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Generalized run-and-turn motions: From bacteria to Lévy walks
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Swimming bacteria exhibit a repertoire of motility patterns, in which persistent motion is interrupted by turning
events. What are the statistical properties of such random walks? If some particular instances have long been
studied, the general case where turning times do not follow a Poisson process has remained unsolved. We present
a generic extension of the continuous time random walks formalism relying on operators and noncommutative
calculus. The approach is first applied to a unimodal model of bacterial motion. We examine the existence
of a minimum in velocity correlation function and discuss the maximum of diffusivity at an optimal value of
rotational diffusion. The model is then extended to bimodal patterns and includes as particular cases all swimming
strategies: run-and-tumble, run-stop, run-reverse and run-reverse-flick. We characterize their velocity correlation
functions and investigate how bimodality affects diffusivity. Finally, the wider applicability of the method is
illustrated by considering curved trajectories and Lévy walks. Our results are relevant for intermittent motion of
living beings, be they swimming micro-organisms or crawling cells.
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I. INTRODUCTION

Many bacteria are relentless microswimmers [1–4]. Their
trajectories often involve persistent swimming punctuated by
sudden reorientation events. A variety of distinct movement
patterns have now been identified [5–8]. In this work, we
answer what may be the simplest question about those random
motions [9]. What are their statistical properties? For instance,
how can we compute the mean square displacement and
diffusivity?

The swimming ability of many bacteria rests on a com-
mon apparatus: one or several flagella, each powered by a
rotary motor embedded in the membrane [10,11]. Unlike its
eukaryotic pendant, whose internal motors generate active
deformation, the bacterial flagellum is a passive filament. It
is also a polymorphic structure which can adopt a discrete
set of helical shapes [12]. Several configurations are possible
for the arrangement of flagella: monotrichous bacteria, which
include the majority of marine species [13], possess a single
polar flagellum, whereas peritrichous bacteria have multiple
flagella placed at random positions over the body. If in some
mutant strains motors are unceasingly in action and trajectories
are smooth, many bacterial motors operate discontinuously,
resulting in intermittent patterns of motion.

The most studied swimming strategy is probably the run-
and-tumble of Escherichia coli, a peritrichous bacterium that
inhabits the large intestine of humans and other warm-blooded
animals [1,5]. When all motors rotate counterclockwise,
flagella bundle into a helical filament. During this “run,” the
cell is propelled forward in near straight motion with a velocity
in the range 10–30 µm s−1. If one or several motors switch to
clockwise rotation, the flagella unbundle, inducing a rapid
change of direction. Such “tumble” is not isotropic, with an
average turning angle of 70◦.

Swimming patterns are not restricted to run-and-tumble,
but rather a theme with variations. The simplest instance may
be the run-stop of Rhodobacter sphaeroides, whose single
unidirectional motor periodically pauses. At each motor stop,
the flagellum switches from a helical to a coiled state, inducing
active reorientation of the cell [6,14]. Prevalent among marine

bacteria such as Pseudoalteromonas haloplanktis [15], the
run-reverse pattern is based on a bidirectional motor, that re-
currently changes its direction of rotation, alternating between
pushing and pulling modes. The soil bacterium Pseudomonas
putida adds its own variation, with swimming velocities in
the forward and reverse directions that differ by an average
factor of 2 [8]. Finally, some monotrichous bacteria employ
the run-reverse-flick pattern recently uncovered in the marine
bacterium Vibrio alginolyticus, and which involves a three-step
cycle: run forward, then backward, and flick [7]. The latter
is a sudden reorientation that is triggered by a mechanical
instability of the hook [16], with an average turning angle
close to 90◦. To encompass all types of swimming strategies
in a single term, it may be convenient to call them run-and-turn
motions [17].

The knowledge of swimming patterns has benefited from
recent advances in experimental techniques, including mi-
crofluidics [2]. Alongside high-throughput approaches to
characterize population motility such as differential dynamic
microscopy [18], sophisticated methods are developed for
three-dimensional (3D) tracking of individual bacteria, relying
on holography or diffraction pattern analysis [19,20]. Together
with progress on trajectory analysis [21], they give access
to unprecedented characterization of trajectories, with full
statistics on properties such as turning angle or run time
distributions.

Quantitative observations of bacterial run-and-turn motions
raise a myriad of questions. A first line of research investigates
the mechanisms at play in propulsion. A full understanding
involves uncovering a multiplicity of aspects: from the hydro-
dynamics of swimming [3,4] to the mechanics of flagellum
or hook and polymorphic transitions [12,16], but also the
motor machinery or biochemical regulation [6,22,23] and the
swimming efficiency and optimality [4,24]. Equally important
is a second line of research, concerned with the properties
of motility patterns, which underlie essential microbial ac-
tions such as chemotactic ability, pathogenicity, and foraging
efficiency. Given that bacteria appeared three billion years
ago, it is a natural hypothesis that evolution may have shaped

2470-0045/2017/96(1)/012415(18) 012415-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.012415


FRANÇOIS DETCHEVERRY PHYSICAL REVIEW E 96, 012415 (2017)

patterns for a specific environment. Which benefits then come
with a particular pattern? Before such a broad question can be
answered, a prerequisite is to characterize the basic properties
of bacteria random motions. This is the issue we address here.

The literature on random walks is vast, to say the least.
Not only a cornerstone of statistical physics, it has developed
ramifications in various fields, including mathematics, biology,
and ecology [9,25–27] and continues to explore countless
variations. Let us point out some distinguishing features
of run-and-turn motions. First, contrary to self-avoiding or
reinforced random walks [28,29] they are noninteracting.
Second, they occur in continuous space and time. The latter
is in contrast with random walks defined by discrete steps
as in the original Pearson problem [30–32]. Finally, they
include discontinuous changes, the turning events, which
are approximated as instantaneous, and retain memory, since
directions before and after the turn are, in general, correlated.

Run-and-turn patterns may be divided in two classes:
Poissonian or non-Poissonian. In the former, turning events
follow a Poisson process, with a rate constant in time and a
distribution of run time which is exponential. The Poissonian
case has been fully explored, for multiple reasons. In the
context of bacteria, the run-and-tumble of E. coli, which has
become one model organism for motility and chemotactic
properties [1], proved to be Poissonian in the early observations
[5], as also found in more recent studies [20,33]. On the
theoretical side, the Poissonian process, being maximally
random [34], may appear as the simplest assumption. It also
arises naturally in physical models of particle propagation,
such as the Lorentz model of electrons where ballistic motion is
interspersed with collision events that randomize the direction
[35]. Last but not least, Poissonian run-and-turn motions are
in general more tractable, since they involve equations that
are local in time, with no memory kernel. Accordingly, the
Poissonian class has been thoroughly investigated in various
situations [36–39], including swimming patterns [40,41].

There has been growing evidence that the non-Poissonian
class, while rather neglected in the past, is fully relevant to
swimming bacteria. Instead of a monotonic decay, the run
time distribution can exhibit a peak, as reported in a number
of species, including E. coli [42], V. alginolyticus [7,43], P.
putida [8,44], and Caulobacter crescentus [45]. The presence
of a maximum generically suggests that motor switching is
an out of equilibrium process [46]. Microscopic models for
dynamic binding of proteins to motor subunits may also predict
nonexponential run time, governed for instance by first passage
statistics [45]. Even for a Poissonian switching of the motor,
the polymorphic transitions of flagella and the influence of
mechanical load on switching rate may lead to a peak in
run time [47]. Finally, though exponential tails are frequently
observed for the run time distribution [7,43,45], power laws
have also been reported [48], and rationalized theoretically
by the interplay between noise and nonlinearity in signaling
pathway [23,49].

In comparison to its Poissonian counterpart, the class of
non-Poissonian run-and-turn has proven more challenging to
address theoretically. Because of memory in the process, a
Fokker-Planck approach yields an intricate integrodifferential
equation [50,51]. A framework that from the outset could treat
arbitrary time distribution is the continuous time random walks

(CTRWs), introduced in 1965 by Montroll and Weiss [52,53].
Initially developed for on-lattice random walks involving a
series of jumps separated by waiting periods, the formalism
was later extended to tackle continuous random motions
occurring during a run, but only under the restriction that each
turning event implies a complete decorrelation in the direction
of motion [39,54,55]. This assumption is invalid for most, if
not all, swimming patterns. As a result, and in spite of some
progress [41,56], non-Poissonian run-and-turn patterns have
eluded comprehensive treatment.

In this study, we propose a generic framework to address
run-and-turn motions, Poissonian or not, as found in bacterial
swimming patterns. We present in Sec. II a formalism that
extends the CTRWs to operators and introduce the necessary
tools of noncommutative calculus. In Sec. III, we apply the
method to a simple, unimodal model of run-and-turn and
explain how to obtain the statistical properties of motion for
arbitrary distribution of run time. We discuss the minimum that
may exist in velocity correlation function and the maximum
of diffusivity arising at a finite value of rotational diffusion
coefficient. The extension to bimodal run-and-turn, which is
required to describe all types of swimming patterns, is given
in Sec. IV. We examine to which extent patterns differ in
their velocity correlation functions and show that diffusivity is
expected to be reduced by bimodality in angle but enhanced by
bimodality in velocity. Finally, Sec. V is a direct application of
our technique to intrinsically curved trajectories and to Lévy
walks, for which features of the one-dimensional case are
shown to hold in dimensions 2 and 3. Section VI provides
a summary and points out the relevance to other motility
patterns, from individual cells to higher organisms.

A preliminary account of this work appeared in Ref. [57].
Here we expand on this earlier study in several respects.
We present a self-contained description of the formalism and
explain in detail the steps involved in the method, including the
noncommutative differentiation. We also consider numerous
instances of applications of the run-and-turn model, from
bacterial patterns to Lévy walks. Finally, we provide a
full discussion of the results, focusing in particular on the
maximization of diffusivity.

