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Additive scaling law for structural organization of chromatin in chicken erythrocyte nuclei

E. G. Iashina,1,2 E. V. Velichko,3 M. V. Filatov,1 W. G. Bouwman,3 C. P. Duif,3 A. Brulet,4 and S. V. Grigoriev1,2

1Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russia
2Saint Petersburg State University, Ulyanovskaya 1, St. Petersburg 198504, Russia

3Delft University of Technology, Mekelweg 15, 2629 JB Delft, Netherlands
4Leon Brillouin Laboratory, CEA Saclay, 91191 Gif sur Yvette Cedex, France

(Received 19 January 2017; published 19 July 2017)

Small-angle neutron scattering (SANS) on nuclei of chicken erythrocytes demonstrates the cubic dependence
of the scattering intensity Q−3 in the range of momentum transfer Q ∈ 10−3–10−2 nm−1. Independent spin-echo
SANS measurements give the spin-echo function, which is well described by the exponential law in a range of
sizes (3 × 102)–(3 × 104) nm. Both experimental dependences reflect the nature of the structural organization of
chromatin in the nucleus of a living cell, which corresponds to the correlation function γ (r) = ln(ξ/r) for r < ξ ,
where ξ = (3.69 ± 0.07) × 103 nm, the size of the nucleus. It has the specific scaling property of the logarithmic
fractal γ (r/a) = γ (r) + ln(a), i.e., the scaling down by a gives an additive constant to the correlation function,
which distinguishes it from the mass fractal, which is characterized by multiplicative constant.
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I. INTRODUCTION

The structural and functional design of organisms was
formed under the influence of two important factors. The
first of them is the tendency to maximize the metabolic
capacity, because it produces energy and substances necessary
for the maintenance and reproduction of life. It is achieved
by increasing the surface area through which there is the
interchange of resources with the environment. The second
factor is the increase of the internal efficiency by means of
decreasing the distance of material transportation and therefore
the time necessary for transportation [1]. This tendency leads
to the compaction of the living system or, in other words,
to the minimization of an object. These two tendencies are
in opposition to each other and the morphology of a living
organism evolving under the influence of two antagonistic
factors takes the shape that is considered as the most favorable
for survival.

Furthermore, the simplicity of the laws of reproduction is
the third yet not the least important property, which is pursued
by the life forms. In nature the structures are often generated by
multiple repetition of the same morphogenetic mechanism, for
example, the branching. A tree is the most illustrative example
of the realization of this mechanism. It grows in a way that on
each successive level of branching, the sum of squares of radii
of the branches equals the square of the radius of the branch
that was divided. The property of recurrence describing the
growth of a tree was first noted long ago by da Vinci [2].

Although recent decades have seen impressive achieve-
ments in biology and genetics, the determination of the
structural organization of chromatin in the nucleus in vivo
remains one of the main unresolved questions. Chromatin
is a complex consisting of DNA molecules and proteins,
which are in charge of the storage of genetic information.
A DNA molecule is a left-handed double helix. Knowing how
certain genes within DNA operate, we still do not know the
general principles of chromatin packaging in the nucleus. It
is apparent that it is the structural organization of chromatin
that results in the highest degree of its compactness. However,
the question of how a meter-long DNA strand is packed into
a micron nucleus is not completely resolved. The general

principles of transportation of low-molecular compounds and
macromolecular complexes in a cell nucleus are even less
understood. The principles of transportation are supposed to
be directly connected with and are likely to be determined by
the particularities of a structural packaging of chromatin. Such
a structure should facilitate the rapid transportation.

The DNA packaging in chromatin on a nanometer length
scale is provided by nucleosomes. The structure of a nucle-
osome consists of a disk-shaped histone core around which
the DNA is tightly wrapped in a left-handed coil of 1.7
turns [3]. The existence of discrete repeating units in chromatin
was discovered with the help of the electron microscope.
The chromatin was reported to resemble the bead-on-a-string
structure [4,5]. Each “bead” contains the DNA segment with a
length of 150–200 pairs of nucleotides and eight molecules
of histones of different types [6]. A separate nucleosome
consists of a protein core on which the DNA molecule is
wound. The DNA molecule performs 1.67 rotations around
the nucleosome core. Nucleosomes make the DNA molecule
approximately 7 times shorter. They were discovered in all
eukaryotic cells and even in DNA-containing viruses. The
ways of nucleosome packaging into the solid chromatin thread
have been discussed since the time when the first images of
scanning electron microscopy were attained [7–14]. Several
models were suggested for this matter. In the solenoid model
the chain of nucleosomes is twisted into a superhelix, one coil
of which has six nucleosomes, while the helix pitch distance is
11 nm. In a zigzag model the incoming and outgoing DNA
strands form a contact resulting in a dense spiral packing
characterized by a larger distance between the neighboring
nucleosomes in a chain as compared to the distance between
the nucleosomes separated by one or more nucleosomes.

