystal
structure occurs. Based on our simulations, the freezing point
is a value between 1.1 × 1019 < n < 1.13 × 1019 m−3, that is

0.72 < ϕfree < 0.74. Upon increasing the system density, the
effective particle diffusion coefficient is reduced and particles
require more time for structural rearrangement, hence the
increased τt on average (see Sec. IV B). The behavior of the
transition time agrees qualitatively with the work of Pusey et al.
[41] for hard particle suspensions. Furthermore, the transition
time is highly affected by the choice of initial condition and
the realization of the noise (see Fig. 4). The spread of data in
Figs. 4(a) and 4(b) increases with increasing system density.
This has implications on the simulation time. It should be
chosen long enough for the glassy state to elapse and to allow
the particles to find a lower-energy configuration.

Based on the results shown in this section, one can draw
the following conclusions. The simulation time should allow
for the collective motion of the particles in the entire system
to find a lower-energy state. The time scale involved in this
process is complicated to estimate beforehand. The reason for
this is that, first, it happens on time scales significantly larger
than the Brownian time scale τBr

Q . This transition-time scale
grows as the density of the system increases. Second, we show
that this transition-time scale depends on the system history
(initial configuration), and pathway taken by the particles (the
realization of the noise). Here, we relate this time scale to
the transition time for structural ordering τt (see Fig. 2). As
a result, the transition time imposes an additional condition
on the simulation time, that is, the simulation time should be
larger than the transition time to measure material properties
that are independent of the system history. Based on these
arguments, the simulation time used in the remainder of the
paper is

τsim � 2τt. (26)

It is also found that impermeable particles have higher energy
per particle than porous particles [see Fig. 3(b)]. In addition,
they undergo a transition to an ordered state on longer time
scales, on average, than porous particles in particular at higher
densities [see Fig. 4(b)]. In contrast to comparing porous and
nonporous particles, let us compare porous-particle systems
with different permeability, i.e., ζ ∗ �= 0. The effect of the
value of permeability of porous particles on the energy and
transition time is unclear as can be seen in Figs. 3 and 4,
respectively. These observations will be studied further in the
following sections. Henceforth, in order to compare results
with systems consisting of impermeable particles, we focus
on systems with fixed simple-cubic initial configuration and
different realizations of the noise as in Fig. 3(b).

IV. PROPERTIES OF SPONGY-PARTICLE SUSPENSIONS

At t > τt, properties of suspensions of spongy particles are
studied as a function of the system density, for simulations
performed with different realizations of the noise. Their
behavior is compared to the limiting case of soft elastic
particles with zero permeability by setting ζ ∗ = 0.

A. Energy and stresses

Figure 5 shows the different energy components per particle
at t > τt for systems with different dimensionless parameter
ζ ∗ and as a function of the volume fraction ϕfree. The behavior
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FIG. 5. Components of the energy per particle for ζ ∗ = 0 (closed
symbols) and ζ ∗ = 0.005 (open symbols), and S∗ = 2.5 × 10−3. The
error bars are based on the standard deviation obtained from running
the simulation with five different realizations of the noise.

of these systems with respect to the system density can be
divided into three regimes.

(a) Regime 1. This regime covers the following number
densities and volume fraction ranges:

n � 0.8 × 1019 m−3 and ϕfree � 0.524.

At low system densities, the energy per particle is less than
the thermal energy kBT . Particles do not overlap and the total
interaction potential (9) can be approximated by

�i(ξ ) = �vol
i (Ri). (27)

At equilibrium, the energy �vol
i and the driving force −∂R�vol

i

vanish up to noise contributions. The particle-size fluctua-
tions around Req result in an average contribution to the
energy of kBT/2.

(b) Regime 2. In this regime, the number density and the
corresponding volume fraction ranges are

0.8 × 1019 m−3 < n � 1.1 × 1019 m−3 and 0.524 < ϕfree

� 0.72.

While the volumetric energy remains independent of density
as in the first regime, the contact between particles increases
with increasing the particle volume fraction. In other words,
particles deform due to contact but at no significant volume
change. In this regime, the architecture of the individual
particle, i.e., permeability, does not affect the overall behavior
of the suspension.

(c) Regime 3. As the number densities and correspondingly
volume fractions increase further,

n > 1.1 × 1019 m−3 and ϕfree > 0.72,

a transition in behavior occurs. It is pointed out that volume
fractions well above unity, ϕfree > 1, can be reached at the
expense of the particle compression. Regime 3 is characterized
by an initial drop in the energy. The energy drop does not
depend on the structure, i.e., the permeability of the particles,

as it occurs for both porous and nonporous systems. It is to be
noted that the system at a volume fraction of ϕfree = 0.72 (n =
1.1 × 1019 m−3) does not show a transition to an ordered state
even for τsim = 3072τBr

Q compared to Eq. (24). Consequently,
the density at which energy drop occurs does not depend on
the simulation time.

As the density of the system increases, the contact forces
increase and particles reorganize into an ordered structure
(see Fig. 2). Upon further increasing the number density,
the volumetric energy deviates from the equilibrium value
(kBT/2) to reduce contact forces between particles. Particle
structure, i.e., the permeability, and respectively ζ ∗, affect the
energy at number densities greater than at a volume fraction
of ϕfree = 0.78 (n = 1.2 × 1019 m−3), at which size change
becomes significant. This agrees with the work of Romeo et al.
[9] where they studied the deswelling behavior of microgels
experimentally and they found that significant deswelling
occurs at volume fractions higher than 0.8.

As discussed before, the main difference between
poroelastic and elastic particles is the ability to change size
depending on the rate of deformation. Elastic particles can
be elastically deformed upon Hertzian contact. Poroelastic
particles, on the other hand, have an additional degree of
freedom, that is their size. The volume deformation involved
is rate dependent as it depends on the permeating fluid as
well as the structure of the particle expressed in terms of the
permeability. This picture helps understanding the behavior
shown in Fig. 5. This figure shows that at high system
densities, porous particles change their size to reduce the
Hertzian contact energy. Because elastic particles cannot
accommodate volume changes, the resulting Hertzian contact
energy is higher than in the case of porous particles.

