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Polymer models are used to describe chromatin, which can be folded at different spatial scales by binding
molecules. By folding, chromatin generates loops of various sizes. We present here a statistical analysis of
the randomly cross-linked (RCL) polymer model, where monomer pairs are connected randomly, generating
a heterogeneous ensemble of chromatin conformations. We obtain asymptotic formulas for the steady-state
variance, encounter probability, the radius of gyration, instantaneous displacement, and the mean first encounter
time between any two monomers. The analytical results are confirmed by Brownian simulations. Finally, the
present results are used to extract the mean number of cross links in a chromatin region from conformation
capture data.
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DNA in the nucleus is constantly remodeled by regulatory
factors, and compacted genomic regions form transient and
stable loops [1,2]. Looping is thus a key event in chromatin
regulation: Although rare for a single polymer, it is frequent
in a population of hierarchy folded genomes. Genome orga-
nization is probed by chromatin conformation capture (CC)
techniques [3–5], which give access to simultaneous looping
events in an ensemble of millions of chromatin segments. This
experimental approach provides contact frequency matrices
at various scales from few-kilo- to mega-base pairs (mbp).
Analysis of these matrices remains difficult, but already
has revealed that mammalian genomes contain mbp blocks
of enriched connectivity, called topologically associating
domains (TADs) [1,6]. The role of TADs and their organization
remains unclear, although they are involved in gene regulation
[1,4] and replication. TADs appear by averaging encounters
over an ensemble of millions of samples [5] and represent
steady-state looping frequencies, but do not contain either
information about the size of the folded genomic section or
any transient genomic encounter times.

To reconstruct chromatin at a given scale and explore its
transient properties, polymer models are used as a coarse-
grained representation. The Rouse model [7], characterized
by nearest neighbor interactions, predicts an encounter proba-
bility (EP) that decays with |m − n|−3/2 between monomer m

and n, but cannot account for long-range interactions observed
inside TADs [1,8]. Other polymer models include attractive
and repulsive forces between monomers [9–14] to account
for long-range interactions and have been used to probe
the heterogeneous steady-state organization of the chromatin
[15,16].

We study here a randomly cross-linked (RCL) polymer
model used in Ref. [8] to describe the ensemble of steady-state
chromatin conformations, present in CC data [1,3,6]. Cross
links could be generated by either binding molecules (CTCF
[1]) or by a hypothetical loop extrusion mechanism, but this ex-
act formation mechanism is not the focus of the present model.
Randomly cross-linked polymers were previously studied on
a scale of a single protein molecule [17] and for cross-linked
networks [18], where monomer connectivity modulates the
energy landscape. The steady-state statistical properties of

cross-linked polymers are similar to other physical areas, such
as resistor networks, where analytical formulas were derived
for the mean-square distance between resistor with prescribed
connectivity, such as rings and stars [19,20]. Other applications
came from the dynamic of random loop models in polymer
physics [10,21,22] or fractal networks [23,24].

The RCL polymer configuration space was so far mostly
explored numerically [12,16,22,25]. However, computing the
encounter probability and the mean first encounter time, which
are key quantities of interest to extract chromatin dynamics
from the CC, was left open. We derive here formulas for
the EP, the variance, and the radius of gyration of the RCL
polymer that we use in a key step of chromatin reconstruction
using polymer models. The present model can be used to
determine from CC empirical EP the average number of cross
links, a quantity inaccessible from CC experiments. We further
derive an asymptotic formula for the mean first encounter
time between any two monomers, which plays a key role in
gene regulation [26]. Our asymptotic derivations are further
confirmed by Brownian simulations.

A general procedure to extract the average number of cross
links in a genomic section based on the EP decay of the 5C
data [8] is available but it requires performing heavy iterative
simulations. Using the present analysis, we derive an analytical
formula that allows us to determine the number of loops or
connectors directly from the EP of CC data.