The DNA molecules are 2 nm in diameter and their length
can reach up to several meters (human DNA is about 1.8 m
in length). The largest genome size is nowadays attributed
to Amoeba dubia, conveniently 200 times larger than a
human’s [15]. It is obvious that the packaging of such long
molecules into a cell nucleus only 2–10 μm in diameter must
be extremely regular. The problem of packaging of DNA
molecules into a limited nucleus volume is complicated by the
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fact that it is at the same time necessary to open the possibility
of localized DNA unpacking and the provision of an access
of ferments of replication and transcription. That is why the
chromatin in a cell nucleus forms complex spatial structures
with several levels of organization.

The large-scale organization of chromatin is fundamentally
different from its small-scale structure [16–21]. At present
the most popular model describing the three-dimensional
configuration of chromatin packaging in a cell nucleus is
represented by a crumpled or fractal globule. It was shown
in [22,23] that the packing of DNA in a chromosome has
the structure of a crumpled globule. The crumpled globule
is an open macromolecule with hierarchically self-similar
packing of the polymer chain. Packing the chain in a crumpled
globule is similar to the trajectory of an ultrametric random
walk [24,25].

The model of a crumpled globule explains how a rather
long piece of DNA can be reversibly and quickly folded
and unpacked when reading the genetic information. The
model suggests that the chromatin fiber is packed in a self-
similar manner resembling the Peano (space-filling) curve,
well known in the theory of fractals [26], which has three
dimensions and fills the three-dimensional space completely.

Recently, Tamm et al. [27] showed a computer simulation
of the dynamics of the thermal motion of monomers forming
a crumpled globule. It was proved that the crumpled globule
self-diffusion is much faster than in the equilibrium tangled
globule, the so-called Gaussian tangle.

Experiments on small-angle neutron scattering (SANS)
have shown a bifractal structure of the DNA molecule,
confirming the fundamental difference between small-scale
and large-scale structures of the DNA package [18,19]. It was
found that the exponent D of the power function I (Q) ∼ Q−D

in the cross section of small-angle neutron scattering equals
2.4 on the scale of 20–400 nm and it is close to 3 on the scale
from 400 nm to 1500 μm [18]. In the framework of the fractal
concept D = 2.4 corresponds to the volume (mass) fractal
with the fractal dimension Dm = 2.4.

The exponent close to 3 was until recently interpreted as
not of any particular interest on its own, being the intermediate
case of the transition from mass to surface fractal. As shown
below, the cubic dependence on the cross section of small-
angle neutron scattering corresponds to a very special type of
fractal organization of matter, the logarithmic fractal.

Here we present the results of studies of the structural orga-
nization of chromatin obtained by two different techniques of
small-angle neutron scattering (SANS and spin-echo SANS).
The results show that the correlation function describing the
large-scale structure of the chromatin organization in the cell
nucleus represents a logarithmic dependence γ (r) ∼ ln(ξ/r),
i.e., the structure of chromatin forms a logarithmic fractal,
which is fundamentally different from the mass or surface
fractals.

II. SMALL-ANGLE NEUTRON SCATTERING FROM
INTERPHASE CHICKEN ERYTHROCYTE NUCLEI

Small-angle neutron scattering is one of the most infor-
mative techniques for studying the structure of matter at
supra-atomic scales from a few nanometers to a few microns.