It is to be noted that both contributions to the energy,
the Hertzian contact energy and the volumetric contribution,
share an explicit linear dependence on the particle elastic
modulus [see Eqs. (4) and (7)], while there is an additional
implicit dependence on the elastic modulus in terms of the
attained microstructures. With respect to increasing volume
fraction ϕfree, our results show that the increase in the energy
contribution due to volume change is smaller than the increase
in the energy contribution due to Hertzian contact (see Fig. 5),
which is considered a nontrivial result. The contribution of
these two components of energy results in a total energy that is
lower for porous particles than elastic impermeable particles.

The effect of permeability can be further explained by
studying the particle-size distribution at a certain time. Figure 6
shows histograms of particle radii for some of the systems
shown in Fig. 5 at a volume fraction of ϕfree = 0.916 (n =
1.4 × 1019 m−3). It is obvious from Fig. 6 that the mean of
this distribution 〈R〉 is lower than Req for porous particles.
The average size change observed for porous particles is
small, approximately 1% of Req. In contrast, the particle
size for the case of vanishing permeability remains at the
initial distribution around Req. Both distributions result in
nonvanishing volumetric contributions to the energy �vol.
However, in the case of impermeable particles, the particle size
can not change because of a vanishing transport coefficient,
and therefore the particles can not adapt in order to attain a
more favorable configuration. In other words, this means that a
smaller fraction of phase space is accessible to the nonporous
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FIG. 6. Radius distribution at t/τBr
Q = 384.6 for a system at

ϕfree = 0.916 (n = 1.4 × 1019 m−3) with (a) ζ ∗ = 0 with 〈R〉/Req = 1
and σR/Req = 0.006 37, and (b) ζ ∗ = 0.005 with 〈R〉/Req = 0.9934
and σR/Req = 0.006 43. The red line represents the Boltzmann
distribution for nonoverlapping particles as given in Eq. (25).

particles as compared to the porous particles. This implies
that the relaxation to low-energy states of nonporous particle
systems is less effective, as shown in Fig. 5.

The scenario of vanishing permeability can be translated to
practical situations as follows. While vanishing permeability
implies the absence of size relaxation, a small (but finite)
permeability represents a system with a long (but finite) size
relaxation. In this sense, the case of vanishing permeability
studied above is representative of a system that has no
noticeable size relaxation on the time frame of the numerical
simulations. Looking at the simulation results in Fig. 5
in this way, one can state that the system with vanishing
permeability is not equilibrated, and even the system with
the finite permeability may not be completely equilibrated
yet. For this reason, these structures will be referred to as
out-of-equilibrium in the sequel.

The size changes in Fig. 6 are approximately 1% of Req,
which raises questions concerning the relevance of the volume
contribution relative to the Hertzian contribution. The relative
importance of both contributions can be compared most easily
where they appear simultaneously in the evolution equations.
This is the case for the first term on the right-hand side of

the size-dynamics equation (22b). Since both the Hertzian
potential and the volumetric energy depend on the particle
size, the driving force for size change can be expressed as F̃R =
F̃ Hz

R + F̃ vol
R , where F̃ Hz

R = −∂R̃�̃Hz and F̃ vol
R = −∂R̃�̃vol. The

ratio of these contributions indicates their relative importance:

ρ =
∣∣〈F̃ vol

R

〉∣∣∣∣〈F̃ Hz
R

〉∣∣ , (28)

where 〈. . .〉 denotes the average with respect to the statistical
distribution from the simulation. For the specific system shown
in Fig. 6 at ϕfree = 0.916, one finds ρ ≈ 17, which shows
quantitatively that the volumetric contribution is dominant in
this case. It is pointed out that, for the system at hand, there
is a significant difference between evaluating the forces using
the average sizes and distances versus evaluating the forces
using the full statistical distribution; this holds not only for the
forces, but also for the potential energy contributions.

The stresses are calculated using the constitutive relation
derived in [17]. Using the nondimensional interaction potential
and scaling the length scales involved by Req, the stress tensor
is given by

σ̃ = σ

E
= nR3

eq

[〈∑
i

(∇ Q̃i
�̃

)
Q̃i

〉
+ α

〈(
∂R̃i

�̃
)
R̃i

〉
I

]
, (29)

up to a constant pressure which takes into account the solvent
pressure. The reader may refer to [17] for more information.
The prefactor α indicates how much a particle follows the de-
formation of the containing volume. To put it more simply, one
can think of this problem as a purely elastic problem in which
a small volume change is applied to a volume that contains a
spherical particle. If the particle is incompressible, the particle
radius does not change and α = 0. On the contrary, if the par-
ticle is made of the same material as the surrounding material,
α = 1

3 , akin to affinely deforming the particle. In intermediate
cases, it can be shown that α depends on the bulk modulus of
the particle Kpart and the surrounding material Ksol as

α = Ksol

3Kpart
. (30)

Incompressible particles have an infinitely large bulk modulus
Kpart → ∞ and α = 0; this is the value used for nonporous
particles. For highly porous particles used in this study, one
can assume that they are formed mostly of the surrounding
solvent, so that their bulk moduli are comparable. For this
reason, we use α = 1

3 for porous particles.
Figure 7 shows the average normal stress for non-

porous (ζ ∗ = 0) and porous (ζ ∗ = 0.005) systems with S∗ =
2.5 × 10−3. The stress-density curve reflects the same features
shown in Fig. 5 for the energy per particle. One can clearly
see that the stress increases as the system density increases for
both systems. However, in regime 3, this increase is stronger
for nonporous particles. The reason for this is that, as explained
before, in this regime the particle size change is large which
reduces contact between particles and hence the stress is lower.

