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Random blebbing motion: A simple model linking cell structural properties
to migration characteristics
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If the plasma membrane of a cell is able to delaminate locally from its actin cortex, a cellular bleb can
be produced. Blebs are pressure-driven protrusions, which are noteworthy for their ability to produce cellular
motion. Starting from a general continuum mechanics description, we restrict ourselves to considering cell and
bleb shapes that maintain approximately spherical forms. From this assumption, we obtain a tractable algebraic
system for bleb formation. By including cell-substrate adhesions, we can model blebbing cell motility. Further,
by considering mechanically isolated blebbing events, which are randomly distributed over the cell, we can derive
equations linking the macroscopic migration characteristics to the microscopic structural parameters of the cell.
This multiscale modeling framework is then used to provide parameter estimates, which are in agreement with
current experimental data. In summary, the construction of the mathematical model provides testable relationships
between the bleb size and cell motility.
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I. INTRODUCTION

Cells are often produced away from the locations where
they are needed [1–4]. In order to fulfill their role, cells
need to sense their environments and migrate to their target
area. Migration can occur passively through such mechanisms
as population pressure arising from cell proliferation and
loss or through the global movement of extracellular matrix
components akin to a conveyor belt action [5–7]. Here, we
are interested in how active motion is generated via dynamic
conformational changes in cellular shape [8–10].

We focus our attention on exploring the interplay between
shape and motion in a specific form of cellular deformation
known as blebbing. Blebs are cellular protrusions that occur
when the membrane delaminates from the actin cortex [11].
This released membrane balloons out into a hemispherical
protrusion, which is driven by the intercellular pressure being
larger than the extracellular pressure [12]. Over the course of
10–30 s the bleb’s growth is arrested and the bleb enters a
stationary phase. During this phase, a cortex is reformed in
the blebbed expansion leading to a slower retraction phase of
about 2 min, over which time the membrane and cortex are
retracted back into the cell [13]. At this point, the blebbing
cycle can begin again.

Blebs play an important role in a number of diverse pro-
cesses in cellular biology, including mitosis and locomotion,
and across a wide range of cell types, such as tumor cells,
embryonic cells, and stem cells [13–18]. Since the membrane
is flexible, blebs can take many forms. Here we focus on a
rather ubiquitous type that are highly rounded and spherical
(see Fig. 1) [18–23]. Our present investigation considers
muscle satellite stem cells, which use blebs to migrate along
muscle fibers in order to find and repair sites of muscle damage.
Critically, it has been demonstrated experimentally that if a
satellite cell’s blebs are too big, or too small, the cell does not
move effectively [24].

It should be noted that, since our results depend on fixing
the geometry of the problem to be spherical, tubular and other

bleb shapes [25] are outside the scope of our applicability.
Further, we are assuming that the majority of the blebs are
mechanically isolated as seen in Fig. 1. Other cells produce
multiple small blebs continuously on top of one another [18];
once again, these are outside the scope of our results.

Blebbing, and the migration that it produces, has received a
lot of attention recently from the mathematical modeling com-
munity and, thus, there are a number of different frameworks
[20,26] that span a huge range of complexity [27,28]. Due to
the blebbing process being so intricate, it is often necessary to
use highly detailed models to reproduce observed results. For
example, in previous studies we have shown that the neck of a
bleb must be highly controlled to stop membrane excessively
tearing away from cortex [29]. Equally, the shrinking rates of
the membrane and cortex must be carefully tuned if the cell
is to complete its retraction stage [30]. However, if details
about the neck region are not needed, then simpler models
considering the membrane and cortex as a composite material
can be used to approximate the full biological complexity [31].
Moreover, due to the spherical shape of the cell and blebs,
solid mechanical models of the membrane and cortex can be
simplified by fixing the geometry of the bodies and treating
the system as a set of coupled spherical caps [32].

In this paper, we aim to derive a parsimonious model that
captures the generic features of muscle satellite stem cell and
link the observable movement characteristics of this cell type
[13] back to a simple geometric description, allowing us to
predict parameter regions for variables that are difficult to
calculate experimentally and to assess how cell properties
impact on blebbing motility. Critically, what we lose in terms
of accuracy is compensated for in terms of generalizability
and simplicity. Our model considers a full three-dimensional
blebbing cell that can undergo multiple blebbing events over
its entire surface, as well as interact with and adhere to a flat
two-dimensional substrate and, thus, generate movement. The
motion occurs through the production of point adhesions from
the blebs and the cell rolling onto the blebs during retraction.
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FIG. 1. A blebbing muscle stem cell with fluorescent actin
skeleton at two different time points, illustrating the rounded form of
the cells and blebs. Used with permission from the Skeletal Muscle
Development Group, University of Reading. Scale bars, 5 μm.