I. THE RCL POLYMER MODEL

A linear polymer in dimension d (d = 3) consists of N

monomers with positions R = [r1,r2, . . . ,rN ]T , connected
sequentially by harmonic springs [7], and we added spring
connectors between random non-nearest-neighboring (non-
NN) monomer pairs [Fig. 1(a)]. The energy of the RCL
polymer introduced in Refs. [10,21] is the sum of the spring
potential of linear backbone and that of random connectors

φG(R) = κ

2

N∑
n=2

(rn − rn−1)2 + κ

2

∑
G

(rm − rn)2, (1)
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FIG. 1. Properties of a randomly cross-linked (RCL) polymer. (a) RCL polymers are composed of a linear backbone of N monomers
(spheres), and Nc(ξ ) random connectors (dashed) between non-nearest-neighboring monomers pairs. (b) Eigenvalues of the RCL polymer
[Eq. (16)] with N = 50 monomers, and Nc(ξ ) = 5 (blue), 25 (red), and 50 (yellow) connectors. (c) Variance of the monomers distance:
analytical [dashed, Eq. (28)] versus simulations [Eq. (13)] between monomer 1 and monomers 2–50 of the RCL polymer, 500 realizations with
N = 50,b = √

d,D = 1,�t = 0.01s, for Nc(ξ ) = 5 (blue), 25 (yellow), and 50 (green) added random connectors, computed after 104 steps,
corresponding to the slowest relaxation time τ0 [see Eq. (22)]. (d) Mean square radius of gyration 〈R2

G(ξ )〉 with N = 20 (blue), 50 (yellow),
and 100 (green) monomers: analytical [dashed, Eq. (32)], where Nc(ξ ) ∈ [5,50], vs stochastic simulations of 13 (continuous).

where κ = dkBT /b2 is the spring constant, b is the standard
deviation of the connector between connected monomers, kB

is the Boltzmann’s constant, and T is the temperature. The
ensemble G is composed of Nc randomly chosen indices m,n

among the non-NN monomers and this set is recomputed for
each polymer realization to account for the large polymer
conformational space. The connectivity fraction 0 � ξ � 1 is
the fraction of the total connector numbers NL = (N−1)(N−2)

2 ,
defined by

Nc(ξ ) = �ξNL�. (2)

For each polymer realization, we choose Nc(ξ ) pairs from
NL possible non-NN monomers, thus leading each time to a
new ensemble of indices in G [Eq. (1)]. The dynamics of the
resulting polymer model (vector R) is given by Smoluchowski
limit of the Langevin equation, which is the sum of Brownian
motion and the gradient force induced by the potential energy
[Eq. (1)],

d R
dt

= − 1

ζ
∇φG(R) +

√
2D

dω

dt

= − d

b2
D
[
M + BG(ξ )

]
R +

√
2D

dω

dt
, (3)

where D = kBT
ζ

is the diffusion constant, ζ is the friction
coefficient, ω are independent white noises with mean 0 and

variance 1, and M is the N × N Rouse matrix [7]:

Mm,n =

⎧⎪⎪⎨
⎪⎪⎩

−
∑
j �=m

Mm,j , m = n;

−1 |m − n| = 1;
0, otherwise.

(4)

For a given connectivity fraction ξ , the square symmetric
matrix BG(ξ ) with random connectivity is given by

BG
mn(ξ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1, |m − n|> 1,and connected in G;

−
N∑

i �=j

Bmj (ξ ), m = n;

0, otherwise.

The steady-state properties of an ensemble of RCL polymers
are contained in the mean-field model, where we replace
the matrix BG(ξ ) in Eq. (3) by its average 〈BG(ξ )〉 (av-
eraging over all realizations G of non-NN monomer pairs
when the number of connectors Nc(ξ ) is fixed). We con-
struct 〈BG(ξ )〉 using the probability density of the monomer
connectivity.

For a fixed number of connectors Nc(ξ ), the probability that
monomer m has k � (N − 2) non-NN connections is obtained
by choosing k position in row m of the matrix BG(ξ ) (excluding
the super-, sub-, and diagonal), and the remaining Nc − k
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connectors in any row or column n �= m, thus

Prm(k) =

⎧⎪⎪⎨
⎪⎪⎩

C
Nc (ξ )−k

NL−(N−3)C
k
N−3

C
Nc (ξ )
NL

, 1 < m < N ;

C
Nc (ξ )−k

NL−(N−2)C
k
N−2

C
Nc (ξ )
NL

, m = 1,N,

(5)

where the binomial coefficient is C
j

i = i!
(i−j )!j ! . This proba-

bility is the hypergeometric distribution for the number of
connections for monomer m. The mean number of connectors
for each monomer is therefore