B. Diffusion

The mobility of particles can be described by means of the
diffusion tensor. A single submicron-sized particle in a solvent
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FIG. 7. Normal stress for systems with ζ ∗ = 0 (closed symbols)
and ζ ∗ = 0.005 (open symbols), and S∗ = 2.5 × 10−3. The error
bars are based on the standard deviation obtained from running the
simulation with five different realizations of the noise.

is subject to Brownian forces, and moves with a diffusion
coefficient D0 given by

D0 = kBT

6πηReq
, (31)

which is equal to 8.58 × 10−13 m2/s for the particles used
in this study. The mean square displacement (MSD) of this
particle is defined as

〈�r(t)2〉 = 〈[r(t) − r(t0)]2〉. (32)

For a single-particle system, the mean square displacement
is a linear function in time with a slope that is twice D0.
As more particles are added, their motion is hindered over
longer times and the MSD − t relation becomes nonlinear.
For a many-particle system, 〈. . . 〉 is the average over all
particles and all samples extracted from the same simulation.
A sample is defined based on the longest time scale for particle
displacement which is, in this case, the Brownian time scale
(see Table II). A sample is defined to run from an initial time t0
for a period of 10τBr

Q . In general, if no deformation is applied,
the MSD for a many-particle system is given by

〈�r(t)�r(t)〉 = 2Dt, (33)

where D is the diffusion tensor. The off-diagonal components
are zeros because the Brownian forces in different directions
are uncorrelated. For a single-particle system, the diagonal
components of the diffusion tensor are Dxx = Dyy = Dzz =
D0. At short times, the slope of the MSD − t curve gives the
the short-time diffusion coefficient DS, which is equivalent to
D0 in the dilute limit. At longer times, the particles interact
and their motion is hindered, and their diffusion coefficient is
lowered. The long-time diffusion coefficient is denoted by DL.

Figure 8 shows the short-time diffusion coefficient for both
systems shown in Fig. 5. It is calculated from the initial slope
of the MSD curve. In regime 1, the volume fractions are low
enough that particles initially diffuse with a coefficient that
is, approximately, equal as D0. This coefficient decreases as

FIG. 8. Scaled short-time diffusion coefficient DS for porous
systems with ζ ∗ = 0.005 (open symbols) and nonporous systems
with ζ ∗ = 0 (closed symbols), and S∗ = 2.5 × 10−3 at different
number densities. D0 denotes the single-particle diffusion coefficient
in the dilute limit calculated based on the equilibrium size. The
standard error of the data based on simulations run with five different
realizations of the noise is smaller than the symbol size.

the particle volume fraction increases, in regimes 2 and 3. In
regime 3, porous particles can diffuse more than impermeable
particles because of their ability to change their size which
gives them, locally, more space.

Figure 9 shows that the long-time diffusion of these systems
is lower than the short-time diffusion, as particles encounter
other particles in the system. The decrease in long-time dif-
fusion coefficient with increasing the particle volume fraction
is steeper than the decrease in short-time diffusion coefficient.
This steep decrease in DL is attributed to the fact that particles

FIG. 9. Scaled long-time diffusion coefficient DL for porous
systems with ζ ∗ = 0.005 (open symbols) and nonporous systems with
ζ ∗ = 0 (closed symbols), and S∗ = 2.5 × 10−3 at different number
densities. D0 denotes the single-particle diffusion coefficient in the
dilute limit calculated based on the equilibrium size. The error bars are
the standard error of simulations run with five different realizations
of the noise.
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need to travel shorter distances to encounter neighboring
particles as the system density increases and that the caging
becomes more effective. However, porous and nonporous
particle systems show the same diffusive behavior over long
times. This proves that the long-time diffusion is not sensitive
to size change, but is dominated mainly by the density of the
system. Based on the long-time diffusion coefficient, ordering
occurs at DL/D0 ≈ 0.1, which gives a dynamic criterion to the
onset of regime 3. This criterion (DL/D0 ≈ 0.1) was reported
by Löwen and co-workers [42,43] as a universal value for
freezing of colloidal liquids into crystals for Brownian systems
which was also confirmed using simulations for particles under
Yukawa potential.

V. STRUCTURE IN REGIME 3

Regime 3, as discussed before, is the regime in which
particles form ordered structures in order to reduce the total
energy of the system. The transition to an ordered state depends
on the system density (see Fig. 5). The interplay between
packing, elastic properties, and permeability is a significant
factor in the formation of crystalline colloidal systems. In this
section, the effect of permeability on the transition to ordered
structures is studied in detail in terms of the structure obtained
as well as the structure evolution for highly dense systems.

A. Average local-order parameter

The structure is characterized by means of the average local-
order parameter [44,45] defined, for a particle i with a number
of neighboring particle Nb, as

q̄l(i) =
√√√√ 4π

2l + 1

l∑
m=−l

|q̄lm(i)|2, (34)

where

q̄lm(i) = qlm(i) + ∑Nb

k=1 qlm(k)

Nb + 1
(35)

and

qlm(i) =
∑Nb

j=1 Ylm(r ij )

Nb

. (36)

In the above equations, qlm is a complex number that depends
on all the spherical harmonics Ylm of order l with integers
m ∈ {−l, . . . ,l} for a pair of particles with interparticle vector
r ij measured relative to a fixed frame of reference. Particles
are defined as neighbors when the interparticle separation
corresponds to the first minimum in the radial distribution
curve. In Eq. (35), qlm is averaged over the neighbors of particle
i in addition to particle i itself, which increases the accuracy
in discriminating different crystal structures [44].

The order of the spherical harmonics used is l = 4 and 6
to capture structures with fourfold symmetry like the bcc, and
structure with sixfold symmetry like hcp, respectively. Parti-
cles are considered to be solidlike if q̄6 � 0.29 and they are
further categorized as bcc for q̄4 � 0.05, hcp for 0.05 < q̄4 �
0.1, and fcc for q̄4 > 0.1 [44,46]. Using the average local-order
parameter, one can express the structure in terms of fractions
of bcc, hcp, and fcc crystals as well as the amorphous phase.

FIG. 10. Average structural composition f of bcc, hcp, and fcc
structures for systems with S∗ = 2.5 × 10−3 and ζ ∗ = 0 (closed
symbols) and ζ ∗ = 0.005 (open symbols). Error bars are the standard
error based on simulations run at five different realizations of the
noise.