We note that this is only one form of bleb migration. Indeed,
blebbing cells have been seen to be very good at expanding
protrusions into, and squeezing through, gaps, to navigate
crowded environments [19,28]. However, this is not seen in
stem cell motion along muscle fibers. Equally, other cells
are seen to have large contact surfaces [33] due to the cell
spreading over the substrate. Critically, from the movies of
Collins-Hooper et al. [13], not only do we see that muscle
stem cell motion remains extremely spherical throughout the
migration, but also the motion appears to arise from a rolling
phenomenon, whereby the blebs pulling the cell in a given
direction [24]. Cells that bleb with long lobopodia, or flatter
protrusions, are outside the scope of the current model

We begin in Sec. II by introducing the general solid mechan-
ics formulation in terms of differential equations on the domain
of the membrane. This formulation is simplified in Sec. II A to
an analytical framework and extended in Sec. II B to include
adhesive coupling to a flat substrate. In Sec. II C, we assume
that the blebs are uniformly random and derive relationships
for the probability density functions detailing the stochastics
of cell displacement due to blebbing. These results are
illustrated in Sec. III, where we demonstrate the link between
experimental data of cellular motion and structural properties
of the cell, before summarising our findings in Sec. IV.

II. MODEL

We begin with a brief summary of the solid mechanics
model (see Ref. [29] for a more in-depth discussion) and then
demonstrate how fixing the geometry of the components to
those of spherical caps simplifies the formulation.

The fundamental set of equations defining the axisymmetric
geometry of the problem is

∂y

∂σ
= λs cos(θ ), (1)

∂θ

∂σ
= λsκs, (2)

∂z

∂σ
= −λs sin(θ ), (3)

∂s

∂σ
= λs. (4)

FIG. 2. Schematic diagram of stresses acting on the membrane
of the cell. (a) Definition of adhesion forces and geometric variables.
(b) Adhesion forces, surface tensions, and cellular pressures defined
on a small section of the membrane. Variable definitions: (zrc,yrc),
reference configuration of the membrane; (z,y), solution position
of the membrane; σ , reference configuration arc length; s, solution
configuration arc length; θ , angle normal to membrane solution
configuration; F, Force vector produced by adhesions; δ, angle of
adhesion action; ts and tψ , surface tensions; Pe and Pi , external
and internal cell pressures, respectively. For further details, see
text.

The model is rotationally symmetric about the z axis and the
azimuthal angle is denoted ψ (see Fig. 2). The y and z variables
are the Cartesian coordinates of the solution configuration,
representing the shape of an unstressed Cartesian reference
configuration, (zrc,yrc), once it has been pressurized by a
pressure difference, 	P . In our case, the initial reference
configuration is a single sphere of radius ρc, which will be
broken into spherical caps once blebs are allowed to occur.
The arc length, σ , of the reference configuration (measured
from the intercept of the reference configuration with the z

axis) is used to parameterise the system. The solution and
reference configurations are related via the arc length stretch
ratio, λs [defined by Eq. (4)], which characterizes the local
stretching of the body coordinates with respect to arc length
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and the radial stretch ratio,

λψ = y(σ )

yrc(σ )
, (5)

which measures the axisymmetric deformation. Finally, κs

[defined by Eq. (2)] and

κψ = sin(θ )

y
(6)

are the principal curvatures of an axisymmetric surface along
the arc length and along the azimuthal angle, respectively,
where θ is the normal angle of the membrane.

Having defined the geometry, we define the force balances
through the equations

∂(yts)

∂σ
= λs[tψ cos(θ ) + F (σ )Cy sin(δ − θ )], (7)

	P = [κψtψ + κsts + F (σ )C cos(δ − θ )], (8)

where the surface tensions, ts and tψ , are coupled to the strains
through large extension constitutive laws,

ts = A

[
λ2

s + μ

(
y

yrc

)2

− (1 + μ)

]
, (9)

tψ = A

[
μλ2

s +
(

y

yrc

)2

− (1 + μ)

]
. (10)

The parameter μ measures the relative extensibility of the
membrane in the azimuthal and longitudinal directions, while
the parameter A characterizes the elastic properties of the
membrane [34].

The adhesion force, F (σ ) = |F(σ )|, is given by

F (σ ) = κE(σ )H [Ec − E(σ )], (11)

E(σ ) = {
√

[z(σ ) − Rc cos(σ/ρc)]2 + [y(σ ) − Rc sin(σ/ρc)]2

− (ρ − Rc)}. (12)

The adhesions couple the material points of the membrane
and cortex, while the force is assumed to act along the line
connecting these two points. The cortex is assumed to be
a sphere of radius Rc that is concentric with the reference
configuration; thus, initially the adhesions are all connected
along the radial trajectories, normal to the cortex. Although

not explicitly modeled here, cortical tension is, no doubt, an
important factor controlling the terminal size of the blebs. A
constitutive relationship linking cortex tension and pressure
could be added to the model to provide an implicit account of
cortex tension. However, on account of not having such data,
we focus on specifying the pressure directly.

