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Self-assembly of rigid magnetic rods consisting of single dipolar beads in two dimensions
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Molecular dynamics simulations are used to investigate the structural properties of a two-dimensional ensemble
of magnetic rods, which are modeled as aligned single dipolar beads. The obtained self-assembled configurations
can be characterized as (1) clusters, (2) percolated, and (3) ordered structures, and their structural properties are
investigated in detail. By increasing the aspect ratio of the magnetic rods, we show that the percolation transition
is suppressed due to the reduced mobility of the rods in two dimensions. Such a behavior is opposite to the one
observed in three dimensions. A magnetic bulk phase is found with local ferromagnetic order and an unusual
nonmonotonic behavior of the nematic order is observed.
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I. INTRODUCTION

Recent years has witnessed a growing interest in the
self-assembly of magnetic nanoparticles (MNs) due to its
wide range of applications, including magnetic fluids [1],
biomedicine [2], magnetic resonance imaging (MRI) [3], data
storage [4], magnetic filaments [5–7], among others. Basically,
MNs are particles with a magnetic dipole moment, which are
regarded as particles composed of a magnetic monodomain
having a typical size from 15 to 150 nm [8]. Many efforts are
currently being devoted to the synthesis and characterization
of magnetic particles with anisotropic shape [9,10]. Within
this area of research rodlike particles play an important role
as active microrheology probes, because it is possible, by the
torque provided by an uniform magnetic field, to enhance
the visualization of their viscoelastic properties [11,12]. Other
successful applications of magnetic rods are: (i) as components
in micromechanical units [13–15], i.e., to generate localized
particle trapping and stirring; (ii) as microscale propellers
[16–18], i.e., magnetic units able to be remotely driven or
guided in a fluid medium, and thus to potentially move and
transport chemical or biological cargos in small channels
or pores. Beyond the aforementioned applications, it has
already been reported that particles with anisotropic shape
show distinguished properties when compared to those of
ferrofluids consisting of spherical particles, namely, magnetic
birefringence [19] and thermal conductivity [20]. Recently,
iron oxide nanorods were found to have potential for biomed-
ical applications [21]. Colloidal rings and ribbons can be
obtained from magnetic manipulation of Janus nanorods [22]
and ferromagnetic ellipsoids [23].

In this work we present a numerical study of the
self-assembly of a two-dimensional system of stiff magnetic
rods, composed of single dipolar beads linked one by one
through internal head-to-tail alignment. A similar system was
used earlier in experiment [24] and simulations [25]. Our
motivation to explore in more detail the two-dimensional
(2D) situation is driven by the fact that many experiments
involving assemblies of colloids are actually done at surfaces
and/or thin films [26–30].
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Our model is characterized by permanently linked dipolar
beads so that the net interaction is given by the superposition of
dipolar fields of single dipole beads. This opens the possibility
of new kinds of assembled clusters distinct from rodlike
particles with a single longitudinal (or transversal) dipole
moment, which was intensively studied both by theory and
simulations [31,32].

We also study the connectivity properties of the present
system. The percolation behavior is of great relevance in
highly connected materials due to the possibility of enhancing
the electrical and thermal conductivity [24,33]. In general,
percolation in polymers plays a fundamental role in properties
related to conductivity, because in many cases percolation
can be made responsible for electrical switching properties.
A goal in studying the connectivity properties is to explore the
conditions under which the percolation transition is enhanced.
By using elongated particles, it was already shown that an
increase of the aspect ratio decreases the percolation threshold
[25,34]. The latter has also been realized by depletion effects
[35] and by the application of an external field [25,36]. In
the present work, we discuss the connectivity properties of
magnetic rods in a 2D system, and show that the percolation
transition with respect to the density behaves opposite as
compared to the 3D case.

The last aim of this study is to analyze the appearance
of orientational ordering. It is already known that elongated
particles present nematic and smetic transitions driven by
entropic effects so that they are isotropic for low densities
and nematic for high densities [37]. In a recent study of a
3D system of magnetic nanorods (MNR), similar to the ones
studied in this work, an improvement of the stability of the
nematic phase was found for sufficiently long MNRs as a
consequence of the interaction resulting from the arrangement
of the dipoles along each MNR [25]. In our 2D system we
find a different scenario, where a nonmonotonic behavior of
the nematic order parameter is observed for sufficiently long
MNRs, as a consequence of the appearance of magnetic bulk
domains.