B. Final structure

Figure 10 shows the average composition f of the different
crystals for systems with ζ ∗ = 0 and 0.005 at different system
densities. The bcc is not favored for both systems because it has
only fourfold symmetry and is unstable; even if it develops at
earlier time during a simulation, it soon changes into the more
stable fcc or hcp. The structure obtained, in both cases and
for the entire range of number densities shown, is the random
hexagonal close packing (rhcp) which is a mixture of hcp
and fcc. hcp and fcc have energies that are a fraction of kBT

different in favor of fcc [36,47].
Figure 10 characterizes the structure in the low-energy

states, that is, at times longer than τt. The fact that the error
bars are relatively large points at a significant influence of
the different realizations of the noise, i.e., of the history. It
appears that, within standard errors, no clear trends can be
seen in the density dependence of the structure obtained at
times longer than τt, and a systematic difference between
porous and nonporous systems is not evident. This is to be
compared with the energy results presented in Fig. 5, which
did show a dependence on the permeability. While the energy is
a useful (single) physical quantity that captures some features
of the structure, it is more illuminating to examine the various
crystalline phases present in the system, and how these phases
actually emerge, which is discussed in the following section.

C. Structure evolution

The evolution of structure of both systems, shown in
Fig. 5, is studied in this section. As mentioned before, the
average final structure of the suspensions studied depends
on the realization of the noise used in a simulation. To that
end, in this section, we compare two typical systems with
ζ ∗ = 0 and 0.005 at ϕfree = 0.916 (n = 1.4 × 1019 m−3) and
S∗ = 2.5 × 10−3 using a certain realization of the noise. The
dynamics of structure formation is expressed in terms of the
transition time.
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FIG. 11. Order parameter (q̄4,q̄6)-density maps at t = 0.5τt (top
row), at t = τt (middle row), and at t = 2τt (bottom row) for systems
with ϕfree = 0.916 (n = 1.4 × 1019 m−3) and ζ ∗ = 0 (left column),
and ζ ∗ = 0.005 (right column), respectively. The contour lines
correspond to 5% of the maximum density, for better visualization.

Figure 11 shows the (q̄4,q̄6)-density maps as a function of
time. The bottom row in Fig. 11 shows that at 2τt most of the
particles in both cases are solidlike, based on the definition
given in Sec. V A, irrespective of their bias to one phase or
the other (hcp or fcc). This is confirmed from Fig. 12 where
the amount of crystalline structure, defined as f cryst = f bcc +
f hcp + f fcc, for these systems is shown as a function of time.
It becomes clear that at times greater than τt both systems have
fully crystallized.

The left column in Fig. 11 shows the result for elastic
particles with zero permeability. At t = 0.5τt (top row in
Fig. 11), most of the particles are still in the amorphous state
with some clusters forming hcp and fcc. At t = τt (middle row
in Fig. 11), more clusters with hcp and fcc structure form, that
grow over time. This result is qualitatively similar to results
obtained for the Yukawa systems in [46] in which they studied
the effect of the interaction energy, which can be related to
S∗ in our model, on the crystallization dynamics. Here, we
build on the knowledge about the crystallization process [46]
by studying the effect of the additional degree of freedom, the

FIG. 12. Evolution of fraction of crystalline phase for the system
in Fig. 11 at a density of ϕfree = 0.916 (n = 1.4 × 1019 m−3)
with S∗ = 2.5 × 10−3 and ζ ∗ = 0 (black) and ζ ∗ = 0.005 (red),
respectively.

particle radius. The right column in Fig. 11 shows the structure
evolution for porous particles. Porous particles at 0.5τt (top
row in Fig. 11) show the same behavior as nonporous particles,
that is, most of the particles are in the amorphous phase. At
τt (middle row in Fig. 11), porous particles are mostly in the
fcc domain, while nonporous particles are distributed over the
fcc, hcp, and amorphous domains, respectively. This suggests
that the formation of the stable fcc structure occurs faster for
porous particles than for nonporous particles in terms of times
relative to τt. To further investigate this effect, the number of
clusters of ordered particles is studied as a function of time.

The number of clusters is calculated based on particles that
have a bcc, hcp, or fcc structure, in other words, particles with
q̄6 � 0.29. If the distance between a particle and its neighbor is
smaller than a certain threshold, they belong to the same clus-
ter. The threshold in this case is set to the first minimum in the

FIG. 13. Evolution of number of clusters of ordered particles
for the system in Fig. 11 at a density of ϕfree = 0.916 (n =
1.4 × 1019 m−3) with S∗ = 2.5 × 10−3 and ζ ∗ = 0 (black) and ζ ∗ =
0.005 (red), respectively.
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FIG. 14. The first moment of cluster-size distribution Mn of
ordered particles for systems with different realizations of the noise at
a density of ϕfree = 0.916 (n = 1.4 × 1019 m−3) with S∗ = 2.5 × 10−3

and ζ ∗ = 0 (black) and ζ ∗ = 0.005 (red).

radial distribution function calculated based on the position of
particles with q̄6 � 0.29. Figure 13 shows the evolution of the
number of clusters over time for both systems shown in Fig. 11.
Clusters can be seen as nuclei from which ordered structures
grow. Figure 13 shows that, in time units of τt, porous particles
form slightly fewer clusters, and a slightly higher degree of
crystallinity (see Fig. 12), than nonporous ones. This can be
interpreted as the size dynamics allowing more particles to
locally rearrange relative to their neighbors, which accelerates
crystal growth into the stable structure, that is fcc for our
system. This conclusion is supported by the fact that porous
particles diffuse more than nonporous particles as indicated by
the short-time diffusion coefficient shown in Sec. IV B.