The adhesions are modeled as piecewise Hookean springs
with spring constant κ [35]. Note that κ is measured per
adhesion; thus, it is multiplied by an adhesion concentration,
C, to provide a force per unit area, which opposes the pressure
gradient. Note that the force is linearly related to the extension
up until a critical extension, Ec, beyond which we assume
that the adhesions break. This is enforced by the Heaviside
function H [Ec − E(σ )] in Eq. (11). Finally, as the membrane
evolves the adhesions will move and, thus, δ is the angle along
which the force is directed, where

tan(δ) = y(σ ) − Rc sin(σ/ρc)

z(σ ) − Rc cos(σ/ρc)
. (13)

A. Geometric enforcement

Enforcing the geometric constraint that the shell re-
mains spherical throughout greatly simplifies these equations.
Substituting the expression (z,y) = (rc cos(θ ),rc sin(θ )) into
Eqs. (1)–(13), we quickly find that the system reduces to

κs = κφ = 1

rc

, (14)

λs = λφ = rc

ρc

, (15)

ts = tφ = A(1 + μ)

[(
rc

ρc

)2

− 1

]
, (16)

θ = σ

ρc

, (17)

F = κ(rc − ρc), (18)

rc(	P − FC) = 2ts . (19)

Whence, we find the radius of the initial spherical solution,
rc0, in terms of the parameters: Cκ , the adhesion strength
density; 	P0, the initial pressure difference; ρc, the reference
radius; μ, the relative extensibility of the membrane; and A,
the membrane stiffness, via Eqs. (16), (18), and (19),

rc0 =
(Cκρc + 	P0)ρ2

c +
√

(Cκρc + 	P0)2ρc
4 + 8A(1 + μ)[Cκρ2

c + 2A(1 + μ)]ρ2
c

2Cκρ2
c + 4A(1 + μ)

. (20)

Note that because the membrane can only stretch 4% before
lysis occurs [36], we expect rc0 ≈ ρc. Using Eqs. (16), (18),
and (19), once again, we can provide the linear estimate, with
respect to ε = rc0/ρc − 1 � 1,

rc0 ≈ ρc

[
1 + 	P0ρc

Cκρ2
c + 4A(μ + 1) − 	P0ρc

]
, (21)

which makes the parameter dependencies much more obvious.
Note that, although the denominator can be set to zero through
judicious choice of parameter values, in the case we are
considering,

Cκρ2
c + 4A(μ + 1) � 	P0ρc, (22)
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FIG. 3. Schematic diagram illustrating the bleb and cell geom-
etry. For the ith bleb we define the variables: rbi , bleb radius; θbi ,
neck opening angle of bleb; (φi,ψi), polar angles denoting the bleb’s
position; θci , neck opening angle of cell.

and, hence, no singularity develops. It should also be noted
that inequality Eq. (22) also suggests that the radius is
approximately linear in 	P0.

From this we can calculate the initial volume of the
spherical cell, V = 4πr3

c0/3, in terms of 	P0 and other
parameters. During blebbing, the total volume contained
within the blebs and main cell body remains constant. Thus,
the pressure difference, 	P , is used as a Lagrange multiplier,
enforcing this requirement. Specifically, as a bleb grows the
internal pressure is released, decreasing 	P . In turn, this
reduction in pressure reduces the volume of the cell body,
as well as the maximum size to which the bleb can grow, to
ensure that the volume constraint is satisfied.

Equations (14)–(19) are also true for spherical caps, so, we
can extend the system beyond the initial simple spherical cell
to include blebbed states, where the cell and bleb are coupled
through the global pressure difference and volume constraint.
Note that by extending the system to include blebs, not only do
we need to specify the radius of the cell and the bleb, rc and rb,
respectively, but we also need to specify the cell and bleb neck
angles that connect the two components (see Fig. 3). It should
be noted that although the equations, as derived here, take into
account any number of blebs, later we will restrict the model
to single, mechanically isolated blebs. More generally, given a
cell of radius rc, from which the ith bleb expands with a neck
angle of θci , we define the reference configuration radius of
the bleb to be ρbi , the solution radius of the bleb to be rbi , and
the bleb neck angle to be θbi (see Fig. 3). Finally, define a set
A, to contain the indices, i, of the active blebs, i.e., blebs that
have not been fully retracted. From these definitions we derive
the following system:

V = 4

3
πr3

0 = Vc +
∑
i∈A

Vbi, (23)

Vc = 4

3
πr3

c −
∑
i∈A

π

3
r3
c [1 − cos (θci)]

2[2 + cos (θci)], (24)

Vbi = π

3
r3
bi[1 − cos (θbi)]

2[2 + cos (θbi)], (25)

rc sin (θci) = rbi sin (θbi), ∀i ∈ A, (26)

2

rc

A(1 + μ)

[(
rc

ρc

)2

− 1

]
+ Cκ(rc − ρc)

= 2

rbi

A(1 + μ)

[(
rbi

ρbi

)2

− 1

]
, ∀i ∈ A. (27)

Equation (23) defines the volume constraint as given by
components in Eqs. (24) and (25). Thus, all of the volume
contained in the cell body, Vc, and blebs, Vbi , add up to the
initial value.