II. FORMALISM

This section presents a generic framework that is an
extension of CTRWs. While the derivation closely parallels the
traditional formalism, the difference lies in the introduction of
operators which may be noncommutative. The approach is not
restricted to the study of random motions but may prove useful
in the numerous domains where CTRWs have already found
applications, including solid-state physics, protein folding,
earthquakes and hydrology, or financial markets [58–60].

A. Extending the CTRWs to operators

We consider a system whose state, specified by a vector x,
changes in time in two distinct ways. On the one hand, the
“run” is a continuous evolution during which the probability
density p(x,t) is governed by the Liouvillian L according
to ∂tp = Lp [61]. On the other hand, the “jump” is an
instantaneous change of state defined by convolution with
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FIG. 1. Top: Schematics for the run time distribution ψ and the
derived quantities ψα , ψβ , and ψχ defined in the text and given by
Eq. (1). tin is the randomly chosen initial time, each dot indicates
a jump event. Bottom: Graphical interpretation of the two terms
appearing in P (q,s) as given by Eq. (7).

a kernel h(x). As a simple example, the state x could be
the position of a moving particle, the run could involve pure
diffusive motion, in which case the Liouvillian is the Laplacian
∇2 and the jump could describe instantaneous hops, with a
distribution h(x) of displacements.

The jump events are governed by a renewal process: the
intervals between two successive jumps are independently
drawn from a run time distribution ψ(t). We assume that
the process began at a time infinitely remote in the past

and that the mean run time is finite, so that a steady
state is reached. The initial time of observation tin is then
chosen at random [55,62,63]. This steady state assumption
requires the introduction of several additional quantities [64]:
the probability density ψα(t) for the forward waiting (or
recurrence) time, meaning that the next jump comes about a
time t after tin, the probability ψβ(t) that the run time exceeds
t , and the probability ψχ (t) that no jump occurs for a time t

after tin. Those quantities, which are illustrated in Fig. 1, can
be expressed as [39]

ψα(t) = ψβ(t)

τ
, ψα(s) = ψβ(s)

τ
,

ψβ(t) =
∫ ∞

t

dt ′ψ(t ′), ψβ(s) = 1 − ψ(s)

s
, (1)

ψχ (t) =
∫ ∞

t

dt ′
t ′ − t

τ
ψ(t ′), ψχ (s) = ψ(s) + τs − 1

τs2
.

Here, τ is the mean run time and s is the variable for the Laplace
transform with respect to time, as defined in Appendix A.

Given a probability density of initial state Pin(x), the goal
is to find the probability density P (x,t) at a later time t .
To do so, let us introduce the run propagator characterizing
the continuous evolution, p(x,x′,t − t ′), that is the probability
density to be in state x at time t given state x′ at time t ′, assumed
time invariant. We also need the joint probability density J (x,t)
that the system jumps to state x precisely at time t . Choosing
from now on tin = 0, P (x,t) and J (x,t) satisfy

J (x,t) =
∫ t

0
dt ′ψ(t − t ′)

∫
dx′h(x − x′)

∫
dx′′p(x′,x′′,t − t ′)J (x′′,t ′) + ψα(t)

∫
dx′h(x − x′)

∫
dx′′p(x′,x′′,t)Pin(x′′), (2)

P (x,t) =
∫ t

0
dt ′ψβ(t − t ′)

∫
dx′p(x,x′,t − t ′)J (x′,t ′) + ψχ (t)

∫
dx′p(x,x′,t)Pin(x′). (3)

The first contribution to J (x,t) collects all trajectories that
included a jump to state x′′ at time t ′, then evolved continuously
up to time t to reach state x′, at which point they jumped to
state x. The run time in this case is t − t ′, whence the ψ(t − t ′)
factor. Because x′, x′′, and t ′ may be chosen arbitrarily, triple
integration is performed over those variables. The second
contribution to J (x,t) corresponds to trajectories where not
a single jump took place before t , resulting in the ψα(t) factor.
Continuous evolution brought the system from the initial state
x′′ to x′, before a jump to x occurs precisely at time t . As
regards P (x,t), the first and second terms arise in an identical
manner, accounting respectively for the cases where in the
time interval [0,t[ there is at least one jump event or none.

Moving to transformed variables allows us to convert those
equations into a tractable form. Laplace transforms are used
for the time variable (t → s), so that convolution translates
into a product. With the appropriate transform (x → q), which
depends on the particular system under study, convolutions in
the x variable are also turned into multiplication. Those two

steps are standard in CTRWs. The third and unusual step is
to introduce the operator representation for the run propagator
p(x,x′,t − t ′) [50]:

e(t−t ′)Lf (x,t ′) =
∫

dx′p(x,x′,t − t ′)f (x′,t ′), (4)

indicating that upon action of the operator e(t−t ′)L, the
probability density f (x,t ′) evolves for a time span t − t ′, thus
reaching time t . With this representation, integrals of the type∫ t

0 dt ′g(t − t ′)
∫

dx′p(x,x′,t − t ′)f (x′,t ′) are reduced to the
concise expression g(s − L)f (x,s). Details for this calculation
can be found in Appendix B 1. Once all three steps are
performed, the lengthy Eqs. (2) and (3) take the compact form

J (q,s) = h(q)ψ(L̂)J (q,s) + h(q)ψα(L̂)Pin(q), (5)

P (q,s) = ψβ(L̂)J (q,s) + ψχ (L̂)Pin(q), (6)

with the shorthand notation L̂ = s − L. At this point, reverting
to time variable would produce an integrodifferential equation
[50,51,65]. Here we follow a different route and keeping in
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mind that operators may not commute, we solve Eqs. (5) and
(6) to arrive at the generating function, the main equation of
this section,

P (q,s) =
⎡
⎣ψχ (L̂) +

3

ψβ(L̂)[h(q)ψα(L̂)
1

]

[1 − h(q)ψ(L̂)
2

]

⎤
⎦Pin(q). (7)

Here the order in which a single or a group of operators
are taken is specified with Feynman indices [66]. Only their
relative value is relevant, with smaller indices coming first. If
not indicated otherwise by indices, operators within brackets
are applied starting with the rightmost and ending with
the leftmost. Once endowed with indices, operators can be
manipulated as ordinary commuting quantities.

Equation (7) gives the required probability density P (q,s)
in terms of transformed variables, for arbitrary Liouvillian,
jump kernel, and run time distribution. A simple graphic
interpretation is shown in Fig. 1. There are two separate
contributions to P (q,s). If no jump takes place, the operator
ψχ (L̂) is applied on the initial distribution Pin(q). If at least
one jump occurs, three successive stages may be distinguished:
the first operator h(q)ψα(L̂) describes the evolution up to
the first jump, included. A number n of jumps may happen
subsequently, each yielding a factor h(q)ψ(L̂). Accounting for
all possible n yields

∑∞
n=0[h(q)ψ(L̂)]n = [1 − h(q)ψ(L̂)]−1.

The final stage, which follows the ultimate jump, brings the
last operator ψβ(L̂).

Two remarks are in order to conclude this section. First, the
particular cases of Eq. (7) are easily checked. In the absence
of jumps (h(q) = 1), the continuous evolution P (q,t) =
etLPin(q) is recovered as expected. In the absence of runs
(L = 0), there is only a single operator corresponding to jumps,
hence ensuring commutativity and leading to the traditional
expression of CTRWs with jumps only. Second, the above
expression is valid with the assumption of steady state. If, as
in the original Montroll-Weiss equation, the initial time tin is
chosen to coincide with a jump event, the resulting generating
function is

Pns(q,s) = ψβ(L̂)[1 − h(q)ψ(L̂)]−1Pin(q), (8)

which derives from Eq. (7) by replacing ψχ and ψα with ψβ

and ψ respectively. The nonsteady state assumption may lead
to ergodicity breaking and ageing effects [67], that will not be
considered in this work, except briefly in Sec. V B.

B. Noncommutative calculus

Taking the inverse transforms on P (q,s) would yield
the probability density in terms of original variables (x,t).
Because this step is generally intractable, one instead focuses
on moments. Consider a simple example where the state
x = (x,y,z) is a three-dimensional position and k is the
conjugated variable for Fourier transform (see Appendix A).
Since P (k,s) is the generating function of moments, the nth
moment of abscissa x is obtained from

〈xn(s)〉 = lim
k→0

(
−i

∂

∂kx

)n

P (k,s), (9)

where 〈.〉 indicates an ensemble average. In contrast to the
usual framework of CTRWs, Eq. (7) for P (q,s) involves not

only functions, but operators, which may not commute with
one another nor with their own derivative. As a consequence,
the differentiation requires some tools of noncommutative
analysis, namely the difference derivative and Daletskii-Krein
formula [68].

The difference derivative is defined as

δf (x,y) =
∫ 1

0
du f ′[ux + (1 − u)y], (10)

which, more explicitly, includes the two cases

δf (x,y) = f (x) − f (y)

x − y
if x 	= y, (11a)

= f ′(x) if x = y. (11b)

The difference derivative of order n is defined by recurrence
δnf = δ(δn−1f ) and is invariant with respect to permutation
of the arguments. When all arguments are distinct, only
differences are involved,

δnf (x1, . . . ,xn+1) =
n+1∑
i=1

f (xi)
n+1∏
j=1,

j 	=i

(xi − xj )

. (12)

When all arguments are identical, one recovers the usual
derivative up to a factorial

δnf (x, . . . ,x) = f (n)(x)

n!
. (13)

The general case interpolates between those two extremes.
The Daletskii-Krein formula indicates how to differentiate

a function of an operator, f (A), when the operator A and its
derivative A′ do not commute,

d

dt
f (A(t)) =

2

A′ δf
( 1

A,
3

A
) =

2

A′ f (
1

A) − f (
3

A)
1

A −
3

A
. (14)

Extension to higher derivatives is embodied in the Newton
formula: if A and B are operators and ε is the expansion
parameter,

f (A + εB) − f (A) =
∞∑

n=1

εn
2

B
4

B . . .
2n

B δnf (
1

A,
3

A, . . . ,
2n+1

A ).