The cluster-size distribution for the same systems, that is
with ζ ∗ = 0 and 0.005 at ϕfree = 0.916 (n = 1.4 × 1019 m−3)

FIG. 15. The polydispersity in cluster-size distribution Mw/Mn

of ordered particles for systems with different realizations of the
noise at a density of ϕfree = 0.916 (n = 1.4 × 1019 m−3) with S∗ =
2.5 × 10−3 and ζ ∗ = 0 (black) and ζ ∗ = 0.005 (red).

and S∗ = 2.5 × 10−3 using five different realizations of the
noise, is analyzed in terms of moments of the cluster-size
distribution. Here, we use the definition of the number- and
weight-average molecular weights Mn and Mw, respectively
[48], with Mw/Mn = 1 being representative of a monodisperse
and Mw/Mn � 1 of a strongly polydisperse distribution. The
cluster size is expressed in terms the number of particles
forming this cluster. Figure 14 shows that, at t < τt, the average
cluster size given by Mn of porous particle systems is higher
in comparison with nonporous particles. This confirms that
porous particle systems grow larger clusters on shorter-time
scales than nonporous systems. This is attributed to the fact that
porous particles are locally more mobile, which is established
by the higher short-time diffusion in regime 3 (see Sec.
IV B). On the other hand, the polydispersity in cluster-size
distribution, i.e., Mw/Mn, is shown in Fig. 15. It can be seen
that, on average, the polydispersity of nonporous particles is
higher than the polydispersity of porous particles.

VI. CONCLUSIONS

In this paper, the rate-dependent behavior of spongy
particles and its effect on the effective overall properties of
suspensions made from such particles is studied in detail.
The permeability of the particles and the viscosity of the
permeating solvent are responsible for the rate-dependent size
change of these particles. This work applies the dynamic
two-scale developed by Hütter et al. [17] to suspensions of
spongy particles. The model accounts for the rate-dependent
size change of these particles by considering the particle size
as a separate dynamic degree of freedom. The specific system
realization is achieved by making a choice on the potential
energy and the friction coefficients. Particles are assumed
to interact through a purely repulsive potential due to (i)
the elastic shape change upon contact, and (ii) the volume
change of particles compared to their size in the dilute limit.
Particle-based numerical simulations are performed with the
purpose of studying the effect of the rate-dependent particle
softness ascribed to the particle architecture, i.e., permeability,
on the transient and long-time behavior of spongy-particle sus-
pensions in the absence of applied deformation. Understanding
the behavior in equilibrium, i.e., in the absence of applied
deformation, is an essential prerequisite for understanding the
behavior under deformation (e.g., shear).

At high densities, the suspension undergoes a fast transition
from an initial high-energy state to a long-lived (glassy)
state, which in turn evolves to an ordered low-energy state.
The second transition to the ordered state occurs on time
scales significantly larger than the Brownian time scale. By
performing a careful study of numerical parameters, the
transition time is found to depend significantly on the sample
history while the final state is rather insensitive to the sample
history, where the latter is changed by varying the initial
state and the realization of the noise. At times larger than
the transition time, the permeability has a significant effect
on the overall response at packing fractions higher than 0.8.
Porous particles at such high packing densities reduce their
size in order to reduce the contact forces. Consequently,
the energy and the normal stress are lower compared to
impermeable particles. Porous particles are also found to be,
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locally, more mobile as observed by the higher short-time
diffusion coefficient.

This work also addresses the crystallization phenomena
for colloidal systems. Upon increasing the volume fraction
of particles, the energy in the system increases gradually.
At volume fractions around 0.72 the energy drops, which is
found to coincide with the formation of crystals. Increasing
the volume fraction even further, the energy of the crystalline
structures gradually increases. Specifically at volume fraction
of 0.72, the long-time diffusion coefficient is one-tenth of
the single-particle diffusion coefficient, consistent with the
universal value for the freezing point of colloidal liquids into
crystals [42,43]. We have studied the structures formed and
their evolution, in time units of the transition time τt, by means
of the averaged bond-order parameter [44,45]. We show that,
although the final structure is not qualitatively affected by
the permeability of the particles, the growth of the stable fcc
structure is accelerated for porous particle systems. In this
case, bigger clusters are created faster, as opposed to their
impermeable counterpart.

Previous models have captured part of the general features
of soft-particle suspensions by considering only the elastic
nature of softness. However, this work draws attention to
taking into account the rate-dependent particle softness on
the long-time behavior and dynamics of suspensions made
from such particles, even at radius changes as small as 1%.
On the one hand, the elastic softness alone, if applied to
spongy particles, overestimates the long-time values of energy
and stress at volume fractions higher than 0.8. This 80%
limit is consistent with experimental observations that the
compression of particles becomes more significant at these
volume fractions [9]. It is pointed out that porous particles
adjust their size in a dissipative way to reduce contact
forces at high packing densities, which cannot be captured
by considering solely the (nondissipative) elastic particle
softness. On the other hand, we have found that, even at radius
changes as small as 1%, the rate-dependent softness attributed
to porous particles accelerates the dynamics of the system, as
evidenced by the higher short-time diffusion coefficient. The
effect of the accelerated dynamics is twofold. First, transitions
to the ordered state occur on shorter time scales, and second
the growth of stable structures, which is fcc for our systems,
is accelerated.

In future work, this model will be applied to systems under
deformation in order to study the mechanical behavior of these
suspensions. It has been noted in the literature (see, for exam-
ple, [14] and references therein) that not accounting for internal
degrees of freedom falls short of explaining, for instance, the
increase in yield stress of soft-particle systems compared to
hard-particle systems. We hypothesize that incorporating size

dynamics would provide insight in the description of such
phenomena, particularly under strong flow conditions.
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APPENDIX A: HERTZIAN POTENTIAL

This appendix is concerned with determining the coef-
ficients in Eq. (5) for the Hertzian potential referred to in
Sec. II A.