βm(ξ ) =
⎧⎨
⎩

(N−3)Nc(ξ )
NL

≈ (N − 3)ξ, 1 < m < N ;

(N−2)Nc(ξ )
NL

≈ (N − 2)ξ, m = 1,N.
(6)

Using the mean values in Eq. (6), we obtain the expression for
the matrix 〈BG(ξ )〉

〈BG
mn(ξ )〉 =

⎧⎪⎨
⎪⎩

−ξ, |m − n| > 1;

βm(ξ ), m = n;

0, otherwise,

(7)

which can be decomposed as the sum

〈BG(ξ )〉 = ξ (N Id − M − 1N ), (8)

where Id is the N × N identity matrix and 1N is a N × N

matrix of ones. To study the mean properties of the RCL
polymer, we study the stochastic process (3) using the average
matrix 〈BG(ξ )〉 in relation (8).

II. EIGENVALUES OF THE RCL POLYMER

To study the steady-state properties of system (3), we
diagonalize the averaged connectivity matrix M + 〈B(ξ )〉
using Rouse normal coordinates U = [u0,u1,..uN−1] [7],
defined as

U = V R, (9)

where

V = (
αn

p

) =

⎧⎪⎨
⎪⎩
√

1
N

, p = 0;√
2
N

cos
((

n − 1
2

)
pπ

N

)
, otherwise.

(10)

The Rouse orthonormal basis [7] diagonalizes M to

V MV T = � = diag(λ0,λ1, . . . ,λN−1), (11)

where

λp = 4 sin2

(
pπ

2N

)
, p = 0, . . . ,N − 1, (12)

are the eigenvalues of the Rouse matrix [relation (4)]. Substi-
tuting 〈BG(ξ )〉 for BG(ξ ) in system (3) and multiplying it from
the left by V in (10), we obtain the mean-field equations

dU
dt

= − d

b2
D[� + V 〈BG(ξ )〉V T ]U +

√
2D

dη

dt
, (13)

where η = Vω are independent white noises with mean
0 and variance 1. From identity (8), the matrix 〈BG(ξ )〉
commutes with M and therefore is diagonalizable using the
same orthonormal basis V :

V 〈BG(ξ )〉V T = diag(γ0(ξ ), . . . ,γN−1(ξ )). (14)

Using (8) and (14), we obtain the eigenvalues

γp(ξ ) =
{

0, p = 0;
ξ (N − λp), 1 � p � N − 1.

(15)

To conclude, the eigenvalues of system (13) are the sum of
eigenvalues of the Rouse matrix M and 〈BG(ξ )〉:

χp(ξ ) = γp(ξ ) + λp = Nξ + 4(1 − ξ ) sin2

(
pπ

2N

)
. (16)

The stochastic system (13) consists of N independent equa-
tions. For ξ = 0, we recover the Rouse polymer [7], whereas
for ξ = 1, we obtain a fully connected polymer, with a circular
matrix M + 〈BG(ξ )〉, for which all eigenvalues is equal to N

except for the first vanishing one. Using relations (9), (16), and
(10) in (1), the energy of the RCL polymer is written as

φG(U) = κ

2

N−1∑
p=1

χp(ξ )u2
p. (17)

The statistics of the RCL system [relation (3)], can be
recovered from (13) in the diagonalized form [expression
(17)], by scaling ξ with the ratio of mean number of random
connectors to the mean of total number of connectors:

ξ ∗ = ξ
Nc(ξ )

N + Nc(ξ )
. (18)

The ensemble of eigenvalues (16) for RCL polymers, for
N = 50 monomers, and Nc(ξ ) = 5, 25, and 50 added random
connectors is shown in Fig. 1(b).

III. ENCOUNTER PROBABILITY (EP) BETWEEN
MONOMERS OF THE RCL POLYMER

The RCL polymer belongs to the class of generalized Gaussian
chain models studied in Refs. [9,19,20,22], for which the
EP between any two monomers m and n at equilibrium is
given by

Pm,n(ξ ) =
(

d

2πσ 2
m,n(ξ )

) d
2

. (19)

To compute expression (19) explicitly, we estimate now
the variance σ 2

m,n(ξ ) = 〈(rm − rn)2〉 in normal coordinates
[Eq. (9)]:

σ 2
m,n(ξ ) =

N−1∑
p=0

(
αm

p − αn
p

)2〈
u2

p(ξ )
〉
. (20)

Although computational methods to study the steady-sate
variance of Gaussian models were introduced already in
Ref. [20], we provide here a computation of the variance using
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the normal coordinates [Eq. (9)] and the eigenvalues [Eq. (16)],
which we will use below to compute time-dependent polymer
properties.