(15)

While a rigorous approach can be found in Ref. [68], here we
present a heuristic derivation of the Daletskii-Krein formula.
We consider the first order expansion f (A + εB) = f (A) +
εT1 + O(ε2), where T1 is the linear part, and focus on the
particular case f (A) = An, for which

T1 = lim
ε→0

d

dε
f (A + εB) =

n−1∑
m=0

AmBAn−1−m. (16)

One can check that AT1 − T1A = AnB − BAn. Because oper-
ators equipped with indices can be treated as usual scalars, an
equivalent expression for this equality is

T1 =
2

B
(

1

A)n − (
3

A)n

1

A −
3

A
. (17)
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FIG. 2. Unimodal run-and-turn motion in dimension d = 2, and
its parameters. Runs are characterized by a velocity v, a rotational
diffusion coefficient Dr, and a run time distribution ψ(t). Turning
events, represented by dots, are specified by the distribution of turning
angle h(ϑ).

By linearity, the above argument immediately extends to
functions that can be represented as a power series f (A) =∑∞

n=0 anAn. Hence, consistent with Eq. (14), one obtains

lim
ε→0

d

dε
f (A + εB) =

2

B
f (

1

A) − f (
3

A)
1

A −
3

A
. (18)

III. UNIMODAL RUN-AND-TURN

A. Model and method

The generic formalism of Sec. II is now applied to a specific
model of bacterial swimming, which is illustrated in Fig. 2 and
referred to as unimodal run-and-turn motion. The bacterium,
moving in space of dimension d = 2 or 3, is characterized by
its position and orientation. Runs involve smooth persistent
motion, with velocity of constant modulus v, a direction
governed by rotational diffusion with coefficient Dr and a run
time distribution ψ(t). Jumps are instantaneous reorientations
leaving the position unaffected, with a distribution of turning
angle h assumed symmetric when d = 2 and azimuthally
symmetric when d = 3 [69].

The model has been investigated previously [40,41] and
includes as particular cases the ballistic motion with isotropic
turns [55], the run-reverse pattern [70], and some instances of
Lévy walks [71]. In the context of bacteria, three assumptions
may be discussed. First, the velocity is constant in magnitude.
While fluctuations may be seen within a run and from one run
to the next [8], taking them into account would represent the
next level of refinement. Second, turning events are treated
as instantaneous, a reasonable approximation if they are, on
average, at least ten times shorter than runs [43]. Because
this assumption does not always hold [5], it will be relaxed
in Sec. IV with the bimodal model. Finally, run times are
independent variables. Such renewal character is supported
by the absence of strong correlation between successive run
times [43] and by the invariance of properties upon reshuffling
run intervals [42]. Note however that correlated run times
have also been reported in experimental data and rationalized
theoretically [23].

We now explain the method and to do so in the simplest
manner, we first focus on the model in dimension d = 2. The
continuous evolution during a run is governed by the Fokker-
Planck equation on p(r,θ,t),

∂tp = Lp = Dr �ap − v u · ∇rp. (19)

Here, θ is the orientation angle and u = (cos θ, sin θ ) is the
orientation vector, ∇r is the gradient with respect to position
r = (x,y), and �a = ∂2

θθ is the angular part of the Laplacian.
To proceed, the Liouvillian L is converted to a tractable form
by switching to transformed variables: Fourier transform is
taken for position (r → k), Fourier series for orientation (θ →
l), and Laplace transform for time (t → s), all of which are
defined in Appendix A. In this new basis, the Liouvillian acting
on p(k,l,s) does not involve partial derivatives anymore,

L = Dr�a + iv

2
(kxT+ + kyT−), (20)

where for an arbitrary function f ,

�af (l) = −l2f (l), T±f (l) = f (l − 1) ± f (l + 1)

i(1∓1)/2
, (21)

indicating that �a and T± are respectively multiplicative and
shifting operators for the l variable. Besides, convolution
with the reorientation kernel h(r,θ ) = δ(r)h(θ ) gives rise
to multiplication by 2πh(l) [72]. The probability density
P (k,l,s), as obtained from Eq. (7) with L from Eq. (20), is the
generating function for moments. Hence, for instance,

〈xn(s)〉 = 2π lim
k→0
l→0

(
−i

∂

∂kx

)n

P (k,l,s). (22)

Because the operators �a and T± do not commute, taking the
derivative in Eq. (22) requires the use of the Daletskii-Krein
formula. Appendix B 2 explains the calculations involved in
this process.

The run-and-turn model in d = 3 is treated along similar
lines. Orientation is specified with polar and azimuthal
angles (θ,φ) and can be handled with the spherical har-
monic transform as described in Appendix A. The Liou-
villian expression given in Eq. (19) still holds, with u =
(sin θ cos φ, sin θ sin φ, cos θ ) and �a defined in Eq. (A6).
In switching to transformed variables (l,m) for orientation,
we exploit the properties of spherical harmonics [73]. The
reorientation kernel involves convolution on the unit sphere,
as previously used in the context of astrophysics [74–76].

B. Results: MSD and diffusivity

The method gives access to moments of any order, for
arbitrary initial condition. We have obtained for instance
the second moment when the initial orientation is fixed to
a prescribed value θin. The resulting expression is lengthy
and reported in Appendix D. In the following, we focus on
the quantity of prime importance in experiments, the mean
square displacement (MSD), denoted as M(t). Two related
quantities will also be discussed. First, the velocity correlation
function, obtained by double differentiation C(t) = M ′′(t)/2,
is particularly useful to emphasize the differences between
patterns. Second, the diffusivity D = limt→∞ M ′(t)/d, also
called diffusion coefficient or “random motility” [13], is the
simplest characterization of a swimming pattern. Note that
in terms of Laplace variable C(s) = s2M(s)/2 and dD =
lims→0 C(s), and that M(t) = d〈x2(t)〉 if initial orientation
is isotropically distributed.

012415-5



FRANÇOIS DETCHEVERRY PHYSICAL REVIEW E 96, 012415 (2017)

The MSD and diffusivity for unimodal run-and-turn motion
for arbitrary run time distribution ψ(t) and dimension d = 2
or 3 are found to be

M(s) = 2v2

τ

1 − α − τs ′ + (−1 + α + ατs ′)ψ(s ′)
(ss ′)2[−1 + αψ(s ′)]

, (23)

dD = v2

τ

1 − α − τD̃r + (−1 + α + ατD̃r)ψ(D̃r)

D̃2
r [−1 + αψ(D̃r)]

, (24)

with τ the mean run time, D̃r = (d − 1)Dr, s ′ = s + D̃r, and
α = 〈cos θ〉h, where 〈.〉h indicates an average over the turning
angle distribution h. In contrast to the MSD that involves the
whole function ψ , the diffusivity depends only on the quantity
ψ(D̃r), explicitly given by [77]

ψ(D̃r) =
∫ ∞

0
dt e−(d−1)Drψ(t), (25)

which is the average directional correlation at the end of a
run. Here and in Eq. (24), the rotational diffusion is strictly
nonzero Dr > 0, as assumed in the following unless mentioned
otherwise. As regards the turning angle, both the MSD and
diffusivity depend only on the mean cosine, also called the
persistence index [25], which is thus, rather than the mean
turning angle, the relevant quantity [78].

For completeness, we also quote the MSD in nonsteady
state

Mns(s)

v2
= 1

D̃rs2s ′[1 − ψ(s)][1 − αψ(s ′)]

×(D̃r − (s ′ − αs)ψ(s)

+ [s − αs ′ + αD̃rψ(s)]ψ(s ′)), (26)

where D̃r and s ′ are defined as in Eq. (23). Note that this result
is different from the steady state expression. In the following,
Eq. (26) will not be used, except in Sec. V B.

C. Alternative route to MSD

Before discussing its implications, we show how to recover
the MSD for unimodal motion without having recourse to
noncommutative calculus. Again we consider only the case
d = 2 for simplicity and start with the orientation correlation
function

Cor(t − t ′) = 〈u(t) · u(t ′)〉 = 〈cos[θ (t) − θ (t ′)]〉, (27)

which is simply C(t)/v2 since the velocity modulus is constant.
Cor can be obtained from the expression

Cor(t) =
∫ π

−π

dθ P (θ,t) cos θ, (28)

where P (θ,t) is the probability density of orientation θ at
time t , given the initial state Pin(θ ) = δ(θ ). Switching to
transformed variables, Eq. (28) translates into

Cor(s) = π [P (l = 1,s) + P (l = −1,s)]. (29)

Next we use the generic formalism of Sec. II A to determine
P (l,s). The continuous evolution of orientation involves
only rotational diffusion, implying L = Dr∂

2
θθ in θ variable

FIG. 3. Velocity correlation function for unimodal run-reverse
motion with vanishing Dr and a gamma distribution of run time. The
latter, with mean τ and parameter γ , is shown in the inset. The curve
with γ = 103 is rescaled for clarity.

and L= −Drl
2 in Fourier series variable l. With the initial

orientation Pin(l) = 1/2π , applying Eq. (7) leads to

P (l,s) =
[
ψχ (L̂) + 2πh(l)ψα(L̂)ψβ(L̂)

1 − 2πh(l)ψ(L̂)

]
1

2π
, (30)

with L̂ = s − L = s + Drl
2. Here, all “operators” involve

only multiplication with respect to the l variable and therefore
commute. Combining Eqs. (29) and (30) yields an explicit
expression for Cor(s). Using finally M(s) = 2v2/s2 × Cor(s)
gives back Eq. (23) for the MSD. Though it cannot address
higher moments, or even the second moment with fixed
initial orientation, this method is simple and provides one
way to validate the more involved noncommutative route.
Further checks were also conducted, including comparison
with literature results and numerical simulations, as well as
an alternative approach to obtain arbitrary moments in the
Poissonian case. They are gathered in Appendix C.