Consider two deformable particles i and j with radii Ri

and Rj centered at Qi and Qj , respectively. Particles are in
contact with an amount of overlap of hij = Ri + Rj − | Qij |
where | Qij | = | Qi − Qj |. In this case, the energy associated
with the elastic contact between these two particles is

�Hz
ij =

{
E

2(1−ν2)h
n
ijR

3−n
c + k, hij > 0

0, hij � 0.
(A1)

For small deformations, constants C, n, and k in Eq. (A1)
follow from Hertz theory [23], C = 8

15 , n = 5
2 , and k = 0. This

is valid for hij

Ri+Rj
< 0.1. The values of these constants vary for

larger deformations. Liu et al. [25] performed experiments on
a single particle deformed between two flat plates. They found
that the force is a function of indentations to the power 3 for
values between 10% and 20% of the diameter of the particle
and to the power 5 for values higher than 20%. Based on
the information known about the small deformation range,
the remaining constants can be calculated to ensure force and
energy continuity assuming that all the particles are at their
equilibrium size, i.e., Ri = Rj = Req. This gives the following
C, n, and k for different ranges of deformation

C = 8

15
, n = 5

2
, k = 0, h∗

ij < 0.1,

C = 5

6

√
5

2
, n = 4, k =

√
10

1250
E∗R3

eq, 0.1 � h∗
ij < 0.2,

C = 125

144

√
5

2
, n = 6, k = 89

√
10

11250
E∗R3

eq,

0.2 � h∗
ij < 0.6, (A2)

where h∗
ij = hij

Ri+Rj
and E∗ = E

2(1−ν2) .

APPENDIX B: EFFECT OF SYSTEM SIZE

In this appendix, the effect of the system size on the overall
behavior is studied. This is done for the three regimes described

TABLE III. Energy (�/NkBT ) for a system with N1 = 123, N2 = 173, and N3 = 223 particles, at different number densities. The standard
deviation is based on five simulations each with different realizations of the noise.

n[× 1019 m−3] N1 = 123 N2 = 173 N3 = 223

1.0 1.7662 ± 0.00045 1.7691 ± 0.00094 1.7692 ± 0.00035
1.223 2.5964 ± 0.1430 2.6172 ± 0.03992 2.7996 ± 0.1729
1.350 4.6131 ± 0.08706 4.7178 ± 0.1543 5.1168 ± 0.3852
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TABLE IV. Transition time for systems with N1 = 123, N2 = 173, and N3 = 223 at different number density. The standard error is based
on the different realizations of the noise.

n[×1019 m−3] N1 = 123 N2 = 173 N3 = 223

1.0 – – –
1.223 10.4172 ± 5.1237 s 4.5828 ± 1.1284 s 4.2550 ± 1.6232 s
1.350 15.1270 ± 3.9855 s 11.6080 ± 1.9049 s 9.6067 ± 3.1361 s

in Sec. IV. Three systems, with numbers of particles N1 = 123,
N2 = 173, and N3 = 223, are studied. Particles are initially
placed on a simple-cubic lattice to ensure that the initial
configuration is the same for all systems. For each system,
averages are calculated from five simulations with different
realizations of the noise.

Table III shows that the effect of the system size on the
energy per particle is negligible in the first two regimes,
and moderate in the third regime. The situation is different
for the transition time. It can be seen in Table IV that

the transition time systematically decreases upon increasing
the number of particles, at the same number density. This
trend is, as expected, in view of the periodic boundary
conditions. For increasing system size, the influence of the
boundary conditions on the system behavior becomes less.
More precisely, the larger the system, the less does the system
feel the constraints imposed by the boundary conditions. And,
in turn, less constraints on the dynamics implies that the system
manages to find more rapidly the path to a more favorable
state.

[1] A. Bouchoux, P.-E. Cayemitte, J. Jardin, G. Gésan-Guiziou, and
B. Cabane, Biophys. J. 96, 693 (2009).

[2] N. L. Thomas, Prog. Org. Coat. 19, 101 (1991).
[3] J. B. Thorne, G. J. Vine, and M. J. Snowden, Colloid Polym.

Sci. 289, 625 (2011).
[4] C. W. MacMinn, E. R. Dufresne, and J. S. Wettlaufer, Phys. Rev.

X 5, 011020 (2015). .
[5] H. M. Wyss, T. Franke, E. Mele, and D. A. Weitz, Soft Matter

6, 4550 (2010).
[6] P. Snabre and P. Mills, Colloids Surf. A 152, 79 (1999).
[7] S. Adams, W. J. Frith, and J. R. Stokes, J. Rheol. 48, 1195

(2004).
[8] D. Vlassopoulos and M. Cloitre, Curr. Opin. Colloid Interface

Sci. 19, 561 (2014).
[9] G. Romeo, L. Imperiali, J.-W. Kim, A. Fernández-Nieves, and

D. Weitz, J. Chem. Phys. 136, 124905 (2012).
[10] Handbook of Granular Materials, edited by S. V. Franklin and

M. D. Shattuck (CRC Press, Boca Raton, FL, 2015).
[11] J. Bouchard, J. Phys. I (France) 2, 1705 (1992).
[12] P. Sollich, F. Lequeux, P. Hébraud, and M. E. Cates, Phys. Rev.

Lett. 78, 2020 (1997).
[13] P. Sollich, Phys. Rev. E 58, 738 (1998).
[14] A. Ikeda, L. Berthier, and P. Sollich, Soft Matter 9, 7669 (2013).
[15] M. Van Hecke, J. Phys.: Condens. Matter 22, 033101 (2010).
[16] J. R. Seth, L. Mohan, C. Locatelli-Champagne, M. Cloitre, and

R. T. Bonnecaze, Nat. Mater. 10, 838 (2011).
[17] M. Hütter, T. J. Faber, and H. M. Wyss, Farad. Discuss. 158,

407 (2012).
[18] M. Grmela and H. C. Öttinger, Phys. Rev. E 56, 6620

(1997).
[19] H. C. Öttinger and M. Grmela, Phys. Rev. E 56, 6633

(1997).
[20] H. C. Öttinger, Beyond Equilibrium Thermodynamics (Wiley,

Hoboken, NJ, 2005).
[21] A. Fernandez-Nieves and A. M. Puertas, Fluids, Colloids and

Soft Materials: An Introduction to Soft Matter Physics, Vol. 7
(Wiley, Hoboken, NJ, 2016).