The time-dependent variance is computed from the decou-
pled Ornstein-Uhlenbeck equations (13) [27], and we obtain

〈
u2

p(ξ )
〉 = b2

χp(ξ )

[
1 − exp

(
−2Dχp(ξ )t

b2

)]
. (21)

The relaxation times τ0 � τ1(ξ ) � · · · τN−1(ξ ) are

τp(ξ ) = b2

2Dχp(ξ )
, (22)

and the slowest τ0(ξ ) corresponds to the diffusion of the center
of mass. At steady state,

〈
u2

p(ξ )
〉 = b2

2(1 − ξ )
[
y(N,ξ ) − cos

(
pπ

N

)] , (23)

where

y(N,ξ ) = 1 + Nξ

2(1 − ξ )
. (24)

Substituting relations (10) and (23) into (20), we get

σ 2
m,n(ξ ) =

N−1∑
p=0

b2
[

cos
(p(m− 1

2 )π
N

)− cos
(p(n− 1

2 )π
N

)]2

N (1 − ξ )
[
y(N,ξ ) − cos

(
pπ

N
)
] . (25)

For N � 1, the sum (25) is approximated by an integral (Euler
Mac-Laurin formula),

σ 2
m,n(ξ ) =

∫ π

−π

b2
[

cos
(
x
(
m − 1

2

)) − cos
(
x
(
n − 1

2

))]2
dx

2π (1 − ξ )[y(N,ξ ) − cos(x)]

=
∮

|z|=1

−b2(z−zm+n)2(zm−zn)2dz

4πi(1−ξ )[z−ζ0(N,ξ )][z−ζ1(N,ξ )]z2(m+n)+1
,

(26)

where the boundaries of integration [0,π ] is transformed in the
complex plane using the contour of the unit disk parameterized
by z = eix and we define

ζ0(N,ξ ) = y(N,ξ ) +
√

y2(N,ξ ) − 1,

ζ1(N,ξ ) = y(N,ξ ) −
√

y2(N,ξ ) − 1. (27)

When ζ0(N,0) = 1, we recover from expression (25) the
variance σ 2

m,n(0) = b2|m − n| of the Rouse chain [Nc(ξ ) = 0]
[7]. The integrand in (26) is symmetric in m and n and has
a pole of order 2(m + n) + 1 at z = 0 and simple poles at
z = ζ0(N,ξ ),z = ζ1(N,ξ ). Because y(N,ξ ) � 1, we have
ζ0(N,ξ ) � 1, which is outside the contour |z| = 1, and
ζ1(N,ξ ) � 1, for all N , ξ � 0. The pole ζ0(N,ξ ) is not in the
disk and does not contribute to the residues of (26). For ξ > 0,
we solve the integral (26) to obtain an exact expression for the
variance. With the notations ζ0 = ζ0(N,ξ ), ζ1 = ζ1(N,ξ ),
we have

σ 2
m,n(ξ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b2
{[

ζm−n
0 − 1

]2 − 2ζm+n−1
0 + 2ζ 2m−1

0

}
(1 − ξ )(ζ0 − ζ1)ζ 2m−1

0

,m � n;

b2
[(

ζ n−m
0 − 1

)2 − 2ζm+n−1
0 + 2ζ 2n−1

0

]
(1 − ξ )(ζ0 − ζ1)ζ 2n−1

0

,m < n.

(28)

For 0 < ξ � 1, k > 1, we approximate the terms (27) by

ζ k
0 (N,ξ ) ≈ exp(k

√
Nξ );

ζ k
1 (N,ξ ) ≈ exp(−k

√
Nξ ); (29)

and use (29) in expression (28) to obtain the asymptotic
expression for the variance

σ 2
m,n(ξ ) ≈ b2

√
Nξ

[1 − exp(−|m − n|
√

Nξ )]. (30)

To check the range of validity of formula (28), we use
Brownian simulations [Fig. 1(c)], computed after a relaxation
time τ0 (104 numerical steps) for N = 50,Nc = 5,25, and 50.
Substituting relation (28) in (19), we obtain an expression for
the steady-state EP Pm,n(ξ ) between any two monomers. We
then compare the EP obtained from Brownian simulations of

RCL polymer for N = 20,50 with the analytical formula 19
for Nc(ξ ) = 25,50 connectors [Fig. 2(a)], which shows very
good agreement.