D. Applications

1. Run-reverse and minimum in C(t)

As a first application, we consider a simple instance of
run-reverse pattern. To do so, let us introduce a particular
choice of run time that will be used repeatedly in this work,
the gamma distribution, defined as

ψ(t) = tγ−1e−γ t/τ

�(γ )(τ/γ )γ
, ψ(s) =

[
1 + τs

γ

]−γ

, (31)

where � is the gamma function and γ > 0 is the only parameter
once the mean run time τ is fixed. Already used to fit
experimental data [8,42,70], the gamma distribution includes
the Poissonian case when γ = 1, and exhibits a maximum
followed by an exponential tail for γ > 1, as visible in the
inset of Fig. 3. Note that choosing an integer γ yields an
Erlang distribution, for which the run time is the sum of
γ independent exponentially distributed variables with mean
τ/γ [79]. Besides, the limit γ → 0 yields a power law regime
with ψ(t) ∼ t−1, ending with an exponential cutoff. In the
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opposite limit γ → ∞, ψ(t) approaches a Gaussian with
vanishing variance, and turning events become quasiperiodic.

The run-reverse pattern is assumed to have identical
characteristics in the forward and backward motions, and can
then be described as a unimodal run-and-turn with α = −1.
With run times that are gamma distributed, one can obtain for
the velocity correlation function an expression valid for all
values of γ ,

C(t)

v2
= e−D̃rt

[
1 − 2t + 4γ γ

×
∫ t

0
dt ′(t − t ′)t ′γ−1e−γ t ′Eγ,γ [−(γ t ′)γ ]

]
, (32)

where Eμ1,μ2 is the two-parameter Mittag-Leffler function
[80]. As a side remark, note that the effect of rotational
diffusion is limited to the exponential term that comes as a
prefactor, a conclusion that actually holds for any unimodal
motion since C(s) depends only on s ′ = s + D̃r. For the first
integer values of γ , Eq. (32) reduces to compact expressions
involving only elementary functions. With the notation a =
2
√

2, they read as [81]

C(t) = v2e−D̃rt fγ (t/τ ), (33)

γ = 1, f1(t) = e−2t ,

γ = 2, f2(t) = e−2t cos(2t),

γ = 3, f3(t) = e−6t

9
[1 + 8e9t/2 cos(3

√
3t/2)],

γ = 4, f4(t) = e−4t cos(at)

[
cosh(at) + a

4
sinh(at)

]
.

In the Poissonian case, the velocity correlation function
for unimodal motion is an exponential for all values of Dr

and α, thus decreasing monotonically to zero. The non-
Poissonian case can be qualitatively different, as illustrated
in Fig. 3 for vanishing Dr. Upon increasing γ above unity,
the velocity correlation functions exhibit in the vicinity of τ

an increasingly pronounced minimum, whose negative value
is the sign of anticorrelation. Even though only the first
minimum is clearly visible, there is actually a sequence of
alternating minima and maxima [82]. Interestingly, a negative
minimum in C(t) has been reported twice recently: first, in the
orientation correlation function of P. putida [8], whose pattern
is unimodal when considering only the direction of motion
and not its velocity, and second, in the context of cell motility,
for the velocity autocorrelation of Dictyostelium discoideum
amoeba [83]. Within the unimodal run-and-turn model, such
nonmonotonicity can arise only if the turning process is not
Poissonian [84].

The existence of a minimum in C(t) is not restricted to
perfect reversal (α = −1) but may arise if α is negative. The
minimum will be most noticeable for low α, low Dr, and
high γ , when the turning process involves a more pronounced
memory. Shown in Fig. 4 is the minimal value, computed
numerically as a function of D̃r for the first integer values
of γ and α = −1, −3/4, and −1/2. While the minimum
may reach −0.25, its typical value is around −0.1 for γ = 3,
α = −3/4, and τD̃r = 0.1. When the effect of rotational diffu-

FIG. 4. Minimum value in velocity correlation function C(t)/v2,
as a function of rotational diffusion D̃r = (d − 1)Dr. The run time is
gamma distributed with mean τ and parameter γ .

sion becomes significant (τD̃r 
 1), the minimum magnitude
declines to a level that may be difficult to detect experimentally.

2. Maximizing the diffusivity

As it characterizes the exploratory behavior in a homo-
geneous environment, the diffusivity is a basic feature of a
swimming pattern. Can it be maximized with a particular
choice of parameters? It is intuitively expected that turning
events that are more persistent lead to higher diffusivity. It
can be checked from Eq. (24) that D is indeed monotonically
increasing with α. In contrast, the dependence on rotational
diffusion coefficient is not always monotonic: diffusivity may
reach a maximum at a finite value of Dr, as pointed out recently
in the particular case of the run-reverse pattern [70]. We are
now in a position to complete the picture for a generic unimodal
motion.

We first present a criterion for the existence of a maximum,
valid for any run time distribution. Keeping τ fixed, we
introduce the dimensionless diffusivity

D̄ =2dD
v2τ

, (34)

which allows us to treat simultaneously the cases d = 2 and
3. In the limit of large rotational diffusion Dr → ∞, D̄
approaches 2/(τD̃r) and is thus always decreasing. If the slope
is positive at low Dr, then a maximum must exist in between.
This sufficient condition can be recast as

μ3

τ 3
� − 3(1 + α)

1 − α

σ 2

τ 2
− 1 + α(4 + α)

(1 − α)2
, (35)

where σ 2 is the variance of the run time distribution, and
μ3 = ∫ ∞

0 dt (t − τ )3ψ(t) is its third central moment [85].
To make further progress, let us now consider a gamma

distribution of run time. The dimensionless diffusivity is
plotted in Fig. 5 as a function of rotational diffusion, for a
run-reverse motion. While the curves are strictly decreasing at
low γ , they exhibit a maximum for higher values. For α = −1,
the transition between those two regimes occurs at a critical
value γc = 2. For incomplete reversal (α > −1), the transition
can also be seen for sufficiently low α, but γc rapidly increases
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FIG. 5. Dimensionless diffusivity as a function of rotational
diffusion coefficient for a run-reverse pattern (α = −1), and gamma
distributed run time. There is a maximum for γ � γc = 2. Inset:
critical value γc(α) above which a maximum exists.

with α, as shown in the inset of Fig. 5 [86]. Eventually,
for α � αc = −2 + √

3, even periodic turning (α = ∞) does
not yield a maximum. The (α,γ ) plane is thus divided in
two regions, with or without a maximum. Schematically, the
maximum arises when turning event occurs at the right time
to counteract the change in orientation imparted by rotational
diffusion. This effect is most pronounced when reversals are
sharp and the turning process close to periodic.

Figure 6 displays the maximal diffusivity D̄∗, and the
optimal rotational diffusion coefficient D̃∗

r at which it is
reached, with D̃∗

r finite when a maximum exists and zero
otherwise. Numerically, τD̃∗

r is of order unity for perfect
reversal (α = −1) but much lower values may also be optimal
when reversal is only partial: for instance, τD̃∗

r 
 0.1 for
γ = 3 and α 
 −0.68 or for γ = 5 and α 
 −0.48. As regards
D̄∗, it evolves continuously at the transition between the two
regimes and increases steadily with α as explained above.
Note that for α → 1, D̄∗ diverges as 2/(1 − α), because with
D̃r = 0, motion becomes ballistic rather than diffusive.

FIG. 6. Optimal rotational diffusion coefficient D̃∗
r (left) and

maximal diffusivity D̄∗ (right), as a function of α for gamma
distributed run time.

FIG. 7. Model of bimodal run-and-turn motion. Two modes
alternate, whose parameter sets are different.

As a final remark, we point out that the diffusivity, at
maximum or not, and for any α, is a strictly decreasing function
of the γ parameter. This is visible in Figs. 5 and 6 and can be
checked analytically. As a result, periodic turning yields the
lowest diffusivity, and the highest value is reached for γ → 0.
In this limit, ψ(t) develops a t−1 tail, the motion is dominated
by long runs, and the effect of turns becomes negligible with
respect to rotational diffusion, leading to dD = v2/D̃r. This
limiting case may be relevant, since a power law in run
time distribution has been observed in E. coli [48], whose
exponent 1.2 is close to unity. Finally, note that among gamma
distributions that remain finite (γ � 1), the Poissonian case
γ = 1 yields the highest diffusivity.

IV. BIMODAL RUN-AND-TURN

A. Model and MSD

Most swimming patterns feature more than a single type
of runs or turning events. The most common case involves
a binary alternation in one or several parameters. This may
be the velocity modulus as in R. sphaeroides [87] or P. putida
[8,44], the turning angle as in the run-reverse-flick pattern of V.
alginolyticus [7], or the mean run time as in C. crescentus [45].
The description of such patterns requires a bimodal extension
of the run-and-turn model, where two modes i = 1,2 alternate,
each with its own run time distribution ψi and mean τi , velocity
vi , rotational diffusion coefficient Dri , and reorientation kernel
hi (Fig. 7).