[22] C. L. A. Berli and D. Quemada, Langmuir 16, 7968 (2000).

[23] K. L. Johnson, Contact Mechanics (Cambridge University Press,
Cambridge, 1985).

[24] J. R. Seth, M. Cloitre, and R. T. Bonnecaze, J. Rheol. 50, 353
(2006).

[25] K. K. Liu, D. R. Williams, and B. J. Briscoe, J. Phys. D: Appl.
Phys. 31, 294 (1998).

[26] F. Beer, E. Johnston, and J. DeWolf, Mechanics of Materials
(McGraw-Hill, New York, 2002).

[27] H. C. Öttinger, Stochastic Processes in Polymeric Fluids: Tools
and Examples for Developing Simulation Algorithms (Springer,
Berlin, 2012).

[28] G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge
University Press, Cambridge, 2000).

[29] A. Verruijt, Introduction to Soil Dynamics (Springer, Dordrecht,
2010).

[30] A. W. Lees and S. F. Edwards, J. Phys. C: Solid State Phys. 5,
1921 (1972).

[31] A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics,
Texts in Applied Mathematics (Springer, Berlin, 2010).

[32] C. A. Grattoni, H. H. Al-Sharji, C. Yang, A. H. Muggeridge,
and R. W. Zimmerman, J. Colloid Interface Sci. 240, 601
(2001).

[33] A. Banerjee, M. Arha, S. Choudhary, R. S. Ashton, S. R. Bhatia,
D. V. Schaffer, and R. S. Kane, Biomaterials 30, 4695 (2009).

[34] J. J. Liétor-Santos, B. Sierra-Martín, and A. Fernández-Nieves,
Phys. Rev. E 84, 060402 (2011).

[35] P. H. J. Kouwer, M. Koepf, V. A. A. Le Sage, M. Jaspers, A.
M. van Buul, Z. H. Eksteen-Akeroyd, T. Woltinge, E. Schwartz,
H. J. Kitto, R. Hoogenboom et al., Nature (London) 493, 651
(2013).

[36] A. P. Gast and W. B. Russel, Phys. Today 51(12), 24 (1998).
[37] B. J. Ackerson and P. N. Pusey, Phys. Rev. Lett. 61, 1033

(1988).
[38] P. N. Pusey, J. Phys.: Condens. Matter 20, 494202 (2008).
[39] S. Martin, G. Bryant, and W. van Megen, Phys. Rev. E 67,

061405 (2003).
[40] M. Cloitre, R. Borrega, and L. Leibler, Phys. Rev. Lett. 85, 4819

(2000).