The paper is organized as follows: our model system is
presented in Sec. II. The results for the different cluster config-
urations are presented in Sec. III. The connectivity properties
are discussed in Sec. IV and the ordered configurations in
Sec. V. Our conclusions are given in Sec. VI.
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FIG. 1. Schematic illustration of the interaction between two
magnetic rods with indication of the important parameters of the
pair interaction potential.

II. MODEL

Molecular dynamics (MD) simulations were used to inves-
tigate two-dimensional (2D) systems consisting of 2520 up
to 2820 identical soft beads of diameter σ with a pointlike
magnetic dipole at their center. A stiff rod is formed by those
soft beads, with their positions fixed with respect to the center
of mass of the rod. The orientation of the dipoles is always
aligned along the rod, as illustrated in Fig 1. The length of
the rod is defined as lσ , where l is the number of beads,
which is also its aspect ratio. To model the dipolar particles
we use a dipolar soft sphere (DSS) potential [38], consisting
of the repulsive part of the Lennard-Jones potential urep and a
pointlike dipole-dipole interaction part uD . It was found that
this potential does not induce a vapor-liquid phase transition
as, e.g., the Stockmayer potential does [38,39]. The interaction
energy between two rods a and b is the sum of the pair
interactions between their respective dipolar spheres (DS):

Ua,b(Ra,b,θa,θb) =
∑
j �=m

uj,m, (1)

uj,m = urep
(
ra,b
jm

) + uD
(
ra,b
jm,μa

j ,μ
b
m

)
, (2)

where

urep = 4ε

(
σ

rjm

)12

, (3)

uD = μj · μm

r3
jm

− 3(μj · rjm)(μm · rjm)

r5
jm

, (4)

with Ra,b the vector joining the center of rods a and b with
orientations θa and θb. The vector ra,b

jm connects the center of
bead m of rod a with respect to the center of bead j of rod b

(Fig. 1). The force between two beads is given by

fjm = −∇ujm. (5)

The torque on bead m (see the Appendix) is

Nm = μm ×
∑
m�=j

Bjm + dm ×
∑
m�=j

fjm, (6)

where dm is the vector joining the center of the rod with the
center of bead m, as illustrated in Fig. 1 and Bjm is the magnetic
field generated by the dipole moment μj at the position of the
dipole μm, which is given by

Bjm = 3(μm · rjm)rjm

r5
jm

− μm

r3
jm

. (7)

The summations in Eq. (6) are considered only for dipoles
belonging to distinct rods. The orientation of the rods is
given by a unitary vector s given by s = dm/ | dm |. We solve
the translational and rotational equations of motion using a
leapfrog algorithm:

rα(t + δt) = rα(t) + vα(t + δt/2)δt , (8)

sα(t + δt) = sα(t) + uα(t + δt/2)δt . (9)

The subindex α refers to the α component of the vectors r, v,
s, and u, with u = ω × s, where ω is the angular velocity. We
introduce the reduced units t∗ = t/

√
ε−1mσ 2 for time, where

m is the mass of the rod, U ∗ = U/kBT is for energy, where
kB is the Boltzmann constant, μ∗ = μ/

√
kBT σ 3 is for dipole

moment, and, finally, r∗ = r/σ is for position. The ratio of
thermal energy to soft-sphere repulsion constant is chosen as
kBT /ε = 0.1, which is also our reduced unit of temperature
T ∗ = T kB/ε. In order to fix the temperature, we employ the
Berendsen thermostat [40–42] with a time constant τ = 2δt ,
where the time step was taken as δt = 0.005–0.01. Periodic
boundary conditions are taken in both spatial directions. In the
2D case, the dipolar pair interaction falls off fast (r−3) and
therefore it is sufficient to take the simulation box sufficiently
large such that no special long-range summation techniques
[43] has to be used as in the case for, e.g., Coulomb 1/r

interactions. We define the packing fraction as η = ρ∗lπ/4,
where ρ∗ is the dimensionless density ρ∗ = ρσ 2.