Equation (26) consists of N = |A| equations, as it enforces
continuity of the membrane between the cell and each bleb.
Similarly, Eq. (27) defines N equations that arise from
combining Eqs. (16), (18), and (19) under the assumption that
pressure is continuous throughout the cell and blebs, and that
there is no cortex to adhere to in the bleb.

Through defining Eqs. (23)–(25), we made the assumption
that each bleb only interacts through continuity of pressure
and volume. However, when blebs form in direct contact with
one another, their interaction will be more complex. We justify
our assumption of bleb independence by noting that blebbing
is known as a very localized action in that blebs are usually
isolated from one another, at least in the satellite stem cells,
which we are modeling. Further, it is known that blebs have
a small inhibitory effect locally in both space and time [12],
that is, if a bleb occurs in a specific location, then another
bleb will not appear near the original location for a short
time. Both of these characteristics suggest that blebs tend
not to have a large effect on one another. By appealing to
this assumption, we specify the location of bleb i, through
the spherical coordinates (φi,ψi), where the longitudinal and
azimuthal angles are chosen uniformly at random from the
intervals [−π/2,π/2] and [−π,π ), respectively.

Equations (23)–(27) represent 2N + 1 constraints on the
blebbing cell, i.e., 1 volume constraint, N continuity con-
straints, and N force balances. However, as noted above, for
a cell with N blebs, we need to specify 4N + 1 variables,
i.e., 1 cell radius, rc; N bleb radii, rbi ; N bleb reference radii,
ρbi ; N neck angles for the bleb, θbi ; and N neck angles for
the cell, θci ; hence, we need to prescribe 2N constitutive
equations. N constitutive equations are used to specify the
region over which the membrane delaminates from the cortex.
That is, we fix θci = θc for all blebs. Although, this appears
to be a strong assumption, we aim to give an estimate of
θc, which depends on experimental data, and, so, this can be
interpreted as being a mean value of the neck size, which
will provide an a posteriori check for the validity of this
assumption. It should be noted, however, that the bleb neck
is actually dynamic as it tears away from the cortex. Since
we are using an adiabatic approximation, this simply means
that θc is the final stabilized value of the variable. Although
θc is currently undetermined future work will look into the
influence of stochastic variation and, perhaps, coupling the
neck angle to other cellular processes.

Presently, 3N + 1 degrees of freedom are completely
specified. The remaining N degrees of freedom are currently
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left free. Either they can be used to define a constitutive
evolution equation that models the growth of the reference
configuration [32], or, as we will see in Sec. II B, we specify a
new geometric relation that links the size of the cell and bleb
through their interaction with a substrate.

Consistent with (i) treating θc as a fixed control parameter,
which will be used in relating the model to experiment;
and (ii) blebs not influencing one another; we make a final
simplification of dealing with only a single bleb expanding
and contracting at a time. As discussed in the introduction
we consider a parsimonious model of blebbing, stripped down
to its simplest parts. However, the insights will be of use,
since once we understand how the system acts with one bleb,
generalizing the model will not be difficult.

We are able to generate the maximum bleb size, as limited
by the equilibration of the pressure, 	P = 0. In this case,
Eq. (27) is set to zero and, by definition, the cell and bleb radii
collapse onto those of their respective reference configurations.
Since ρc and θc are inputs that are constant we can calculate
the maximum radius of the bleb, Rb, through the volume
constraint,

V = Vc + 1
3πR3

b[1 − cos(θb)]2[2 + cos(θb)], (28)

where V = (4/3)πr3
0 and Vc = (π/3)ρ3

c [1 + cos(θc)]2[2 −
cos(θc)]. Upon rearranging Eq. (28) and using Eq. (26), we
find that Rb satisfies the equation

0 = 4(V − Vc)R3
b − πR2

b[ρc sin (θc)]4

− 1

3
π [ρc sin (θc)]6 − 3

(V − Vc)2

π
. (29)

The accompanying maximum neck angle for the bleb, θmax
b ,

can then be found using Eq. (26); however, care needs to
be taken due to the nonuniqueness of sin(θb) for θb ∈ [0,π ].
Hence, using Eqs. (26) and (28), we derive the following
equation in terms of cos(θb), which is uniquely defined in
the given interval,

(	V 2 + 1) cos
(
θmax
b

)3 + 3(	V 2 + 1) cos
(
θmax
b

)2

+ 3	V 2 cos
(
θmax
b

) + (	V 2 − 4) = 0, (30)

where

	V = 3
V − Vc

πρ3
c sin(θc)3

. (31)