The intensity of neutron scattering I (Q) measured in the
experiment is directly related to the pair correlation function
of the object γ (r), where there was a scattering

γ (r) = 1

2π

∫ ∞

0
I (Q)

sin(Qr)

Qr
r2dr. (1)

The study of the small-scale structure of the chromatin in
the isolated chicken erythrocyte nuclei was carried out on
a PA20 instrument (LLB, Saclay, France) in the momentum
transfer range 10−2–100 nm−1. The large-scale chromatin
structure was studied on an ultrasmall-angle neutron scattering
instrument TPA (LLB, Saclay, France) in the momentum
transfer range 10−3–10−2 nm−1. The same sample was used
to perform both experiments. Chicken erythrocytes were
obtained by repeated washing in an isotonic phosphate buffer,
pH 7.4, containing 10 mM ethylenediamine tetra-acetic acid
(EDTA) and centrifugation to remove plasma proteins. The
outer cytoplasmic membrane was solubilized by the nonionic
detergent Triton X-100 (a 0.2% solution in a phosphate buffer,
pH 7.4). The isolated cell nuclei were fixed with a 0.05%
glutaraldehyde solution for 10 min. Then the fixing agent
was removed by centrifugation. The cell nuclei were stored
in a phosphate buffer, pH 7.4, containing 20 mM EDTA
to prevent the DNA degradation by nucleases. In order to
achieve the maximum contrast, the nuclei of the cells were
placed in buffer containing D2O with a concentration of more
than 95%. In addition to maximally increasing the neutron
scattering intensity, we used the densest solution possible for
these samples.

The combined results of both experiments are shown in
Fig. 1. The intensity of small-angle neutron scattering in the
momentum transfer range 10−2–10−1 nm−1 is described by
a power function I (Q) ∼ Q−D with the power D = 2.46 ±
0.01. This dependence demonstrates the fractal organization of
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FIG. 1. Small-angle neutron scattering on nuclei of chicken
erythrocytes. The data for the intensity of neutron scattering in the
momentum transfer range 10−3–10−2 nm−1 were obtained from the
TPA instrument at LLB, Saclay, France. The data for the intensity of
neutron scattering in the momentum transfer range 10−2–100 nm−1

were obtained from the PA20 instrument at LLB, Saclay, France.
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DNA packaging in the nucleus with the dimension equal to the
power D. The intensity of neutron scattering in the momentum
transfer range 10−3–10−2 nm−1 also has a power dependence
with the power D = 3.005 ± 0.005. The difference between
the indices observed in different ranges of the momentum
transfer Q leads to the conclusion that the fractal structure
of the DNA in the nucleus changes its nature at the transition
from small scale (tens of nanometers) to larger scale (hundreds
of nanometers). Thus, the results presented in Fig. 1 confirm
the conclusions of Refs. [18,19], showing that the nuclei of
chicken erythrocytes have a bifractal structure of the DNA
molecule.

The correlation function of the object, characterized by the
law of the scattering of Q−D with 2 < D < 3, corresponds
to a mass fractal with dimension D and is described by
the expression γ (r) ∼ (r/ξ )D−3. With D approaching 3, the
correlation function changes its nature and can be described
by the ratio γ (r) ∼ ln(ξ/r). The changing of the nature of
the correlation function leads to a fundamental change of
properties and structure of the DNA packaging in the cell
nucleus.

III. SPIN-ECHO SMALL-ANGLE NEUTRON SCATTERING
FROM INTERPHASE CHICKEN ERYTHROCYTE NUCLEI

To confirm the unusual fractal properties of DNA packaging
in the nucleus on a large scale of the order of 1 μm, the tech-
nique of spin-echo small-angle neutron scattering (SESANS)
was used, which allows the study of inhomogeneities on scales
from 20 nm up to 20 μm [28–33]. This method gives reliable
information on the correlation length of the object, which
sometimes cannot be determined with the help of conventional
SANS technique because of the resolution limitations.

The experiments are carried out on a SESANS instrument
of the Delft University of Technology on the same sample
in heavy water with a concentration of more than 95%. In
the spin-echo SANS technique the phenomenon of Larmor
precession of the neutron magnetic moment in a magnetic field
is employed to decode the scattering angle in the interaction
of neutrons with the particle [28]. In the experiment the
polarization of the neutron beam is measured as it passes
through the sample. We perform the scan along the spatial
coordinate z, which is perpendicular to the direction of the
neutron beam, called the spin-echo length.