To check the equilibration in our simulations we follow the
total energy as a function of time. In equilibrium, the total
energy fluctuates around an average value. For very dilute
systems (η < 0.2) the equilibrium is reached after 1 × 106

time steps (1 × 104
√

ε−1mσ 2), while for η � 0.2 we need
about 5 × 105–1 × 106 time steps (2.5 × 103

√
ε−1mσ 2–5 ×

103
√

ε−1mσ 2). Time averages over energies and other quan-
tities are taken over 1 × 106 time steps after equilibrium is
reached. Unless stated, we consider σ ∗ = 1 and μ∗2 = 10,
which means that each bead has the same magnitude of dipole
moment. Such a value is justified by the fact that we aim to
investigate the weak coupling regime, in order to emphasize
the geometrical effects due to the increase of the aspect
ratio of the particles. Common experimental values of μ∗2

at room temperature ranges in the interval 1 � μ∗2 � 100.
For example, in experiments using iron nanoparticles [24], it is
found that the saturation magnetization Ms(Fe) = 1700 kA/m
and the radius of the particles is r ≈ 5 nm. In this case, we
estimate μ∗ ≈ 4.4 at room temperature (T ≈ 293 K). Also,
in experiments [44] carried out using aqueous dispersions
of superparamagnetic microspheres of ferrite grains [Estapor
(R) from Merck—reference M1-030/40] for r ≈ 205 nm and
Ms ≈ 6 × 104 A/m, the magnetization (M) of the particles is
completely reversible and adjustable by an external magnetic
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FIG. 2. The pair interaction energy (a) as a function of the angle φ

for different inter-rod separation δ, (b) as a function of the interparticle
distance for φ = π , and (c) for φ = 0. In (b) and (c) the different
colors represent different values of the aspect ratio, indicated in (b).

field. If we consider T = 293 K and M ≈ 22.6% of Ms on
that system, we obtain μ∗ ≈ 3.16 (∼ √

10).
The minimum energy configuration was chosen among

the ones obtained by running simulations several times (10–
30), each with distinct initial conditions (coordinates and
momenta).

III. CLUSTER FORMATION

We start by presenting the dependence of the DSS pair
interaction potential on the angle and separation between the
rods. The study of the pair interaction potential is interesting to
understand the nature of the resulting many-body interaction
and to help us to set the values of the parameters useful to
analyze the results. The dependence of the DSS pair interaction
potential as a function of the angle φ between rods (with aspect
ratio l = 4) is presented in Fig. 2(a) for different separation δ.
The separation δ is defined as the shortest distance between two
rods for a given angle [see inset in Fig. 2(a)]. We choose δ =
0.4σ as the separation distance at which we consider two rods
as being bonded. In Fig. 2(a) the curve for δ = 0.4σ exhibits
a local minimum for φ = 0 and a global minimum at φ = π ,
justifying our choice for the critical value of δ. The results
shown in Fig. 2 are for l = 4, but the same critical distance
was taken for all values of l considered in this study, since such
a behavior of the interaction potential remains for different l

values. The dependence of the pair interaction potential with
respect to the separation between two rods for different aspect
ratio is shown in Fig. 2(b) for φ = π (parallel head-to-tail
alignment) and in Fig. 2(c) for φ = 0 (side-by-side dipoles
with opposite orientation). In both cases, the attraction for low
separation increases with increasing aspect ratio. Note that the
parallel head-to-tail assembly (φ = π ) is energetically more
favorable for the formation of chains, for every l, as found in
ferrofluids in the absence of external magnetic fields, both in
simulations [45–47] and in experiment [48].

The attraction between magnetic rods becomes stronger
for larger l, suggesting that, in the many-body case, the
formation of clusters is facilitated as l increases. To show this is

FIG. 3. The polymerization as a function of the packing fraction
η for different aspect ratios.

indeed the case, we analyze the degree of polymerization [49],
defined as

 =
〈
Nc

N

〉
, (10)

where Nc is the number of clustered rods and N is the total
number of rods.