Since the equations for Rb and cos(θmax
b ) are cubic polynomi-

als, they can be solved explicitly. Unfortunately, the analytic
solutions are rather cumbersome and offer no real insight
into the dependence of Rb or θmax

b on the various different
parameters, thus we state the full cubic equation instead, with
the understanding that it can be trivially solved numerically,
or analytically, if needed. Finally, note that the discriminant of
Eqs. (29) and (30) can easily be checked, and in both cases they
are negative, meaning that the cubic equations have unique real
solutions, hence, we do not need to worry about choosing the
correct root

B. Adhesion model

We now present a model of adhesion. Evolving adhesions
lead to a temporal asymmetry, allowing the cell to move as

FIG. 4. Schematic diagram of adhesions acting between a sub-
strate and (a) a cell or (b) a cell and a bleb. Variable definitions:
(rc,θc), cell radius and neck angle; (rb,θb), bleb radius and neck angle;
L, width of resting adhesion layer; αL, maximum width of adhesion
layer; �c, half angle subtended by the cell’s adhesion pad; �b, half
angle subtended by the bleb’s adhesion pad; hc, separation distance
of bleb and substrate; hb, separation distance of cell and substrate; d ,
distance between cell and bleb centers.

the blebs cyclically expand and contract. Here, the adhesions
are treated as simple springs that break when stretched too
far. Critically, we do not consider the actual kinetics of the
adhesion binding and unbinding process [37–39]. Not only
is this assumption used to retain simplicity in the model, but
the adhesion kinetics will only influence the time scale of the
process. Since we consider the blebbing “event” (initiation-
expansion-adhesion-retraction) as one time unit, this influence
on time scale should not change the qualitative results of the
paper. We begin by treating the case when the cell is able to
adhere to a flat two-dimensional surface.

To define the adhesions we prescribe a set of spherical
caps concentric around the blebbing cell. This concentric layer
represents the resting size, L � rb, of the adhesive layer,
where L is a new independent parameter [see Fig. 4(a)]. The
adhesions are modeled as piecewise Hookean springs that
break if extended beyond a critical length, αL, where α is
defined as the ratio of resting adhesion length to breaking
adhesion length. Further, because the adhesion kinetics of
binding and unbinding occur on a fast molecular time scale,
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we assume that the system is in mechanical equilibrium at each
time point. At equilibrium, the surface and cell are separated by
a distance h. The problem is then to resolve forces and torques
to find the resting position of the cell and blebs. Initially, we
consider a spherical cell body without a bleb, as we will see it
generalizes to the single bleb case.

The adhesions are assumed to act normally to the cell
surface. This is justified because the adhesions are small,
h < L � rb � rc, and, so, the influence of any perturbations
to the orientation will be much smaller. For a single sphere in
equilibrium with the substrate, the adhesion pad is symmetric
about the lowest point of the cell. Due to this symmetry torque
and horizontal force balances are automatically satisfied,
leaving us to find the angle �c over which the adhesions bind
to the surface, such that the vertical force balance is satisfied
[see Fig. 4(a)]. Due to the spherical symmetry of the cell, we
only need to consider a one-dimensional slice of the sphere
and, further, due to the symmetry about the lowest point, we
only need consider the adhesions over a nonnegative range
of �. Using Fig. 4 and defining h to be the cell-substrate
separation distance we derive the equation l(�) cos(�) =
h + rc[1 − cos(�)]. Thus, neglecting effects of gravity due
to the trivial mass of the cell, the vertical force balance is

0 =
∫ �c

0
[L − l(�)] cos(�)d�, (32)

=
∫ �c

0
(L + rc) cos(�) − (h + rc)d�, (33)

= (L + rc) sin(�c) − (h + rc)�c. (34)

By geometry, when � = �c,

h + rc = (αL + rc) cos(�c), (35)

which, together with Eq. (34), implies

αL + rc

L + rc

= tan(�c)

�c

. (36)

Since L � rc, we must have �c � 1, and by linearizing
both sides of Eq. (36), we derive the following general
approximation:

�c ≈
√

3(α − 1)L

rc

. (37)

Note that �c = 0 is also a solution, which corresponds to
the cell lying on top of the substrate without the adhesive
layer deforming. However, by comparing the cell-substrate
adhesion energy of these two solutions, we verify that Eq. (37)
gives the minimum energy solution.

Substituting Eq. (37) into Eq. (35), we find that

h ≈ (3 − α)L

2
. (38)

Equations (37) and (38) are simple estimates that predict
how the cell will behave upon perturbing the parameters. In
particular, since the adhered surface area is proportional to
r2
c �c, Eq. (37) predicts that the adhered surface area will scale

as r
3/2
c . Similarly, we find that to satisfy the condition that

the cell does not penetrate the substrate, h � 0, we must have
α < 3. This provides a natural limit for how far the adhesions

FIG. 5. Roots of the force and torque balance equations. The
points 1–4 are the values of �b and �c that simultaneously solve
both equilibrium functions. Although we are specifically interested
in the nonnegative quarter plane, the whole plane is shown to illustrate
the rotational symmetry that is present in the solutions. Parameters
are rc = 5 μm, rb = 1.5 μm, θc = 1/5, L = 10−3 μm, α = 2, and θb

is found through Eq. (26).

can stretch for a spherical cap model, namely, they can extend,
at most, three times their natural length, which is consistent
with experiments [35].