The measured polarization of P (z) depends on the proper-
ties of the sample and is described as follows [29]:

P (z) = exp{lσ [G(z) − 1]}, (2)

where l is the thickness of the sample, σ is total cross section
of neutron scattering on the sample, and G(z) is the SESANS
correlation function for the object. For isotropic systems, the
function G(z) is connected with the spatial correlation function
γ (r) by the Abel transformation [30]

γ (r) = − ξ

π

∫ ∞

r

G′(z)√
z2 − r2

dz. (3)

Thus, the measurement and description of the function G(z)
clearly provide a description of the function γ (r) without any
loss of information.
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FIG. 2. Normalized SESANS polarization P/P0 as a func-
tion of z on chicken erythrocyte nuclei. The line represents fit
exp(σ l(exp(−z/ξ ) − 1)), with σ l = 0.205 ± 0.007 and ξ = (3.69 ±
0.07) × 103 nm.

Figure 2 shows the results of the measurement of the
polarization P/P0 as a function of the spin-echo (SE) length z

on chicken erythrocytes nuclei. Experimental data demonstrate
clearly the exponential law for the SESANS function (Fig. 3)

G(z) = exp(−z/ξ ), (4)

where ξ = (3.69 ± 0.07) × 103 nm is the correlation length of
the sample, which is the size of the nucleus. It is worth noting
that the SESANS technique is an integral method and contains
information about the structure on all scales simultaneously;
however, the main contribution is made by the structure of the
micron scale.
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FIG. 3. The log-lin plot of the SESANS function from isolated
chicken erythrocyte nuclei. The data demonstrate the exponential law
for the one-dimensional correlation function G(z) = exp(−z/ξ ), with
ξ = (3.69 ± 0.07) × 103 nm.
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IV. LARGE-SCALE CHROMATIN ORGANIZATION
IN INTERPHASE NUCLEI

The SESANS method is a method complementary to the
SANS technique, since in both methods the spatial correlation
function of the scattering object is measured [33]. The Hankel
transform relates the SE function G(z) and scattering cross
section I (Q) to each other for isotropic scattering [30]

G(z) = 2π

k2
0σξ 2

∫ ∞

0
J0(zQ)I (Q)QdQ. (5)

Using the Fourier transform (1) and Hankel transform (5) it is
easy to show that the momentum transfer dependence of the
SANS intensity

I (Q) = A[1 + (Qξ )2]−3/2 (6)

and the spin-echo length dependence of the SESANS function

G(z) = exp(−z/ξ ) (7)

correspond to the spatial correlation function of the form

γ (r) = 1

π
K0(r/ξ ), (8)

where K0(x) is a zeroth-order modified Bessel function of the
second kind [34]. In the region of small r (r/ξ < 1), or inside
the particle, the function (8) has a logarithmic nature

K0(r/ξ ) � ln(ξ/r). (9)

Such behavior of the correlation function corresponds to a
special type of fractal object, which is different from the mass
and surface fractals. It is easily observed that the correlation
function (9) has the scaling property

γ (r/a) = γ (r) + ln(a), (10)

i.e., scaling down gives an additive constant to the correlation
function, and not the multiplicative one, as in the case of mass
fractal.

By definition, the spatial correlation function is the prob-
ability of finding a nonzero density on different scales.
Knowledge of the correlation function allows one to find
the volume occupied by the particle. Integrating γ (r) in
three-dimensional space, we obtain

V (r) = 4π

∫ r

0
r ′2γ (r ′)dr ′. (11)

In our case of the logarithmic fractal, the integral (10) equals

V (r) ∼ r3 ln(ξ/r). (12)

It ought to be noted that the volume is a special case of the
notion of the mathematical measure. The Hausdorff measure,
or the Df measure, is introduced [35] to describe fractal sets

μDf
(r) = rDf , (13)

where Df is a Hausdorff-Besicovitch dimension, which takes
fractional values. The number of spheres of r size needed to
fill in the regular fractal equals

N (r) = r−Df . (14)

A fractal is defined as a set whose Hausdorff-Besicovitch
dimension Df is larger than the topological dimension DT .

It is determined by means of coverings, for example, for a
point DT = 0, the line segment DT = 1, for a plane figure
DT = 2, etc. This definition describes the regular fractals, such
as Cantor dust, the Koch snowflake, the Sierpinski sponge,
and carpet and dragon curves. They all have a regular-shaped,
regular structure. Each fragment of such a regular-shaped
fractal repeats precisely the entire structure as a whole.