The operator formalism is easily generalized to bimodal
evolution. Retracing the steps of Sec. II A, one obtains the
system

J1(q,s) = h2(q)ψ2(L̂2)J2(q,s) + h2(q)ψα2(L̂2)Pin,2(q), (36)

P1(q,s) = ψβ1(L̂1)J1(q,s) + ψχ1(L̂1)Pin,1(q), (37)

where all quantities are defined for each mode 1 and 2, and
with the convention that within a mode, the jump occurs after
the run [88]. The generating function for the total probability
density P = P1 + P2 is

P (q,s) = [χ̂1 + β̂2(1 − σ̂1σ̂2)−1α̂1

+ β̂1σ̂2(1 − σ̂1σ̂2)−1α̂1]Pin,1(q) + S1↔2. (38)

Here, S1↔2 indicates that everything preceding the symbol is
repeated with indices 1 and 2 interchanged, and dependence
on (q,s) is implicit for the operators σ̂i = hi(q) ψi(L̂i),
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α̂i = hi(q) ψαi(L̂i), β̂i = ψβi(L̂i), χ̂i = ψχi(L̂i), where L̂i = s − Li and i = 1,2. Applying Eq. (38) to the bimodal run-and-turn
model, we obtain our main result, the general expression for the MSD in terms of Laplace variable. With the notations
si = s + (d − 1)Dri , �i = ψi(si), d = 2 or 3, and αi = 〈cos θ〉hi

, it reads as

M(s)

2
= v2

1s
2
2 [τ1s1(1 − α1α2�1�2) − (1 − �1)(1 − α1α2�2)] + S1↔2 + v1v2(α1 + α2)s1s2(1 − �1)(1 − �2)

(τ1 + τ2)(s s1 s2)2(1 − α1α2�1�2)
. (39)

B. Applications

1. Individual patterns

The bimodal run-and-turn model includes as particular
cases all swimming patterns observed so far. Here we illustrate
some concrete examples and discuss some consequences of
the general expression Eq. (39). Throughout this section,
Sec. IV B, we focus on the three-dimensional case, which is
most relevant for freely swimming bacteria.

Run-and-tumble or run-stop. The unimodal run-and-turn
model assumes that turning events are instantaneous. This
approximation, however, is not obvious, as there is no clear
separation of time scale. The average run and tumble times
in E. coli are τ1 = 0.86 s and τ2 = 0.14 s, respectively [5],
yielding τ1/τ2 
 6. The ratio for R. sphaeroides reaches even
smaller values, as low as 3 [89]. Therefore, it seems warranted
to investigate a more refined model that accounts for the finite
duration of tumble or stopping mode. To do so, we consider
a bimodal pattern with no turning event, a mode 1 for the
runs, and a mode 2 which describes explicitly a reorientation
governed by active rotational diffusion with coefficient Dr2 >

Dr1, as relevant for E. coli and R. sphaeroides [14,87].
Choosing run times that are exponentially distributed, one can
obtain an explicit expression for C(t) which is reported in
Eq. (D3), and that we use with v2 = 0, assuming velocity
during reorientation is negligible.

We now compare the predictions of this bimodal model to
those of an equivalent unimodal model with instantaneous
turning events. For the latter, Dr = Dr1, τ = τ1, and the
α parameter is chosen equal to the mean cosine of angle
change at the end of reorientation mode 2, leading to α = 1/

(1 + 2τ2Dr2) [90]. Taking typical values for Dr1 and Dr2

in E. coli [91], it turns out that the normalized velocity
correlation functions C(t)/〈v2〉 predicted by the unimodal and
bimodal models are very close to each other (not shown).
The maximal absolute deviation never exceeds 0.05, whenever
Dr2/Dr1 � 10 and even for τ1/τ2 reaching unity. From this
result, it is understandable why tumbles whose duration is not
negligible can nevertheless be approximated as instantaneous.

Two-velocity run-reverse. In the swimming pattern of P.
putida, the average velocity varies by a factor of 2 between
the forward and backward modes. Let us fix v1 = 2v2 = v and
for simplicity, assume that all other parameters are identical in
the two modes, Dr1 = Dr2 = Dr, τ1 = τ2 = τ , α1 = α2 = −1.
Choosing for both modes a gamma distributed run time with
γ1 = γ2 = 2 is consistent with experimental data [8] and yields
the very compact formula

C(t)

v2
= e−2Drt

16
[1 + 9e−2t/τ cos(2t/τ )]. (40)

As can be seen in Fig. 8, C(t) at sufficiently low Dr

exhibits a minimum, followed by a plateau and a gentle
decay to zero [92]. Note that in contrast with the unimodal
run-reverse pattern (Fig. 3), the minimum value is positive. The
characteristic shape of C(t) had been noticed previously using
numerical simulation [8], it can now be described analytically.

Run-reverse-flick. To limit the number of parameters, we
again set v1 = v2 = v, Dr1 = Dr2 = Dr, and α1 = −1, α2 =
0, and take a gamma distribution of run time with γ1 = γ2 = 2.
The latter is the simplest choice that allows us to capture
both a maximum and an exponential tail, as observed for C.
crescentus and V. alginolyticus. In the former, the forward and
backward swimming time are widely different [45,93]. The
velocity correlation function in this case is lengthy and given
in Eq. (D4). On the other hand, assuming the same mean run
time τ1 = τ2 = τ , which would be a reasonable approximation
for V. alginolyticus [43], one gets the very concise expression

C(t)

v2
= e−(2Dr+2/τ )t

[
− t3

3τ 3
− t2

τ 2
+ t

2τ
+ 1

]
. (41)

Having considered each swimming pattern individually, we
finally examine to which extent they differ in their velocity
correlation functions. Those are plotted in Fig. 8 for the four
types considered so far: run-and-tumble, one- and two-velocity
run-reverse, and run-reverse-flick. For comparison, a single
mean run time τ is assumed everywhere. For each pattern, the
Poissonian pattern (γ = 1) is shown, along with the simplest
instance of non-Poissonian case (γ = 2). Simple analytical
expressions, such as Eqs. (40) and (41), are available for all
curves. Interestingly, it is possible to identify features that

FIG. 8. Normalized velocity correlation function Cnor(t) =
C(t)/〈v2〉 for four types of swimming patterns. The run time is gamma
distributed with γ = 1 (Poissonian case) or γ = 2 and has the same
mean τ in all modes. For the run-and-tumble, α = 0.33 as in E. coli.
The rotational diffusion coefficient is τDr = 0.1.
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discriminate between patterns: the monotonic decay of run-
and-tumble, the positive plateau at intermediate time for P.
putida, and in the non-Poissonian case, the negative minimum
when a full reversal is involved, with a different location in time
for run-reverse and run-reverse-flick. The deviation between
curves is more pronounced in the non-Poissonian case. Note
also that rotational diffusion in Fig. 8 is set to a typical order
of magnitude τDr = 0.1. The differences between curves are
more noticeable for lower Dr, but gradually vanish for higher
values, as the decorrelation in orientation during runs comes
to dominate the effect of turning events. Overall, the velocity
correlation function may prove a useful quantity for pattern
identification: an accurate measurement can provide a first
insight into the type of underlying pattern.

2. Diffusivity: Bimodal vs unimodal

What are the benefits of a bimodal pattern? Given the
number of parameters, including a function for the run time
distribution, it seems unlikely that a general statement can be
made. Here we show that some conclusions may be drawn
when focusing on diffusivity. To do so, we compare bimodal
and unimodal patterns having identical properties, except for
one parameter that differs in mode 1 and mode 2 of bimodal
motion, and is set to the mean value in the unimodal process,
so that the “average” properties are the same. For the two
patterns thus defined, we consider the ratio of diffusivities
R = Dbim/Duni.

Let us start with bimodality in angle, for which α1 	= α2

and αm = (α1 + α2)/2 in the bimodal and unimodal cases
respectively. In the limit of vanishing rotational diffusion,
which corresponds to straight runs, the result takes a very
tractable form,

R = 1 − (α1 − α2)2

2(1 − α1α2)[1 + αm + (1 − αm)σ 2/τ 2]
, (42)

valid for any run time distribution with finite variance σ 2.
It is clear from Eq. (42) that the bimodal pattern has lower
diffusivity. When rotational diffusion is finite, the expression
for R is more involved, and accordingly, we assume again a
gamma distribution of run time. It turns out that R � 1 for any
γ , indicating that bimodality in angle reduces diffusivity.

Addressing now bimodality in velocity, we fix v1 	= v2 and
vm = (v1 + v2)/2 for the bimodal and unimodal processes
respectively. In the absence of rotational diffusion,

R = 1 + (v1 − v2)2

4vm
2

σ 2/τ 2 + κ

σ 2/τ 2 + κ−1
, κ = 1 − α

1 + α
, (43)

which, this time, is always above unity. For gamma distributed
run time, this conclusion also applies with finite Dr, indicating
that bimodality in velocity enhances diffusivity.

Plotted in Fig. 9 is the diffusivity ratio for bimodality in
angle and velocity, with the choice γ = 2 and τDr = 0.1, a
typical order of magnitude. For concreteness, let us take two
examples. Compared to a unimodal pattern with α = −1/2,
the run-reverse-flick has a lower diffusivity (R = 0.7). In
contrast, with respect to a unimodal motion with the same
average velocity, the two-velocity run-reverse of P. putida
has a diffusivity which is three times higher (R = 3.2).
The influence of γ and Dr on R is shown in Fig. 10, for

FIG. 9. Diffusivity ratio R between bimodal and unimodal
motions, for bimodality in angle (left) and velocity (right). In the
latter, the pattern is run-reverse (α = −1). In both cases, d = 3,
τDr = 0.1, and γ = 2.

the run-reverse-flick and the two-velocity run-reverse with
v1/v2 = 2 as in P. putida. In both cases, the deviation from
unity is increasingly pronounced with γ , and would be
maximal for periodic turning. For the run-reverse-flick, the
R ratio is an increasing function of rotational diffusion, with
minimal value R = 3/(3 + γ ) at vanishing Dr, and which
approaches unity when τDr � 1. The diffusivity enhancement
for the two-velocity run-reverse increases upon reducing Dr,
and diverges as R ∼ γ /Dr for γ finite and Dr → 0, because
the bimodal motion then becomes ballistic. Unless rotational
diffusion dominates (τDr � 1), the enhancement in diffusivity
is very significant.