We extend this analysis to a cell and bleb configuration.
First, we show that the torque balance is automatically satisfied
and, thus, all of the derivations presented above for the single
sphere can be generalized to the cell and single bleb case.

An intuitive argument proceeds as follows: suppose that
the cell and bleb as a system is in equilibrium both in
terms of its forces and torques. Further, suppose they are
not independently in force equilibrium. Due to the quick
relaxation speed of the molecular kinetics, and the fact that
the adhesion pads for the cell and bleb do not interact, then
the adhesion pads will be symmetric about the lowest points
of the cell and bleb, respectively. Thus, horizontal forces
must balance, meaning that only vertical forces are not in
equilibrium. Suppose, without loss of generality, that the
cell experiences a net upwards force, implying that, since
the whole cell-bleb system is in equilibrium, the bleb must
experience a net downwards force. However, this causes a
nonzero torque to exist about the center of mass. Hence, we
produce a contradiction demonstrating that the cell and bleb
must be in equilibrium separately.

To illustrate this property here, we have plotted the locus
of the roots for the total force and torque balances in Fig. 5
[equations not shown, but they can be derived in a similar
manner to Eqs. (32)–(34)]. The functions only share four roots
in the nonnegative quarter plane, denoted 1–4, and represent
the roots (0,0), (0,�0c), (�0b,0), and (�0b,�0c), respectively,
where �0c is given by Eq. (37) and �0b is given by Eq. (37)
with rc changed to rb. Of these four solutions (�0b,�0c) has
the lowest energy.

012409-6



RANDOM BLEBBING MOTION: A SIMPLE MODEL . . . PHYSICAL REVIEW E 96, 012409 (2017)

Second, we compute the maximal radius taking into account
that an expanding bleb will stop growing when it hits the sub-
strate, which can happen before it has reached the global max-
imum radius derived from Eq. (29). The bleb may, or may not,
interact with the substrate depending on the angle, φ, at which
the bleb is initiated as seen in Fig. 4(b). In general, we have

d = rc cos(θc) − rb cos(θb), (39)

and that the global maximum bleb radius, rb = Rb, occurs
when rc = ρc. From these values, we know that the bleb
will touch the substrate whenever φ ∈ [−π/2 + �c + θc,�],
where

sin(�) = (Rb + αL) cos(�b) − (ρc + αL) cos(�c)

ρc cos(θc) − Rb cos
(
θmax
b

) . (40)

Thus, � is defined to be the maximum angle that an expanded
bleb can touch the substrate.

In the region [−π/2,−π/2 + �c + θc] the cell is already
touching the substrate through the adhesions and, so, no bleb
expands. We use the dependence of �c and �b on L and
L � rb � rc to expand Eq. (40) with respect to L/rb to obtain

sin(�) = Rb − ρc

ρc cos(θc) − Rb cos(θmax
b )

+ O[(L/rb)2]. (41)

In the complementary region, [−π/2 + �c + θc,�], we define
a function for the maximum radius of the bleb, rmax

b , by
expanding the geometric constraint,

(rc + αL) cos(�c) + d sin(φ) = (rb + αL) cos(�b), (42)

to obtain

rc + d sin(φ) = rb + O(L/rb). (43)

Combining Eqs. (26) and (43), we obtain the approximate
relationships

rmax
b ≈ rc

[
2

1 + sin(φ) cos(θc)

cos(φ)2
− 1

]
, (44)

with corresponding angle given by

cos(θb) = −2 sin (φ) sin (θc)2

sin (φ)2 + 2 sin (φ) cos (θc) + 1
− cos (θc). (45)

In deriving Eqs. (44) and (45), we neglected the trivial root
rc = rb and θc = θb, which corresponds to the unblebbed case.
It can be seen that since θc > 0 and π/2 > � > −π/2, then
both rmax

b and θb are well-defined in terms of their existence
and uniqueness.

Finally, Eqs. (44) and (45) can be combined with the volume
Eqs. (23)–(25) to give

r3
c =

3V
{
3 [2+cos (θc)−sin (φ)]

1+cos(θc) cos (φ)4 − 4[3 − 2 sin (φ)] cos (φ)2 + 8[1 − sin (φ)]
}

2π [1 + cos (θc)]3
{ 9 cos (φ)4

1+cos(θc) + 3[3 cos (θc) − 7] cos (φ)2 − 8 [cos (θc) − 2]
} , (46)

which depends solely on θc, a constant, and φ, a uniform
random variable. We are interested in using θc as a control
parameter for the system as it is an experimentally measurable
quantity, which can be linked to the motility characteristics of
the cells.