In Fig. 3 the polymerization  as a function of η is presented
for a different aspect ratio. In general 0.92 <  < 1, which
is consistent with a previous molecular dynamics study of
dipolelike colloids [50] for T ∗ = 0.1, where  increases with
increasing η. For l = 1, the behavior stands out from the
other l values, which is a consequence of the increase of
the interparticle attraction with increasing l for low packing
fraction as shown in Figs. 2(b) and 2(c). For η � 0.4, the
degree of polymerization presents the opposite dependence
with respect to l, i.e.,  decreases with increasing l. Since
in highly dense systems, the larger aspect ratio of the rods
introduces strong depletion interaction restricting the head-to-
tail arrangements of the rods. We discuss such a behavior in
more detail in the next section.

Some representative equilibrium configurations are pre-
sented in Fig. 4. The head-to-tail tendency is present in all
configurations. For low packing fraction the chains can form
rings, which are not observed for l = 5 due to geometrical
reasons. In the large packing fraction regime (η � 0.4) the
side-by-side arrangement comes into play.

We analyze the structure of the system by computing the
pair correlation function [51]:

g(r) =
〈∑

a

∑N
b �=a δ(r − Rab)

〉
2Nπrρ∗ , (11)

where Rab is the separation between the center of the rods a

and b (see Fig. 1). As shown in Fig. 5(a), for low packing
fraction, the position of the multiple peaks are related to the
length of the rod for all l. This is the result of the head-to-tail
alignment of neighboring rods. For a higher packing fraction
(η = 0.4) intermediate peaks are observed [Fig. 5(b)]. For
example, for l = 3, besides peaks at multiples of 3σ , there is a
peak at r ≈ 1.8σ . For l = 5, there are peaks at r ≈ 1.8σ and
r ≈ 3.8σ . These intermediate peaks are due to the side-by-side
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Some representative equilibrium configurations for T ∗ = 0.1. Each color represents a different size of cluster. (d) and (e) Percolated
systems. (a) η = 0.2, l = 1; (b) η = 0.2, l = 3; (c) η = 0.2, l = 5; (d) η = 0.4, l = 1; (e) η = 0.4, l = 3; (f) η = 0.4, l = 5.

configuration of neighboring rods, either parallel, antiparallel,
or both.

In order to better understand the microstructure of the
clusters, we calculate the angle correlation f (θ ) among the
first neighboring rods, defined as

f (θ ) = 1

A

〈∑
a

N∑
b �=a

δ(θ − θab)

〉
for rij � δc, (12)

where θab = θa − θb (see Fig. 1), rij = |ri − rj | is the separa-
tion between dipole i and dipole j , and A is the normalization
constant, defined as A = ∫ π

0 f (θ )dθ .

FIG. 5. The pair correlation function for different aspect ratio and
for (a) η = 0.1 and (b) η = 0.4.

The function f (θ ), Eq. (12), calculated for rods with distinct
lengths and for different packing fractions is presented in
Fig. 6. The rods are mostly connected to each other along the
same direction, i.e., f (θ ) is more pronounced around θ/π = 0
and θ/π = 1. The former trend reflects the head-to-tail or
the parallel alignment, while the latter trend is related to the
antiparallel arrangement. The larger the packing fraction the
larger f (θ ) is around θ/π = 1. The angle correlation for θ = π

as a function of the packing fraction η is shown in the inset of
Fig. 6. As expected, the frequency of antiparalell arrangement
increases with increasing η. The η dependence of f (θ ) is
qualitatively the same for distinct aspect ratios. The case θ = 0
was not considered in the insets because it represents two kinds

FIG. 6. The angle correlation between the nearest neighboring
particles for (a) l = 5, (b) l = 3, (c) l = 1; and different values of η.
Subsequent curves are shifted by 0.01 along the y axis in order to
accentuate the small differences. The angle correlation for θ = π as
a function of the packing fraction η is presented in the inset of each
figure.
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FIG. 7. The average fraction of monomers in the largest cluster
that is present in the ground state configuration as a function of
packing fraction for a different aspect ratio. The horizontal dashed
line at 0.5 represents the percolation threshold. The results of the
simulation for twice the number of particles in the computational unit
cell is represented by symbols.

of arrangements, the parallel side-by-side and the parallel
head-to-tail. In the next section, the side-by-side arrangement
is discussed in more detail.