IV. MEAN SQUARE RADIUS OF GYRATION (MSRG) OF
THE RCL POLYMER

The mean square radius of gyration (MSRG) 〈R2
G(ξ )〉

characterizes the size of the RCL polymer and can be computed
from the expression of variance (28) by the following formula
[7]:

〈
R2

G(ξ )
〉 = 1

N2

N∑
m=1

m∑
n=1

σ 2
m,n(ξ ). (31)

To compute the sum (31), we use elementary formula for the
sum of geometric series. Using relation (28) in (31) and with
the notations ζ0 = ζ0(N,ξ ), ζ1 = ζ1(N,ξ ), we obtain

〈
R2

G(ξ )
〉= b2

N2(1 − ξ )(ζ0 − ζ1)

[
(1 + 2ζ0)N (1 + N )

2ζ0
+ N

[
2(1 + ζ0)2 − ζ 3

0

]
1 − ζ 2

0

−
ζ 3

0

(
1 − 1

ζ 2N
0

)
(
1 − ζ 2

0

)2 +
2(1 + ζ0)

(
1 − 1

ζN
0

)
(1 − ζ0)2

]
. (32)
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FIG. 2. Properties of the RCL polymer: (a) Encounter probability between monomers 1 and 2–50, simulated from Eq. (3). The statistics
of the simulations is recorded after the slowest relaxation time [Eq. (22)]. Parameters are N = 50 monomers; Nc(ξ ) = 25 (green diamonds)
and 50 (blue circles) connectors. We average over 500 realizations (changing each time the ensemble G) and compare with the analytical
formula, Eq. (19) (dashed curves), with D = 1,d = 3,b = √

d,ε = b/10,�t = 0.01s. The encounter probability of the Rouse polymer where
Nc(ξ ) = 0 (dotted black), which cannot account for long-range connectivity. (b) Mean square displacement simulations for a RCL polymer,
where N = 50 monomers and Nc(ξ ) = 5 (blue), 25 (yellow), and 50 (green) added connectors. The formulas [Eq. (35)] are shown in dashed
lines.

In the low connectivity case Nc(ξ ) � N2

2 , we use (29) in (32)
and by discarding terms of higher order in O(N−1), we obtain
the asymptotic expansion

〈
R2

G(ξ )
〉 ≈ 3b2

4(1 − ξ )
√

Nξ
. (33)

In Fig. 1(d), we compare formula (32) with 〈R2
G(ξ )〉 com-

puted from Brownian simulations for N = 20,50, and 100
monomers and Nc(ξ ) ∈ [5,50] added random connectors, and
both agree.

V. MEAN SQUARE DISPLACEMENT (MSD) OF A SINGLE
MONOMER OF THE RCL POLYMER

Using the normal coordinate system (9) in dimension d, the
mean square displacement (MSD) of monomers in the RCL

polymer is given by〈
r2
m(t)

〉

=
˝⎛
⎝N−1∑

p=0

αm
p up(t)

⎞
⎠

2˛

= 2dDt

N
+

N−1∑
p=1

(
αm

p

)2〈
u2

p

〉 = 2dDcmt

+ 2db2

N

N−1∑
p=1

cos2
(pπ(m− 1

2 )
N

)[
1 − exp

(− 2Dχp(ξ )t
b2

)]
χp(ξ )

,

(34)

where we used 〈up,uq〉 = 0, ∀p �= q, and Dcm = D
N

. Averag-
ing over all monomers and approximating the sum in (34) by
an integral (Eurler Mac-Laurin formula) for N � 1, we obtain

〈〈
r2
m(t)

〉〉 = 2dDcmt + 2db2

N2

N−1∑
p=1

[
1 − exp

(− 2dDχp(ξ )t
b2

)]
χp(ξ )

N∑
m=1

cos2

[
pπ (m − 1/2)

N

]
= 2dDcmt + db2

π

∫ π

0
dx

1 − e
(− 2dDχx (ξ )t

b2 )

χx(ξ )

= 2dDcmt + db2

√
πNξ (1 − ξ )