The assumption that the bleb stops growing once it hits the
substrate can easily be relaxed. Specifically, we would assume
that as the bleb continues to grow, the cell would not be moved
as it is more adhered to the substrate than the growing bleb.
If the bleb did move the cell while it was growing, then it
would result in the cell moving in the opposite way to bleb
expansion, which is not experimentally observed. Hence, at
most, the cell would rotate to accommodate the growing bleb.
Since, in the case of muscle stem cells, the expansion phase
does not result in translation of the cell, then altering how the
bleb grows in relation to the substrate would simply result in
changing the probability density function of bleb sizes, which
is easily incorporated in Sec. II C. However, for clarity, we
persist with the idea that the bleb stops growing upon contact
with the substrate.

In Fig. 6, we illustrate the model from Secs. II A and II B.
The configurations are produced under the assumption that
the bleb’s size is limited either by its interaction with
the substrate or the conservation of the total cell volume,
which is constrained under the assumption that 	P = 0 at
equilibrium.

The small size of the adhesions that stick the cell and
bleb to the substrate has a number of implications. First,
the three concentric shells, which represent the membrane;

resting adhesion length and maximally stretched adhesion
length, respectively, look as though they rest on top of one
another. However, a magnified version of the adhesion pad, in
the top left inset of Fig. 6, demonstrates that these three shells
are separate. Second, the size of the adhesion pad depends
on the angular region over which the stretched adhesion
touch the substrate, i.e., the width of the adhesion pad is
2rc sin(�c) = √

3rc(α − 1)L. In the limit L → 0, we could
forego adhesion considerations altogether and simply assume
that cell and blebs rest fully on the substrate, indicating
that adhesions only occur at the point of touch between the
substrate and the sphere. However, the scales derived above
relating the size of the sphere and its adhesion pad as well
as the restriction on the parameter α more than justify the
inclusion of adhesion considerations.

The other two-dimensional plots in Fig. 6 demonstrate the
ability of the cell to bleb over its entire body (save a small area
over which the cell is adhered to the substrate). Moreover, in
the bottom left and right plots of Fig. 6, we see the influence
of the substrate on the expansion of a bleb. By comparing
the lengths of the thick black lines, connecting the center of
the cell to the center of the bleb, we see that the maximally
extended bleb (bottom left of Fig. 6) is configured in such a
way that its center is outside of the cell’s body, whereas the
bleb that was initiated at an angle closer to −π/2 (bottom right
of Fig. 6) is unable to extend as far, and its center is still inside
the cell’s body.

The plots of Fig. 6 were all numerically obtained from the
exact, nonlinear forms of the relations between the variables.
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FIG. 6. A blebbing cell, adhering to a flat substrate. In all cases the full nonlinear system, Eqs. (23)–(27), (36), and (40), were solved
numerically using a Newton-Raphson iteration scheme. The center shows a fully rendered three-dimensional cell adhered to a two-dimensional
flat substrate, with a bleb extended to its maximum distance. The black line along the three-dimensional body illustrates the plane of symmetry
normal to the substrate. The surrounding images are cross sections of a blebbing cell. (a) Initial spherical cell adhered to the substrate, which
also illustrates the concentric shells of the adhesions at their resting length and full extended length. The inset illustrates a magnified section of
the adhesion pad. The black solid lines illustrate size of the adhesion pad, which depends on �c. (b) A cell with a bleb that was initiated at an
angle φ > 0, which will never touch the substrate and, thus, extends to its maximum size. The variables φ, ρc, θc, Rb, and θb are also presented
in the image. (c) A bleb is extended at an angle φ = �, hence, the bleb is just touching the substrate and, so, the bleb is able once again to
extend to its maximum size. (d) A bleb for which φ ∈ [−π/2 + �c + θc,�] and, thus, it is unable to grow to its maximum size, before it
interacts with the substrate. Parameters are ρc = 5 μm, θc = 1/5, L = 10−3 μm, α = 2, κC = 1000 pN/μm3, A = 400 pN/μm, μ = 0.5 and,
initially, 	P = 40 pN/μm2.

In Fig. 7, we compare these numerical solutions with their
linear approximation. We note that it is only within the
adhesion pad region, φ ∈ [−π/2,−π/2 + �c + θc], that the
approximation breaks down. This discrepancy is expected
because the adhesion pad region is assumed to inhibit blebbing,
thus, within this region there should be no blebbing. Indeed,
the numerical approximations reproduce this solution as
they are fixed to the initial radius constant, R0, within the
adhesion pad region. Whereas in the adhesion pad the linear
approximation slightly overestimates rc, the estimates for rb

become increasingly disparate as φ → −π/2 because of the
singularity in Eq. (44), which specifies rb.