IV. CONNECTIVITY PROPERTIES

In this section we examine the connectivity properties
of the self-assembled structures by studying the percolation
transition, which is marked by the formation of an infinite
cluster spanning over the system. Configurations are perco-
lated when, accounting for periodic boundary conditions, one
of the cluster forms a percolating path [52], i.e., the cluster is
connected through the opposite borders of the simulation box.
For systems with transient bonds the percolation transition
is defined in the thermodynamic limit, where the average
cluster size diverges [53]. For systems with a finite size of
computational unit cell, the fraction of monomers in the largest
cluster Smax can be taken as the order parameter [54,55],
namely

Smax =
〈
Nlarg

N

〉
, (13)

where Nlarg is the number of rods belonging to the largest
cluster. For finite size systems, the percolation transition is well
characterized when Smax = 0.5 [55]. Here we evaluate Smax as
a function of the packing fraction. Such an order parameter
was considered in the study of the gelation transition [54,56],
which is related to the connectivity properties of the system.
It has already been reported that 3D systems with elongated
particles exhibit a percolation transition for lower density when
their aspect ratio increases [25,34].

In Fig. 7 we show the average size of the largest cluster
(Smax) as a function of the packing fraction for l = 1, l =
3, and l = 5. Smax can be interpreted as the probability that
one monomer belongs to the largest cluster. Notice that the
percolation transition is shifted to larger packing fraction with
increasing l, which is opposite to what is found in 3D systems
of elongated magnetic rods [25].

FIG. 8. The angle correlation between the nearest neighboring
rods excluding the parallel head-to-tail alignment for η = 0.1. Results
for η = 0.4 are shown in the inset. In both cases the y axis is in log
scale.

In order to better understand these results, we show in
Fig. 8 the angle correlation [see Eq. (12)] excluding the parallel
head-to-tail alignment, so that θ = 0 (θ = π ) means parallel
(antiparallel) arrangement of the bonded side-by-side rods. For
low packing fraction (η = 0.1), a large diversity of possible
alignments beyond the side-by-side arrangements are found
[e.g., see also Fig. 4(b)]. However, a higher probability for
side-by-side arrangement is found for larger η and larger l. For
l = 5, the possible nonhead-to-tail arrangements are mainly
side-by-side arrangements, either parallel or antiparallel (see
inset of Fig. 8).

Note from Figs. 2(b) and 2(c) that the attractive well is
wider and shallower in the antiparallel case [see Fig. 2(c)],
which allows thermal fluctuations to break the clusters more
easily, and make the largest cluster more unstable. In addition,
the larger the aspect ratio, the harder it is for the rods to
form large clusters in a head-to-tail arrangement. Since the
percolated cluster is essentially characterized by head-to-tail
bonds, such a condition is more difficult to realize for large
l. As a consequence, the percolation transition is shifted to
larger η when l increases. Although not shown, we find that
the head-to-tail arrangement is also more stable than a parallel
side-by-side arrangement.

Clusters that extend across the computational unit cell
appear in Figs. 4(d) and 4(e). Note that the largest cluster
almost extends over the whole system. In the head-to-tail
alignment, the rods form chains, which are, in some cases,
curved or circular paths.

Now we study the dependence of the cluster size dis-
tribution n(s) on the aspect ratio of the magnetic rods. In
Fig. 9 we present the average cluster size distribution for
η = 0.4. In general, n(s) decreases with increasing cluster size.
Close to percolation n(s) develops a power-law dependence
with exponent τ ≈ −2.05, which is related to the random
percolation prediction made for a 2D system (τ = −187/91 =
−2.055) [57] in the thermodynamic limit. Due to the finite
size of the system considered in the simulations, percolated
fluids exhibit a single peak for large s, comparable to the
system size, and these states are denoted as random percolated
[58,59]. The n(s) curves also confirm that the percolation
transition for the system with larger aspect ratio takes place
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FIG. 9. The cluster size distribution for η = 0.4, and different
aspect ratios. The dashed line represents the function n(s) ≈ s−2.05.
In the inset, the l = 1 case for μ∗2 = 250. Both axes are in log scale.