V. EXTENSIONS

A. Curved runs

Intrinsically curved trajectories arise naturally for bacteria
in the presence of solid interfaces. Hydrodynamic interactions
attract bacteria to the vicinity of the surface, where they swim
with parallel orientation and circular trajectories [94,95]. With
reorientations occurring mostly parallel to the wall and turning
events reduced in frequency, bacteria may remain trapped
[96]. Circular trajectories are also relevant for a variety of
systems, including magnetotactic bacteria in rotating magnetic
field [97], asymmetric artificial microswimmers [98,99], or the
gliding of diatom Nitzschia communis [100].

FIG. 10. Diffusivity ratio R as a function of rotational diffusion,
for the run-reverse-flick pattern (left) and the two-velocity run-reverse
with v1/v2 = 2 (right).
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FIG. 11. Two extensions of the run-and-turn model. Left: Curved
runs with constant mean curvature �. In the absence of rotational
diffusion, trajectories are circular. Right: Lévy walks, in which motion
is ballistic with a heavy tail in the distribution of run time.

We consider here the simplest case of run-and-turn motion
with curved runs: a unimodal model with constant mean
curvature in dimension d = 2 (Fig. 11). It is straightforward
to extend the approach of Sec. III: the Liouvillian of Eq. (19)
now includes an additional drift term −�∂θp, where � is the
angular velocity. If interested only in the diffusivity, one can
use the method of Sec. III C. The final result is

4D
v2τ

= 1

(τξ )2

[
τξ − 1 + ψ(ξ ) + α(1 − ψ(ξ ))2

1 − αψ(ξ )

]
+ c.c., (44)

where ψ(ξ ) = ψ(s = ξ ), ξ = Dr − i�, c.c. is the complex
conjugate, and D is an even function of � as required. In the
particular case of Poissonian isotropic turns and circular runs
(ψ exponential, α = 0, Dr = 0), this expression reduces to
that of Ref. [39]. In the absence of turns (α = 1), one recovers
the expression found previously [98,101,102].

Let us examine the consequences of Eq. (44) for a
gamma distribution of run time, considering first the limit of
vanishing rotational diffusion. The diffusivity as a function
of angular velocity � is displayed in Fig. 12, for turning
events that are perfect reversals (α = −1). Two regimes may be
distinguished. In the first, D(�) reaches a single maximum at
�∗ = 0, implying that compared to curved ones, straight runs
always yield a higher diffusivity. In the second regime, D(�)

FIG. 12. Diffusivity as a function of angular velocity for a two-
dimensional unimodal run-reverse with curved runs. Run time is
gamma distributed with parameter γ and Dr = 0. Inset: diffusivity is
maximized by a finite angular velocity �∗ when γ > γc(α).

exhibits two symmetric maxima at an optimal value of angular
velocity ±�∗ 	= 0. In this situation, the changes in orientation
occurring during the run and during the turn compensate each
other to some extent, making the decorrelation in orientation
slower [103].

To delineate the boundary between the two regimes, we
observe that D(�) decreases as �−2 at large � and has zero
slope at the origin. Therefore, a sufficient condition for the
existence of two maxima is that the second derivative at the
origin is positive. In the case α = −1, this criterion translates
into γ > γc = √

2 [104]. The second regime may also be found
for incomplete reversal if γ > γc(α), where γc(α), the solution
of a third order polynomial, is plotted in the inset of Fig. 12.
Note that the increase of γc(α) at low α is weak, since for α up
to −0.33, it remains below 3. The second regime disappears for
α > αc = −5 + 2

√
6 
 −0.101. In that case, even periodic

turning would not yield a maximum at finite �∗ and straight
runs always lead to faster spreading.

The picture that applies at Dr = 0 remains valid to a
large extent at low τDr. As a quantitative measure, con-
sider for instance αc(τDr), whose values show only modest
variation: −0.101, −0.107, and −0.17 for τDr = 0, 0.1
and 1 respectively. Eventually, for very strong rotational
diffusion (τDr > 5.54), the spread in orientation prevents
the compensation mechanism between angular velocity and
turning events, and only the first regime survives. As regards
the maximal value of diffusivity (not shown), we note that
for γ � 1, the Poissonian case generally yields the highest
diffusivity, except at low α, low Dr and high γ .

We have focused on the unimodal model for simplicity.
Bimodality in curvature has been considered theoretically, with
a dichotomous switching of curvature [105,106], and has been
reported in diatom N. communis, whose curvature is constant
in absolute value, but alternates in sign [100]. This situation
can be handled in the present formalism with a bimodal
model.

B. Ballistic runs and Lévy walks

In this final section, we take a step aside from bacterial
motions and focus on Lévy walks by considering ballistic runs
whose distribution is fat-tailed (Fig. 11). Even though power
laws have been observed in E. coli [48], they would not yield
anomalous behavior, because the rotational diffusion, which
is never strictly zero for bacteria due to thermal fluctuations,
dominates at long time and leads to normal diffusion. If not
relevant for the swimming of a single bacterium, Lévy walks
have been shown recently to provide an adequate description
for bacterial motion in densely packed swarms of millions
of individuals that exhibit large-scale swirling [107]. More
generally, Lévy walks are relevant in a variety of fields, from
condensed matter to biophysics and behavioral ecology [108].
Yet, as pointed out recently [71], most investigations have
focused primarily on the one-dimensional case. Here, as a
straightforward application of our generalized run-and-turn
model, we consider Lévy walks in dimensions d = 2 and
d = 3, and with turning events that, in contrast to the traditional
assumption, are not necessarily isotropic but may be arbitrary.
We find that in spite of this generalization, the essential
properties remain those of one-dimensional Lévy walks.
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Let us start with the general expression for the MSD when
runs are ballistic (Dr = 0),

M(s) = 2v2

τs4

1 − α − τs + (−1 + α + ατs)ψ(s)

−1 + αψ(s)
, (45)

Mns(s) = 2v2

s3

[
1 + (1 − α)sψ ′(s)

[1 − ψ(s)][1 − αψ(s)]

]
, (46)

in the steady and nonsteady case respectively. For the particular
case of isotropic turns (α = 0), Eq. (45) is in agreement with
the results of Ref. [55], and Eq. (46) is consistent with those
of Ref. [54]. Whenever the run time distribution has finite
variance σ 2, a small-s expansion gives ψ(s) = 1 − τs + (τ 2 +
σ 2)s2/2 + O(s3) and using Tauberian theorems, the long-time
behavior is normal diffusion [109]

M(t) = v2τ

[
σ 2

τ 2
+ 1 + α

1 − α

]
t, (47)

with a diffusivity that, unlike the case Dr > 0, involves only
the mean and variance rather than the whole function ψ(t).

We now consider a power law distribution of run time
ψ(t) ∼ 1/tν+1 with 1 < ν < 2. The mean value τ is defined
but the variance is infinite. In a small-s expansion, the fat tail
results in a term with noninteger exponent

ψ(s) = 1 − τs + c(τs)ν + O(s3). (48)

For instance, two specific examples that have often been used
are

ψI (t) = ν/to

(1 + t/to)1+ν
, ψII (t) = νtνo

t1+ν
H (t − to), (49)

where H is the Heaviside function and in which cases,
τI = to/(ν − 1) and cI = −(ν − 1)ν�(1 − ν), τII = ντI and
cII = ν−νcI . If Eq. (48) holds, the long-time behavior is
superdiffusive with

M(t)

v2τ 2
= 2c

�(4 − ν)

(
t

τ

)3−ν

. (50)

In agreement with Ref. [41], which relies on a different
computation, we see that the distribution of turning angle
plays no role. This is consistent with the intuitive picture that
motion is dominated by the longest run. Equation (50) is valid
for the steady case only. With the nonsteady assumption, the
asymptotic behavior is different and, whatever the value of c,
reads as

Mns(t) = (ν − 1)M(t). (51)

Several remarks are in order. First, for the particular
choice ψ = ψI , d = 2 and nonsteady assumption, one re-
covers the results of Ref. [71] which investigates several
instances of two-dimensional Lévy walks. The product, XY ,
or uniform model all have α = 0. For a generic run-and-
turn motion [see Eq. (23)], this is sufficient to ensure an
identical MSD [110]. With Lévy walks, the actual value
of α is irrelevant. Second, one way to characterize the
ergodicity properties is to introduce the ergodicity breaking
parameter EB(t) = MT (t)/Mns(t), where MT (t) = 〈r2(t,T )〉,
and r2(t,T ) = (T − t)−1

∫ T −t

0 dt ′ [r(t ′ + t) − r(t ′)]2 denotes
the time average taken over the whole trajectory duration T .
In the limit of long time, MT (t) approaches the steady state

value and Eq. (51) can be rewritten as

lim
t→∞ EB(t) = 1

ν − 1
, (52)

which differs from unity, except in the case ν → 2 where
standard diffusion is recovered. Thus, even though the mean
time is finite, the steady and nonsteady MSDs are distinct in
the long time limit. However, they do so only by a prefactor.
This is the ultraweak ergodicity breaking discussed for the
one-dimensional case [111,112]. It turns out that this feature
carries over to higher dimensions, and for arbitrary turning
angle distribution.

VI. CONCLUSION

By introducing an operator-valued formalism for CTRWs,
we have obtained the statistical properties of run-and-turn
random motions, be they Poissonian or non-Poissonian.
The model is versatile, describing all bacterial swimming
patterns, Lévy walks, and with straightforward extensions
to curved trajectories. We have provided throughout the
text numerous analytical results. Except for the Lévy walks
where only the asymptotic behavior was characterized, those
explicit expressions are valid at all times. They should be
helpful in rationalizing experimental data. In particular, the
velocity correlation function may give insight into the type
of swimming pattern, even without identifying turning events
[113]. A recurrent finding is that memory in turning times
may induce interesting features in motion properties. Using
a gamma distribution of run time allows us to interpolate
between the two extreme cases of no memory (Poissonian)
and perfect memory (periodic). Through the interplay with
rotational diffusion and turning angle, non-Poissonian patterns
may lead to a minimum in velocity correlation function, and
to a maximum of diffusivity at finite rotational diffusion or at
finite curvature.