However, there are objects for which the dimension coin-
cides with its Hausdorff dimension DT = Df , but at the same
time they are neither a line segment nor a plane nor a ball. The
fact is that they are described with a logarithmic measure, not
a Hausdorff measure (13):

μ(r) = rDf ln�(1/r), (15)

where � is a subdimension [35].
This is due to the fact that the Hausdorff-Besicovitch

dimension is not sufficient to describe them, since such objects
are characterized by a hierarchical structure that reflects the
presence of the logarithm. Further, the nature of hierarchy is
reflected in the value of the subdimension. A negative value
of subdimension carries a constructive hierarchy. The next
generation of the fractal is built on the previous generation. In
the case of a positive subdimension the hierarchy is destructive
and the following generation is subtracted from the previous
one. In both cases, the absolute value of subdimension reflects
the rate of change between generations. The analogs of
destructive and constructive structure of regular fractals are
the Koch snowflake and the Sierpinski carpet, respectively. In
the first case the fractal is built by adding the line segments,
in the second case by subtracting the triangles. The number of
coverings required to tile the logarithmic fractal equals

N (r) = r−Df ln−�(1/r). (16)

It is important to note that many biological objects have
the structure of logarithmic fractals. The law of tree growth
is described by a logarithmic fractal with DF = 2 and � =
−1 [36]. This model implies a change in cross section of the
branches, while their length can be arbitrary. Therefore, both
fractal dimension and topological dimension of this fractal
equal 2. Negative subdimension means that the fractal grows
with every tree branching by means of the increase in the cross
section of the branches and their area and number depend on
the level of branching. A fractal is constructed from the sum
of all sections at each level of branching. The absolute value
of subdimension equal to 1 means that on each nth iteration
the area of the fractal increases by the same value, equal to the
area of the first generation Sn = nS1, so the da Vinci rule is
applicable.

The bronchial branching in the lungs is described by a
logarithmic fractal with DF = 3 and � = −1. It is constructed
in a way similar to the previous one, but instead on two-
dimensional sections the third-dimensional cylinders are used,
which are characterized by volume. This structure provides
the least air resistance in the lungs. In this case the following
condition is fulfilled: the dependence constancy of resistance
and the cross section in all parts of the system, both before and
after the branching [35].

The structural organization of chromatin in the nuclei of
chicken erythrocytes is a logarithmic fractal with DF = 3 and
� = 1 on scales of hundreds to thousands of nanometers. Here
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I generation II generation

IV generationIII generation

FIG. 4. Construction of the logarithmic fractal that describes the
structural organization of chromatin in four generations.

we deal with the destructive hierarchy. Starting with the dense
three-dimensional space, with each iteration we subtract the
volume so the following condition on each iteration is fulfilled:
Vn = Vn+1/n. For the sake of simplicity, we draw this fractal
on a plane, where the area acts as the volume (Fig. 4). In
the first iteration the area is subtracted from the dense space,
forming the primary fold, so the volume is reduced by half.
Further, the area is subtracted from the place where the fold
is homogeneous, forming folds of the second generation, and
the volume occupied by the fractal is equal to one-third of the
original one. The number and density of folds on each next
generation increase.

The following analogy with the tree is appropriate in the
sense that every fold is a branch that originates other smaller
and more numerous branch folds. The number, density, and of
course the size of the folds of the branches depend on their
generation.

V. CONCLUSION

The term crumpled globule came from polymer sci-
ence. There are many facts confirming that the model of
the fractal globule describes large-scale chromatin pack-
ing [18,19,23,25,27,37,38]. In this paper we have shown that
in terms of small-angle neutron scattering a fractal globule is
a logarithmic fractal with dimension 3 and subdimension 1.
Moreover, this means that spatial organization of chromatin
in the nucleus of chicken erythrocytes is described by the
law of the branching in the range from 500 to 3700 nm.
This DNA branching permeates the entire cell. The DNA
strand has a hierarchically branched structure similar to a
three-dimensional spherically symmetric tree of folds, which
ensures the maximum availability of any section from the
outside and the most compact, dense structure. Apparently,
such structure is characteristic for living systems.
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