for larger η. The increase of the aspect ratio of the rods
results in a stronger interaction between rods due to the
addition of soft beads. Note that the case with l = 5 and
μ∗2 = 10 is not percolated, while for l = 1 and μ∗2 = 10 it is
percolated (Fig. 9). Each bead contributes with μ∗ = √

10,
to the net dipole moment of the rod, in order that for
l = 5 the net dipole moment is μ∗

net = 5
√

10 or μ∗2
net = 250.

With these numbers (l = 1, μ∗ = 10 percolated, and l = 5,
μ∗ = 250 not percolated) it is not clear whether the stronger
interaction or the larger aspect ratio of the rods (or both
effects) is relevant to prevent the formation of the percolated
configuration. To check the importance of the interaction
between rods in driving the percolation transition, we study the
case in which the rods have aspect ratio l = 1 and μ∗2 = 250,
for packing fraction η = 0.4, which is shown as an inset
in Fig. 9.

Our findings indicate that, although the dipolar nature of the
interaction is fundamental to the results found in the present
study, since the percolation threshold for noninteracting rigid
rods in a two-dimensional system decreases with increasing
aspect ratio [60,61], the geometric effect (aspect ratio and
2D confinement) is the determining factor that rules the
connectivity behavior of the system. Another useful quantity to
obtain information about percolation is the pair connectedness
function gconn(r), which is defined as the conditional probabil-
ity of finding a particle at a distance r from a particle located at
the origin, connected via a sequence of bonds, i.e., within the
same cluster [62]. In the limit when the whole system forms
a single cluster, the pair connectedness function matches the
pair correlation function [Eq. (11)].

In Fig. 10 we show gconn(r) for different aspect ratios and for
packing fraction η = 0.4. For an infinite-size cluster, gconn(r)
becomes different from zero in the limit r → ∞. From what is
presented in Figs. 7 and 9, percolation is suppressed when we
increase the aspect ratio of the rods, so that for packing fraction
η = 0.4 the l = 1 and l = 3 cases are percolated, while on the
other hand, the l = 5 case is not. We see that such a behavior
is also clearly reflected in gconn(r). The results presented in
this section indicates that the dependence of the percolation
transition on the packing fraction is mainly ruled by geometric
effects.

FIG. 10. The pair connectedness function for different aspect
ratio values for packing fraction η = 0.4. The y axis is in log scale.

V. ORIENTATIONAL ORDERING

In this section we investigate the appearance of orientational
order. 3D suspensions of passive rodlike particles in thermal
equilibrium were found to be isotropic for low densities
and nematic for high densities [37]. Here we investigate the
occurrence of liquid-crystalline ordering in 2D by analyzing
the ferromagnetic order parameter G1, i.e., the polarization

G1 =
〈

1

N

∣∣∣∣∣
N∑
i

μ̂ · d̂

∣∣∣∣∣
〉
, (14)

where N is the number of rods, μ̂ = μ/|μ|, and d̂ is the
unit eigenvector related to the largest eigenvalue (G2) of the
following matrix:

Qk f = 1

2N

N∑
i

(
3μ̂i

kμ̂
i
f − δkf

)
, (15)