∫ √
2dDNξt/b2

0
exp(−g2)dg = 2dDcmt + db2Erf[

√
2DNξt/b2]

2
√

Nξ (1 − ξ )
, (35)

where Erf[t] is the error function. Equation (35) characterizes
the MSD for intermediate time scale τN−1(ξ ) � t � τ1(ξ ).
For short time scale t � τN−1(ξ ), the MSD is approximated
by

〈〈
r2
m(t)

〉〉 = b2
∫√

2dDNξt/b2

0 exp(−g2)dg√
πNξ (1 − ξ )

≈ b
√

2dDt√
π (1 − ξ )

[
1 − exp(−2dDNξt/b2)

2

]
.

Thus, for Nξ � 1, the MSD behaves like

〈〈
r2
m(t)

〉〉 ∝ db
√

2dDt√
π (1 − ξ )

. (36)

We conclude that the homogeneous behavior of MSD for the
RCL polymer model gives an anomalous exponent α = 0.5,
similar to the Rouse model due to the mean-field approxima-
tion. This result is in contrast with the spectrum of anomalous
exponents obtained for each configuration [8]. Finally, for long
time scales [t � τ1(ξ )] (slow diffusion of the polymer’s center
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FIG. 3. Transient RCL polymer properties: (a) Two monomers m (red) and n (purple) meet when they enter a ball of radius ε. Random
connectors (dashed arrows) are added to a linear Rouse chain. (b) Stochastic simulations (dots) of the MFET between monomer 1 and monomers
2–20 of RCL polymers with N = 20 (blue), 50 (yellow), and 100 (green) monomers, with Nc(ξ ) = 25 random connectors, agree with the
formula in Eq. (42) (dashed). Parameters: ε = b/10,D = 1,b = √

3,�t = 0.01s, the RCL system is 3 [we used Eq. (42) with ξ ∗, Eq. (18)].

of mass), the error function in (35) is almost constant and
therefore

〈〈rm(t)2〉〉 ≈ 2dDcmt + db2

2
√

Nξ (1 − ξ )
. (37)

VI. MEAN FIRST ENCOUNTER TIME (MFET) 〈τ ε(ξ )〉
BETWEEN MONOMERS OF THE RCL POLYMER

We compute here the mean time for two monomers of the
RCL polymer to enter for the first time in a ball of radius ε > 0,
at which they can possibly interact [Fig. 3(a)]. The MFET for
both the Rouse and β polymer [13,28] were computed [29]
using the regular expansion with respect to ε > 0 of the first
eigenvalue λε

0 of the Fokker-Planck operator associated to the
stochastic equation (13), so that

〈τ ε(ξ )〉 ≈ 1

Dλε
0(ξ )

. (38)

The first-order approximation in ε is given by [29]

λε
0(ξ ) = 4πε

∫
C−P

e−φG (U )dU

|�̃(ξ )| + O(ε2), (39)

where φG(U ) is the diagonalized potential (17) and |�̃(ξ )| is
the integral over the entire RCL configuration space, computed
using Gaussian integrals

|�̃(ξ )| =
∫

e−φG (U )dU =
∫ N∏

p=1

e− κ
2 χp(ξ )u2

p(ξ )dU

=
[

(2π )N−1∏N−1
p=1 κχp(ξ )

] d
2

. (40)

The integral over the space C − P of the closed
RCL polymer ensemble with fixed connector between
monomers m and n and additional Nc(ξ ) random
connectors in relation (39) is computed directly and

gives [30]∫
C−P

e−φG (U )dU

=
∫

e−φG (U )δ

⎡
⎣ N∑

p=1

(
αm

p − αn
p

)
u2

p

⎤
⎦ dU

= (2π )
(N−2)d

2

⎡
⎣κ

2
b2

N−1∏
p=1

e−[κχp(ξ )]σ 2
m,n(ξ )

⎤
⎦

d
2

, (41)

where δ is the δ function. Using relations (40) and (41) in
(38), we obtain the MFET between any two monomers m and
n of the RCL polymer for a given connectivity fraction ξ in
dimension d = 3:

〈τ ε
m,n(ξ )〉 = 1

4πDε

[
2πσ 2

m,n(ξ )

κb2

] 3
2

, (42)

Using (30) into (42), we obtain the new looping formula

〈
τ ε
m,n(ξ )

〉 ≈ b2[1 − exp(−|m − n|√Nξ )]d/2

4
√

NξπDε(κb2)d/2
+ O(Nξ ),

where |m − n| � N and ξ � 1. The analytical formula (42)
agrees with Brownian simulations of the MFET for the RCL
polymer [Eq. (3)] with N = 20,50, and 100 monomers, and
Nc(ξ ) = 25 added random connectors [Fig. 3(b)].