Though developed for swimming bacteria, the run-and-
turn model considered here is applicable to a broad variety
of situations. These include swimming organisms such as
Chlamydomonas Reinhardtii and its eukaryotic version of the
run-and-tumble pattern [114], self-propelled particles, whose
random motions are receiving a renewed interest in the study of
active matter [32,36,115–118], displacement of motor proteins
on the network of cytoskeleton filaments [119,120], or animal
foraging [27]. Run-and-turn motions are also relevant for
individual cells [37,83,121], where a rich array of motility
mechanisms is currently being explored, including crawling,
gliding, or twitching [11]. In many contexts, it seems necessary
to allow for a bimodal character. For example, the motor
proteins exhibit frequent pauses during which they remain
static on the filament [120], cells may migrate through a cycle
of protrusion-retraction [37], the millimeter-sized zooplankton
Daphnia moves through a series of ballistic hop and pause
[122], and gulls may alternate between large-distance flights
and pauses for rest or foraging [56]. Though very different
in scale and nature, those instances of intermittent motion all
suggest a run-stop pattern.

If the run-and-turn model provides a basic description, it
does not exhaust all variations and there are many additional
features that one would like to incorporate. Let us mention only

012415-12



GENERALIZED RUN-AND-TURN MOTIONS: FROM . . . PHYSICAL REVIEW E 96, 012415 (2017)

two examples. First, instead of being constant, the velocity
may change in time, through a deterministic evolution [59],
continuous fluctuations [123,124], or as a random variable
chosen at the beginning of each run [38,125] as in the velocity
jump model [25]. Second, rather than being independent
quantities, run times may be correlated [126–128], a case that
cannot be treated within the present formalism.

The natural world offers countless forms of random
motions. It is tempting to think that many of them, having
evolved for a given purpose or as tradeoff between competing
requirements, are best adapted to a particular situation. Is this
view warranted for the smallest form of life on the planet,
bacteria? Much remains to be explored before one can fully
assess the optimality of their swimming patterns. By providing
the diffusion properties in a homogeneous environment, this
work is a first step in this direction. Looking forward, the next
step is to characterize how chemotaxis, the ability to navigate
chemical gradients [41,129–131], depends on motion patterns.

APPENDIX A: TRANSFORMS AND CONVOLUTIONS

Here we summarize the definition and convolution property
for the transforms introduced in the main text [132]. To
avoid clutter of notation, the function and its transform are
denoted with the same symbol, the nature of the function being
indicated by the name of the variable. The time variable is
treated with the Laplace transform

f (s) =
∫ ∞

0
dt e−stf (t), (A1a)

f (t) = 1

2πi

∫ c+i∞

c−i∞
ds etsf (s), (A1b)

[f ∗ g](t) =
∫ t

0
dt ′ f (t − t ′)g(t ′), (A1c)

[f ∗ g](s) = f (s)g(s). (A1d)

For position x in dimension d, the Fourier transform is used:

f (k) =
∫
Rd

dr eikrf (r), (A2a)

f (r) = 1

(2π )d

∫
Rd

dk e−ikrf (k), (A2b)

[f � g](r) =
∫
Rd

dr′ f (r − r′)g(r′), (A2c)

[f � g](k) = f (k)g(k). (A2d)

For orientation angle θ in d = 2, we employ the Fourier series

f (l) = 1

2π

∫ π

−π

dθ e−ilθ f (θ ), (A3a)

f (θ ) =
∞∑

l=−∞
f (l) eilθ , (A3b)

[f ◦ g](θ ) =
∫ π

−π

dθ ′ f [pv(θ − θ ′)]g(θ ′), (A3c)

[f ◦ g](l) = 2πf (l)g(l), (A3d)

where pv(θ ) = arg (eiθ ) with values taken in ]−π,π ].

Finally, the spherical harmonic transform is needed for
orientation in d = 3. Also called Laplace series or expansion,
it is given by

f (l,m) =
∫ 2π

0
dφ

∫ π

0
sin θ dθ

[
Ym

l (θ,φ)
]∗

f (θ,φ), (A4a)

f (θ,φ) =
∞∑
l=0

l∑
m=−l

f (l,m) Ym
l (θ,φ). (A4b)

Here f (θ,φ) is a function defined on the unit sphere and having
as arguments the polar and azimuthal angles θ and φ. The star
denotes the complex conjugate. The spherical harmonic Ym

l is

Ym
l (θ,φ) =

√
2l + 1

4π

(l − m)!

(l + m)!
P m

l (cos θ )eimφ, (A5)

where P m
l is the associated Legendre function of degree l and

order m. The Ym
l are eigenfunctions for the angular part of the

Laplacian in d = 3,

�aY
m
l = −l(l + 1)Ym

l ,

�a =
[

1

sin θ
∂θ sin θ ∂θ + 1

sin2 θ
∂2
φφ

]
. (A6)

For the turning events, we employ the azimuthally symmetric
(or isotropic) convolution on the unit sphere, as used in geodesy
and astrophysics applications [74,76],

[f � g](θ,φ) =
∫ 2π

0
dφ′

∫ π

0
sin θ ′ dθ ′ f (ξ ) g(θ ′,φ′),

(A7a)

[f � g](l,m) =
√

4π

2l + 1
f (l,0) g(l,m). (A7b)

Here the function f (θ,φ) is assumed to be azimuthally
symmetric and accordingly denoted as f (θ ). If u =
(sin θ cos φ, sin θ sin φ, cos θ ) is the unit vector with direction
(θ,φ), ξ = arccos(u · u′) is the angle between (θ,φ) and
(θ ′,φ′). Note that this convolution is not commutative. Only
recently was a commutative anisotropic convolution defined
on the unit sphere [75].

APPENDIX B: TECHNICAL STEPS

1. Operators in Laplace convolution

In Sec. II A, we used the operator representation and
time Laplace transform to convert the integral

∫ t

0 dt ′ g(t −
t ′)

∫
dx′ p(x,x′,t − t ′)f (x′,t ′) into g(s − L)f (x,s). This re-

sult, stated in Refs. [50] and [51], seems nonstandard. Here
we provide some explanation for this step. Retracing the
calculation backward, one can write

X = g(s − L)f (x,s), (B1)

=
∫ ∞

0
dt ′′ e−(s−L)t ′′g(t ′′)

∫ ∞

0
dt ′ e−st ′f (x,t ′),

=
∫ ∞

0
dt ′′

∫ ∞

0
dt ′ g(t ′′)e−s(t ′′+t ′)et ′′Lf (x,t ′),
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=
∫ ∞

0
dt

∫ t

0
dt ′ g(t − t ′)e−st e(t−t ′)Lf (x,t ′),

X =
∫ ∞

0
dt e−st

[∫ t

0
dt ′ g(t − t ′)

×
∫

dx′ p(x,x′,t − t ′)f (x′,t ′)
]
.

The fourth line is obtained with the change of variable t ′′ →
t = t ′′ + t ′, with t ∈ [0,∞) and t ′ ∈ [0,t]. In the last line, we
applied the definition of operator representation as given by
Eq. (4). The conclusion is that, paying attention to the ordering
of terms, the usual convolution rule may be used with operator
as argument.

2. Performing calculations

We describe here the main steps involved in the noncom-
mutative calculations. Again, we consider only the model in
d = 2, the case d = 3 being entirely analogous. For a function
f , consider first the quantity

X = 2π lim
k→0
l→0

(
−i

∂

∂kx

)
f (L̂) Pin(k,l). (B2)

Such an expression arises for instance from the first term
of Eq. (7), in which f = ψχ . The initial probability density
is Pin(r,θ ) = δ(r)δ(θ ), which translates into Pin(k,l) = 1/2π .
Since there is no differentiation with respect to ky , the limit
ky → 0 can be taken from the outset. Now, let us introduce
ε = kx , A = s − Dr�a and B = − iv

2 T+, so that L̂ = A + εB.
Then, with the shorthand notation A(l) = s + Drl

2,

X = −2πi lim
ε→0
l→0

∂

∂ε
f (A + εB)

1

2π
, (B3)

= −i lim
l→0

2

B δf (
1

A,
3

A),

= −v

2
lim
l→0

2

T+ f (
1

A) − f (
3

A)
1

A −
3

A
,

= −v

2
lim
l→0

∑
j=−1,1

f (A(l + j )) − f (A(l))
A(l + j ) − A(l)

,

X = v
f (s) − f (s + Dr)

Dr
.

The second term in Eq. (7) is a product of operators, which
can be expanded with the rule (AB)′ = A′B + AB′. To treat
the [1 − h(l)ψ(A + εB)]−1 operator, however, the first and
second derivatives are needed for a general term of the form
f (h(l)ψ(A + εB)). Using the Daletskii-Krein formula leads
to the following expression for the first order:

X1 = lim
ε→0

d

dε
f (h(l)ψ(A + εB)), (B4)

X1 =
24

h
22

B δψ(
21

A,
23

A) δf (
10

C,
30

C),

TABLE I. Some instances of run-and-turn motions studied
previously. Parameters not specified are arbitrary.

Motion ψ Parameters Ref.

Unimodal exponential [40]
Bimodal Dr1 = Dr2, τ1 = τ2 [41]
Bimodal α1 = α2 = 0 [39]
Bimodal v1 = v2, α1 = α2 = 1 [133]
Run-stop arbitrary v2 = 0, α1 = 1,

Dr1 = Dr2 = 0 [55]
Run-reverse α = −1 [70]
Run-reverse δ(t − τ ) α = −1 [134]

with the notation C = hψ(A) and argument is implied for h(l).
As regards the second order, one finds

X2 = lim
ε→0

1

2

d2

dε2
f (h(l)ψ(A + εB)), (B5)

X2 =
26

h
22

B
24

B δ2ψ(
21

A,
23

A,
25

A) δf (
10

C,
30

C)

+
24

h
22

B δψ(
21

A,
23

A)
44

h
42

B δψ(
41

A,
43

A) δ2f (
10

C,
30

C,
50

C).