where i refers to particle i and the indexes k and f denote
the cartesian components of the orientation vector. G2 is
also referred to as the orientational order parameter, i.e.,
the nematic order parameter [43]. As shown in Fig. 11(a),
the polarization is negligible for any l, indicating that no
ferromagnetic ordering is present. On the other hand, Fig. 11(b)
indicates that an orientational order of the rod axes is present.
As expected, an increase of the aspect ratio shifts the increase
of G2 towards lower packing fraction. In the case of a single
dipole (l = 1) we observe a rather distinct isotropic-nematic
transition as compared to the l �= 1 cases. These results are
consistent with the findings of Alvarez et al. [25], in the sense
that a larger aspect ratio increases the stability of the nematic
phase. However, we also find a nonmonotonic behavior of
the orientational ordering for high packing fraction due to
the presence of magnetic bulk domains, which present local
ferromagnetic order. Monte Carlo simulations of a correspond-
ing 2D systems revealed frustrated structures characterized by
large domains of local ferroelectric order, but no long-range
order [63], which are consistent with the present study. In a 2D
system at finite temperature, the nematic and smetic transition
is not observed for long-range interaction [64–67]. On the other
hand, the magnetic dipolar interaction in 2D is short range, in
order that it is possible to observe such an isotropic-nematic
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FIG. 11. (a) The polarization and (b) the nematic order parameter for different aspect ratios as a function of the packing fraction. The
orientation of some representative configurations are depicted in the right figures for T ∗ = 0.1 and for l = 1 with (c) η = 0.1, (d) η = 0.4, (e)
η = 0.45 and for l = 2 with (f) η = 0.4, (h) η = 0.45 and for l = 5 with (i) η = 0.1, (j) η = 0.4; (k) η = 0.45. (g) The colors indicate the
orientation of the dipoles in plane.

transition [68,69]. In Figs. 11(c)–11(k) it is possible to observe
the orientation of the rods for different configurations. In
Fig. 11(e) a local hexagonal order can be seen as a consequence
of the fact that for low temperature and sufficiently high density
the dipolelike colloids form crystalline structures (positional
ordering). Such a local-hexagonal order of the corresponding
2D system at T ∗ = 0.1 was recently reported by Schmidle
et al. [50]. An interesting lanelike configuration is shown in
Fig. 11(d). Previously, a similar lane formation for a binary
mixture of particles driven against each other by an external
field was predicted [70,71]. The lane formation is an instability
where, for strong enough driving forces, alike particles are
driven to move behind each other in order to avoid collisions
with oppositely driven particles. A similar structure was also
reported for self-propelled particles [68,72,73]. In the present
study, the lane formation appears in a monodispersive system
as a nematic and an intermediate isotropic-hexagonal ordering
transition of circular (l = 1) particles provided by the magnetic
interaction, which makes particles in the different lanes distinct
due to the opposite orientation of their dipoles.

VI. CONCLUSIONS

In summary, we investigated a two-dimensional system
consisting of magnetic rods using molecular dynamics simu-
lations. Each rod was composed of soft beads having a central
pointlike dipole which interact via a DSS potential. This model
was motivated by recent experimental [24] and theoretical [25]
studies. Structural properties were investigated with particular
attention to the dependence on the aspect ratio and the packing
fraction. We considered aspect ratios ranging from l = 1 to
l = 5.

The head-to-tail assembly was identified as the most ener-
getically favorable for any aspect ratio. Such a configuration
favors the formation of chain segments. However, the increase
of the packing fraction was fundamental to observe other kinds
of alignment as, e.g., parallel and antiparallel arrangements of
the dipoles. Given the preference of head-to-tail configurations
and thus chain formation, we paid special attention to the
appearance of a cluster extending over the whole system for
sufficient large packing fraction (percolated cluster). Neverthe-
less, the side-by-side arrangement and the two-dimensional
confinement suppresses the percolation transition for higher
aspect ratio. Such a behavior is opposite to what was observed
in 3D [25,34]. This result should also be contrasted to an
earlier study of a nonmagnetic filament network system of
rods and crosslinkers in which the percolation transition was
independent of the filament length [55].

The transition to the isotropic-nematic phase was facilitated
by the increase of the aspect ratio of the rods. However, the
nematic behavior did not exhibit any monotonic behavior with
respect to the packing fraction due to the presence of magnetic
bulk domains at large η values, characterized by local ferro-
magnetic order. Specifically, for l = 1, the nematic behavior
in the bulk domain was followed by hexagonal order which is
expected in the limit of high density and low temperature.