VII. APPLICATIONS OF THE RCL POLYMER MODEL TO
CHROMATIN RECONSTRUCTION

We derived here several analytical formulas for the vari-
ance, encounter probability, radius of gyration, mean-square
displacement, and the mean first encounter time of RCL
polymer models. These formulas can be used to extract
parameters from CC experiments [1,6]. Formula (19) can be
used to fit the empirical encounter probability to extract the
connectivity fraction ξ . This parameter has a direct interpre-
tation and represents the mean number of cross links that can
be mediated by CTCF molecules present in a genomic region.
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The parameter ξ depends on the coarse-grained scale [8] and
is used directly to estimate the radius of gyration [Eq. (32)] of
any region of interest. This radius characterizes the size of the
folded genomic region relative to other genomic segments. It
also provides insight into the relative compaction of TADs and
local organization of the chromatin in the cell nucleus.

To demonstrate the applicability of the present method, we
coarse-grained the 5C data reported in Ref. [1] of male neu-
ronal progenitors NPC-E14 cells, replicate 1. Coarse-graining
was performed at a scale of 3 kbp according to the method
presented in Ref. [31]. The assumptions of the RCL model
require that monomers share similar average connectivity,
and thus we took only a subset of the 5C data containing
TAD H. The TAD did not contain any long-range persistent
loops (peaks) and we decided to test the present model. The
length of the genomic section in TAD H is 679 kbp, which after
coarse graining resulted in a polymer of N = 226 monomers.
We fit the EP [Eq. (19)] of each of the 226 monomers as
explained in Ref. [8] and obtained an average connectivity of
ξ = 0.0022, corresponding to Nc(ξ ) = 56 added connectors,
that could be interpreted as the number of binding molecules.
Fitting the EP of TAD H with a power law a|m − n|−β

lead to β = 0.77, showing that the Rouse (β = 1.5) model
is inadequate to represent the empirical EP. With persistence
length of b = 0.05 μm and N = 226, ξ = 0.0022 in Eq. (32),
we predicted that the radius of gyration is 43 nm for TAD H.
Thus, the 679-kbp TAD H is compacted into a ball of volume
3.4 × 105 nm3 (2 bp per nm3).

Finally, a possible test for the robustness of the RCL
to coarse graining at any scale is that the value of the

MSRG should persist. By coarse graining, we change the
number N of monomers and the variance b, which should
be known experimentally for each scale. In the absence of
such knowledge, from Eq. (30) or (33), we see that to keep
the MSRG constant for all scales, b2 needs to be proportional
to

√
Nξ , the square root of the mean number of connectors.

Here, the coarse graining is imposed by the 5C protocol at
resolution 3 kb. We change the coarse graining from 3- to
10-kb resolution of TAD H and we find that the number of
connectors decreases from 56 at 3 kb to 7 at 10 kb and thus b2

should increase from 0.025 to 0.075 μm at 10-kb resolution.
Another application of the present analysis is the fitting

of the MSD [Eq. (35)] to single-particle trajectory data: By
fitting the experimental MSD curves using Eqs. (35)–(37),
we obtain the degree of connectivity ξ . We can then interpret
the mean deviation of loci dynamic from pure diffusion as
the confinement due to cross-linked genomic environment
[8,32,33].

To conclude, the main goal of this paper was to derive
asymptotic formulas to extract the connectivity ξ or the mean
number of connectors of a polymer model to account for the
block matrices (topological associated domains) present in CC
data (3C, 5C, and Hi-C). The procedure consists in fitting the
EP of the RCL model [Eq. (19)] to CC data to extract the
value of connectivity that can later be used in formula (42)
to compute the mean first encounter time between any two
monomers and thus for any two genes of interest. Encounter
times are key for understanding processes, such as mammalian
X chromosome inactivation [1] or non-homologous-end join-
ing after DNA double-strand break [29,34].
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