If made by hand, calculations are feasible at first order but
become tedious for higher moments, which involve several
differentiations. Accordingly, we resorted to a symbolic
computation software, with a custom implementation of
noncommutative rules.

APPENDIX C: CHECKS

1. Literature

A number of particular cases of run-and-turn motions have
been previously investigated in the literature, as summarized
in Table I. We have checked that those results for MSD,
velocity correlation function, or diffusivity are recovered when
applying our expressions. In the Poissonian class, Ref. [41]
investigated a particular instance of bimodal motion, whereas
Ref. [39] assumed isotropic turns, implying full randomization
in orientation. In the non-Poissonian class, previous works
considered a ballistic run-stop with isotropic turns [55], as
well as unimodal run-reverse [70].

2. Simulations

For a further check, we have tested our results for the
correlation function against direct numerical simulations, for
the four cases detailed in Table II. Analytical formulas are
provided in the text, except for the unimodal pattern with

TABLE II. Parameters used in simulations. In all cases, the run
time is gamma distributed and the dimension is d = 2.

Case Model γ Parameters Eq.

A unimodal 2 Dr = 0.1, α = 2/π (C1)
B unimodal 3 Dr = 0.1, α = −1 (33)
C bimodal 2 v1 = v2 = v, Dr1 = Dr2 = 0.2, (D4)

τ1 = τ2 = τ , α1 = −1,α2 = 0
D bimodal 2 v1 = 2v2 = v, Dr1 = Dr2 = 0.3, (40)

τ1 = τ2 = τ , α1 = α2 = −1
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FIG. 13. Comparison between simulation (points) and analytical
result (line) for the velocity correlation function in cases A to D

described in Table II. The maximum absolute difference is less
than 10−5.

arbitrary α and γ = 2, for which

C(t)

v2
= e−(D̃r+2/τ )t

2
[(1 + a)et/τ ′ + (1 − a)e−t/τ ′

], (C1)

with τ ′ = τ/(2
√

α) and a = (1 + α)/(2
√

α). As visible in
Fig. 13, the analytical and numerical results are in perfect
agreement.

3. Moments in the Poissonian case

Here we explain how to compute moments of arbitrary order
for the Poissonian unimodal motion. The run time distribution
is ψ(t) = λe−λt , with λ = τ−1 the rate of turning events. Let
us consider the model in d = 2 and the equation governing its
probability density P (x,y,θ,t),

∂tP = Dr∂
2
θθP − v cos θ ∂xP − v sin θ ∂yP

− λP + λ h ◦ P, (C2)

where terms in the second line account for the turning events,
and ◦ indicates convolution with respect to orientation variable

θ as defined in Eq. (A3c). We introduce the moments with
fixed orientation,

Mnn′ (θ,t) =
∫∫

dx dy xnyn′
P (x,y,θ,t). (C3)

Using Eq. (C2) and switching to transformed variables as in
Sec. III A, one arrives at a recurrence formula in n,n′ indices,

Mnn′(l,s) = (s + Drl
2 + λ[1 − 2πh(l)])−1

[
δn0δn′0�in(l)

+ v

2
(nT+Mn−1,n′ + n′T−Mn,n′−1)

]
, (C4)

where δnn′ is the Kronecker delta, �in(θ ) is the initial
distribution of orientation, and T± are operators as previously
defined in Eq. (21). The moments are obtained by integrating
over all possible orientations Mnn′ (s) = ∫ π

−π
dθ Mnn′ (θ,s) =

2πMnn′ (l = 0,s). In particular, the second moment in x is
found to be

〈x2(s)〉 = v2

s2

2s cos2 θin + 4Dr + κ̄

(s + Dr + κ)(s + 4Dr + κ̄)
, (C5)

where we have defined κ = λ(1 − α), κ̄ = λ(1 − ᾱ), ᾱ =
〈cos(2θ )〉h and have assumed a fixed orientation �in(θ ) =
δ(θ − θin).

An identical approach can be used in d = 3 and we
only quote the end result. Assuming the initial orientation is
azimuthally symmetric with fixed polar angle θin, the second
moment in z is

〈z2(s)〉 = 2v2

3s2

3s cos2 θin + 6Dr + κ̄

(s + 2Dr + κ)(s + 6Dr + κ̄)
. (C6)

The general expression for arbitrary run time distribution is
given by Eq. (D1) in d = 2 and Eq. (D2) in d = 3. When ap-
plied to the Poissonian case, they reduce to Eqs. (C5) and (C6),
respectively. Because the latter were derived without recourse
to noncommutative calculus, this provides one independent
check of the procedure.

APPENDIX D: LONG FORMULAS

1. Unimodal run-and-turn

We report in this Appendix the second moment for unimodal motion with fixed initial orientation [135]. For d = 2, if the
initial angle with respect to the x axis is fixed to θin, the second moment 〈x2〉 is given by

〈x2(s)〉 = M(s)

2
+ v2s cos(2θin)

C1 + C2ψ(s ′) + C3ψ(s ′′) + C4ψ(s ′)ψ(s ′′)
3Drτ (ss ′s ′′)2[1 − αψ(s ′)][1 − ᾱψ(s ′′)]

, (D1)

C1 = 3(4α − 5)Dr
2 + 3[(α − 2)s + ᾱs ′ + τs ′s ′′]Dr,

C2 = (16 − 13α)Dr
2 + [(8 − 5α)s + ᾱ(α − 4)s ′ − 3ατs ′s ′′]Dr + (1 − α)s(s − ᾱs ′),

C3 = 13ᾱDr
2 + ᾱ(5s − 3τs ′s ′′)Dr + ᾱs2 − (s ′)2 − αᾱ(s ′′)2 + αs ′s ′′,

C4 = 15αᾱDr
2 + 3(2αᾱs − αs ′ − ᾱs ′′ + αᾱτs ′s ′′)Dr,

with the notations s ′ = s + Dr, s ′′ = s + 4Dr, and ᾱ = 〈cos(2θ )〉h. Moments of higher order in position would involve s(l) =
s + l2Dr and higher circular moments of the turning angle distribution α(l) = 〈cos(lθ )〉h with l � 3.
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For d = 3, we assume an initial orientation such that the polar angle (with respect to the z axis) is fixed to θin, and the azimuthal
angle φ is uniformly distributed. Then the second moment 〈z2〉 is

〈z2(s)〉 = M(s)

3
+ v2s

3 cos2(θin) − 1

2

C1 + C2ψ(s ′) + C3ψ(s ′′) + C4ψ(s ′)ψ(s ′′)
3Drτ (ss ′s ′′)2[1 − αψ(s ′)][1 − ᾱψ(s ′′)]

, (D2)

C1 = 8(3α − 4)Dr
2 + 4[(α − 2)s + ᾱs ′ + τs ′s ′′]Dr,

C2 = −48ατDr
3 − 4(−9 + 7α + 8ατs)Dr

2 − 2[(4α − 6)s + 2ατs2 + (3 − α)ᾱs ′]Dr + (1 − α)s(s − ᾱs ′),

C3 = −48ᾱτDr
3 − 4ᾱ(−7 + 9α + 8τs)Dr

2 − 4ᾱs(−2 + 3α + τs)Dr + ᾱ(1 − α)s2 − (s ′)2 + αs ′s ′′,

C4 = 32αᾱDr
2 + 4(2αᾱs − αs ′ − ᾱs ′′ + αᾱτs ′s ′′)Dr,

where s ′ = s + 2Dr, s ′′ = s + 6Dr, and ᾱ = 〈(3 cos2 θ − 1)/2〉h. Higher moments in position would involve s(l) = s + l(l +
1)Dr and α(l) = 〈Pl(cos θ )〉h, where Pl is the Legendre polynomial of order l, with l � 3.

2. Bimodal run-and-turn

Finally, we give the velocity autocorrelation functions in terms of time variable for two particular bimodal motions that were
used in Sec. IV B 1. Note that d = 3 in both cases. The first pattern involves no turning event (α1 = α2 = 1) and an exponential
distribution of run time in both modes (γ1 = γ2 = 1). Other parameters are arbitrary. With the notation D±

r = Dr1 ± Dr2, the
velocity correlation function is

C(t) = 1

2τ ′(τ1 + τ2)
exp

(−τ ′′′t
2τ1τ2

){
v2

1τ1((τ ′ + τ ′′)X + τ ′ − τ ′′) + S1↔2 + 4v1v2τ1τ2(X − 1)
}
, (D3)

τ ′ =
√

(2τ1τ2D
−
r )2 + 4τ1τ2(τ2 − τ1)D−

r + (τ1 + τ2)2, τ ′′ = τ1 − τ2 − 2D−
r τ1τ2,

τ ′′′ = τ ′ + τ1 + τ2 + 2D+
r τ1τ2, X = exp

(
τ ′t
τ1τ2

)
.

The second case is a run-reverse-flick motion with α1 = −1, α2 = 0, v1 = v2 = v, Dr1 = Dr2 = Dr, and gamma distributed run
time with γ1 = γ2 = 2. Then

C(t) = v2 exp(−2Drt)

(τ1 + τ2)(τ1 − τ2)2

{
exp(−2t/τ1)

[(
τ 2

1 − 4τ1τ2 + 2τ 2
2

)
t + τ1

τ1 − τ2

(
τ 3

1 − 4τ 2
1 τ2 + 6τ1τ

2
2 − 2τ 3

2

)] + S1↔2

}
. (D4)
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