012604-15

https://doi.org/10.1016/j.bpj.2008.10.006
https://doi.org/10.1016/j.bpj.2008.10.006
https://doi.org/10.1016/j.bpj.2008.10.006
https://doi.org/10.1016/j.bpj.2008.10.006
https://doi.org/10.1016/0033-0655(91)80001-Y
https://doi.org/10.1016/0033-0655(91)80001-Y
https://doi.org/10.1016/0033-0655(91)80001-Y
https://doi.org/10.1016/0033-0655(91)80001-Y
https://doi.org/10.1007/s00396-010-2369-5
https://doi.org/10.1007/s00396-010-2369-5
https://doi.org/10.1007/s00396-010-2369-5
https://doi.org/10.1007/s00396-010-2369-5
https://doi.org/10.1103/PhysRevX.5.011020
https://doi.org/10.1103/PhysRevX.5.011020
https://doi.org/10.1103/PhysRevX.5.011020
https://doi.org/10.1103/PhysRevX.5.011020
https://doi.org/10.1039/c003344h
https://doi.org/10.1039/c003344h
https://doi.org/10.1039/c003344h
https://doi.org/10.1039/c003344h
https://doi.org/10.1016/S0927-7757(98)00619-0
https://doi.org/10.1016/S0927-7757(98)00619-0
https://doi.org/10.1016/S0927-7757(98)00619-0
https://doi.org/10.1016/S0927-7757(98)00619-0
https://doi.org/10.1122/1.1795193
https://doi.org/10.1122/1.1795193
https://doi.org/10.1122/1.1795193
https://doi.org/10.1122/1.1795193
https://doi.org/10.1016/j.cocis.2014.09.007
https://doi.org/10.1016/j.cocis.2014.09.007
https://doi.org/10.1016/j.cocis.2014.09.007
https://doi.org/10.1016/j.cocis.2014.09.007
https://doi.org/10.1063/1.3697762
https://doi.org/10.1063/1.3697762
https://doi.org/10.1063/1.3697762
https://doi.org/10.1063/1.3697762
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1051/jp1:1992238
https://doi.org/10.1103/PhysRevLett.78.2020
https://doi.org/10.1103/PhysRevLett.78.2020
https://doi.org/10.1103/PhysRevLett.78.2020
https://doi.org/10.1103/PhysRevLett.78.2020
https://doi.org/10.1103/PhysRevE.58.738
https://doi.org/10.1103/PhysRevE.58.738
https://doi.org/10.1103/PhysRevE.58.738
https://doi.org/10.1103/PhysRevE.58.738
https://doi.org/10.1039/c3sm50503k
https://doi.org/10.1039/c3sm50503k
https://doi.org/10.1039/c3sm50503k
https://doi.org/10.1039/c3sm50503k
https://doi.org/10.1088/0953-8984/22/3/033101
https://doi.org/10.1088/0953-8984/22/3/033101
https://doi.org/10.1088/0953-8984/22/3/033101
https://doi.org/10.1088/0953-8984/22/3/033101
https://doi.org/10.1038/nmat3119
https://doi.org/10.1038/nmat3119
https://doi.org/10.1038/nmat3119
https://doi.org/10.1038/nmat3119
https://doi.org/10.1039/c2fd20025b
https://doi.org/10.1039/c2fd20025b
https://doi.org/10.1039/c2fd20025b
https://doi.org/10.1039/c2fd20025b
https://doi.org/10.1103/PhysRevE.56.6620
https://doi.org/10.1103/PhysRevE.56.6620
https://doi.org/10.1103/PhysRevE.56.6620
https://doi.org/10.1103/PhysRevE.56.6620
https://doi.org/10.1103/PhysRevE.56.6633
https://doi.org/10.1103/PhysRevE.56.6633
https://doi.org/10.1103/PhysRevE.56.6633
https://doi.org/10.1103/PhysRevE.56.6633
https://doi.org/10.1021/la000365x
https://doi.org/10.1021/la000365x
https://doi.org/10.1021/la000365x
https://doi.org/10.1021/la000365x
https://doi.org/10.1122/1.2186982
https://doi.org/10.1122/1.2186982
https://doi.org/10.1122/1.2186982
https://doi.org/10.1122/1.2186982
https://doi.org/10.1088/0022-3727/31/3/008
https://doi.org/10.1088/0022-3727/31/3/008
https://doi.org/10.1088/0022-3727/31/3/008
https://doi.org/10.1088/0022-3727/31/3/008
https://doi.org/10.1088/0022-3719/5/15/006
https://doi.org/10.1088/0022-3719/5/15/006
https://doi.org/10.1088/0022-3719/5/15/006
https://doi.org/10.1088/0022-3719/5/15/006
https://doi.org/10.1006/jcis.2001.7633
https://doi.org/10.1006/jcis.2001.7633
https://doi.org/10.1006/jcis.2001.7633
https://doi.org/10.1006/jcis.2001.7633
https://doi.org/10.1016/j.biomaterials.2009.05.050
https://doi.org/10.1016/j.biomaterials.2009.05.050
https://doi.org/10.1016/j.biomaterials.2009.05.050
https://doi.org/10.1016/j.biomaterials.2009.05.050
https://doi.org/10.1103/PhysRevE.84.060402
https://doi.org/10.1103/PhysRevE.84.060402
https://doi.org/10.1103/PhysRevE.84.060402
https://doi.org/10.1103/PhysRevE.84.060402
https://doi.org/10.1038/nature11839
https://doi.org/10.1038/nature11839
https://doi.org/10.1038/nature11839
https://doi.org/10.1038/nature11839
https://doi.org/10.1063/1.882495
https://doi.org/10.1063/1.882495
https://doi.org/10.1063/1.882495
https://doi.org/10.1063/1.882495
https://doi.org/10.1063/1.882495
https://doi.org/10.1103/PhysRevLett.61.1033
https://doi.org/10.1103/PhysRevLett.61.1033
https://doi.org/10.1103/PhysRevLett.61.1033
https://doi.org/10.1103/PhysRevLett.61.1033
https://doi.org/10.1088/0953-8984/20/49/494202
https://doi.org/10.1088/0953-8984/20/49/494202
https://doi.org/10.1088/0953-8984/20/49/494202
https://doi.org/10.1088/0953-8984/20/49/494202
https://doi.org/10.1103/PhysRevE.67.061405
https://doi.org/10.1103/PhysRevE.67.061405
https://doi.org/10.1103/PhysRevE.67.061405
https://doi.org/10.1103/PhysRevE.67.061405
https://doi.org/10.1103/PhysRevLett.85.4819
https://doi.org/10.1103/PhysRevLett.85.4819
https://doi.org/10.1103/PhysRevLett.85.4819
https://doi.org/10.1103/PhysRevLett.85.4819


ZAKHARI, ANDERSON, AND HÜTTER PHYSICAL REVIEW E 96, 012604 (2017)

[41] P. N. Pusey, E. Zaccarelli, C. Valeriani,
E. Sanz, W. C. K. Poon, and M. E. Cates,
Philos. Trans. A Math. Phys. Eng. Sci. 367, 4993
(2009).

[42] H. Löwen, T. Palberg, and R. Simon, Phys. Rev. Lett. 70, 1557
(1993).

[43] H. Löwen and G. Szamel, J. Phys.: Condens. Matter 5, 2295
(1993).

[44] W. Lechner and C. Dellago, J. Chem. Phys. 129, 114707 (2008).
[45] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B

28, 784 (1983).
[46] K. Kratzer and A. Arnold, Soft Matter 11, 2174 (2015).
[47] J. Hilhorst, J. R. Wolters, and A. V. Petukhov, Cryst. Eng.

Commun. 12, 3820 (2010).
[48] F. W. Billmeyer, Textbook of Polymer Science (Wiley, New York,

1971).

012604-16

https://doi.org/10.1098/rsta.2009.0181
https://doi.org/10.1098/rsta.2009.0181
https://doi.org/10.1098/rsta.2009.0181
https://doi.org/10.1098/rsta.2009.0181
https://doi.org/10.1103/PhysRevLett.70.1557
https://doi.org/10.1103/PhysRevLett.70.1557
https://doi.org/10.1103/PhysRevLett.70.1557
https://doi.org/10.1103/PhysRevLett.70.1557
https://doi.org/10.1088/0953-8984/5/15/003
https://doi.org/10.1088/0953-8984/5/15/003
https://doi.org/10.1088/0953-8984/5/15/003
https://doi.org/10.1088/0953-8984/5/15/003
https://doi.org/10.1063/1.2977970
https://doi.org/10.1063/1.2977970
https://doi.org/10.1063/1.2977970
https://doi.org/10.1063/1.2977970
https://doi.org/10.1103/PhysRevB.28.784
https://doi.org/10.1103/PhysRevB.28.784
https://doi.org/10.1103/PhysRevB.28.784
https://doi.org/10.1103/PhysRevB.28.784
https://doi.org/10.1039/C4SM02365J
https://doi.org/10.1039/C4SM02365J
https://doi.org/10.1039/C4SM02365J
https://doi.org/10.1039/C4SM02365J
https://doi.org/10.1039/c0ce00022a
https://doi.org/10.1039/c0ce00022a
https://doi.org/10.1039/c0ce00022a
https://doi.org/10.1039/c0ce00022a