The results shown in this work were obtained for low tem-
perature (T ∗ = 0.1). For temperatures one order of magnitude
smaller (higher) than the one considered here, T ∗ = 0.1, the
percolation transition occurs at lower (higher) values of the
packing fraction, as observed in Ref. [50]. For sufficiently
high temperatures the clusters are destroyed, suppressing the
percolation transition. A more detailed systematic study of
the temperature dependence of the structural properties of the
present study is left to future work.
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APPENDIX: TORQUE ON A MAGNETIC ROD
OF SINGLE DIPOLAR BEADS

We derive the expression for the torque on a rod consisting
of single dipoles. To derive Eq. (6), we must go back to the
definition of the torque on a current distribution J(r). The
infinitesimal torque on the volume element dV with current
distribution J(r) in a nonuniform magnetic field is

dNo′ = (ri − ro′ ) × J × BdV , (A1)

where ri is the position of dV (where B acts). The torque is
calculated with respect to the point located at ro′ . ri − ro′ is
the displacement vector.

The problem is the contribution of the torque on each dipole
moment when the point, where this property is measured, is out
of the “center” of the dipole, i.e., ro′ . However, the expression
of torque on a dipole moment calculated with respect to its
center (center of current distribution), namely ro, is already
known. Adding and subtracting ro × J × BdV to Eq. (A1):

dNo′ = (ri + ro − ro − ro′ ) × J × BdV . (A2)

Rearranging and integrating Eq. (A2) over the volume we
obtain

No′ =
∫

V

(ri − ro) × J × BdV + (ro − ro′ ) ×
∫

V

J × BdV .

(A3)

As the magnetic field is nonuniform, we may perform a
Taylor’s expansion in B(r) around a vector which localizes the
coordinate of the dipole moment rd , as long as B(r) does not
vary significantly over rd :

B(r) = B(rd ) + [(r − rd ) · ∇d ]B(rd ) + · · · . (A4)

Next we use [74]

μ × B(rd ) =
∫

V

r × [J(r) × B(rd )]dV ,

F =
∫

V

J(r) × BdV ,

where F is the net force on the current distribution. Finally, we
find

No′ = μ × B(rd ) + (ro − ro′ ) × F. (A5)

In our model we use

B(rd ) =
∑
m�=j

Bjm, F =
∑
m�=j

fjm, and ro − ro′ = do.
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[15] B. Kavčič, D. Babič, N. Osterman, B. Podobnik, and I. Poberaj,

Appl. Phys. Lett. 95, 023504 (2009).
[16] C. E. Sing, L. Schmid, M. F. Schneider, T. Franke, and A.

Alexander-Katz, Proc. Natl. Acad. Sci. USA 107, 535 (2010).
[17] L. Zhang, T. Petit, Y. Lu, B. E. Kratochvil, K. E. Peyer, R. Pei,

J. Lou, and B. J. Nelson, ACS Nano 4, 6228 (2010).

[18] T. R. Kline, W. F. Paxton, T. E. Mallouk, and A. Sen, Angew.
Chem. 117, 754 (2005).

[19] B. J. Lemaire, P. Davidson, J. Ferré, J. P. Jamet, P. Panine, I.
Dozov, and J. P. Jolivet, Phys. Rev. Lett. 88, 125507 (2002).

[20] J. Philip, P. Shima, and B. Raj, Appl. Phys. Lett. 91, 203108
(2007).

[21] Y. Piao, J. Kim, H. B. Na, D. Kim, J. S. Baek, M. K. Ko,
J. H. Lee, M. Shokouhimehr, and T. Hyeon, Nat. Mater. 7, 242
(2008).

[22] J. Yan, K. Chaudharyn, S. C. Bae, J. A. Lewis, and S. Granick,
Nat. Commun. 4, 1516 (2013).

[23] F. Martinez-Pedrero, A. Cebers, and P. Tierno, Phys. Rev. Appl.
6, 034002 (2016).

[24] R. Birringer, H. Wolf, C. Lang, A. Tschöpe, and A. Michels,
Z. Phys. Chem. 222, 229 (2008).

[25] C. E. Alvarez and S. H. Klapp, Soft Matter 8, 7480 (2012).
[26] J. L. Baker, A. Widmer-Cooper, M. F. Toney, P. L. Geissler, and

A. P. Alivisatos, Nano Lett. 10, 195 (2009).
[27] K. H. Bhatt and O. D. Velev, Langmuir 20, 467 (2004).
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