C. Stochastic blebbing

Since the adhesion pad of a spherical cap scale as r3/2, the
cell’s adhesion pad will be larger than a bleb’s adhesion pad.
Thus, as a bleb retracts the cell adheres more to the surface
than the bleb and, hence, the retraction preferentially causes
the bleb’s adhesion to break. Without taking into account
other processes, this motion results in a time reversal of
the expansion process. To break this symmetry, we assume

that adhesions weaken over time. Thus, the blebbing process
proceeds as follows:

(1) Initially, a spherical cell adheres to the substrate.
(2) Initiate bleb expansion somewhere on the cell surface

by randomly sampling (φ,ψ). Compute Rb from Eq. (29).
(3) Depending on (φ,ψ) and Rb, calculate whether the bleb

will intersect with the substrate or not.
(4) Expand the bleb to its maximum size, which will be

rmax
b [computed from Eq. (44)] or Rb, depending on stage 3.

(5) Fix adhesions to the bleb while weakening adhesions
that couple cell and substrate.

(6) Retract the bleb into the cell, allowing the cell’s
position to update to that of the bleb.
This process captures the main qualitative features of the bleb
dynamics over the time scale of its cycle (2–3 mins) and
represents one discrete event that we can iterate in time. The
motion of the cells is driven by the size and displacement of
the blebs. In this section, we consider the stochastic production
of these blebs and use it to derive rates of random motion.
Further, depending on the results of Sec. II B, we take the limit
of L → 0 (and, thus, �c → 0) and fix rc to be constant.

As illustrated in Figs. 3 and 4, the two angles that are
controlled stochastically are φ ∈ (−π/2,π/2], representing
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FIG. 7. Comparing numerical and linearized approximate solutions for (a) rc and (b) rb within the region φ ∈ [−π/2,�]. Parameters are
the same as described in the caption of Fig. 6.

the altitude angle of the bleb, and ψ ∈ [0,2π ] representing
the azimuthal angle of the bleb. Thus, φ determines whether
the bleb hits the substrate, whilst ψ determines the direction
of movement. Initially, we assume the angles are uniformly
distributed in their respective intervals and look for the
probability density function of cell movement distance.

For a given angle, φ ∈ [−π/2 + θc,�], a single expansion
and contraction will cause the cell center to move a distance of
w = d cos(φ). Using the continuity equations, Eqs. (39) and
(42), the equation for w becomes

w =
{ 2rc

cos(φ) [sin(φ) + cos(θc)] φ ∈ [−π/2 + θc,�],

0 otherwise.
(47)

We define the largest distance that the cell center can move to
be

ŵ = 2rc

cos(�)
[sin(�) + cos(θc)], (48)

which occurs when φ = �. Further, we define f (w) to be
the probability density function, which describes the relative
likelihood for the random variable, W to take a given value,
w, which depends on the uniformly random variable φ. The
probability of W falling within a particular interval is given
by the integral of f over that interval. To calculate f (w),
we first consider the cumulative distribution, F (w), which
describes the probability that W will value less than or equal
to w. Specifically,

F (w) = P (W � w) for w ∈ [0,ŵ], (49)

= P (W = 0) + P

{
2rc

cos(φ)
[sin(φ) + cos(θc)] � w

}
, (50)

= P (W = 0) + P

{
φ � arctan

(
w

2rc

)
− arcsin

[
2rc√

w2 + 4r2
c

cos(θc)

]}
, (51)

= P (W = 0) +
∫ arctan (w/2rc)−arcsin[2rc cos (θc)/

√
w2+4r2

c ]

θc−π/2

1

π
dφ, (52)

where we have inverted the formula for w in Eq. (51) and used the definition of the uniformly random distribution, φ, in Eq. (52).
From Eq. (47), we have

P (W = 0) = π/2 + θc − �

π
, (53)

which gives

F (w) =

⎧⎪⎪⎨
⎪⎪⎩

0 w < 0,

π−�
π

+ 1
π

[
arctan

(
w

2rc

) − arcsin

(
2rc cos(θc)√

w2+4r2
c

)]
0 � w � ŵ,

1 ŵ < w.

(54)
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Note that by using the definition of w(φ) and its inverse, we see that w = ŵ when φ = �; i.e.,

� = arctan

(
ŵ

2rc

)
− arcsin

(
2rc cos (θc)√

ŵ2 + 4r2
c

)
. (55)

Hence, F (ŵ) = 1, which further implies that P (W = 0) < 1.
By definition, the cumulative distribution is related to the probability density function through the identity

f (w) = dF (w)

dw
. (56)

Specifically, for 0 � w � ŵ,

f (w) = π/2 + θc − �

π
δ(w) + 2rc

4r2
c + w2

[
1 + w cos(θc)√

w2 + 4r2
c sin(θc)2

]
, (57)

where δ(w) is the standard Dirac δ function. The first and second moments can then be directly calculated and compared to
available data. These moments are given here, as they will be of use later on:

〈W 〉 = ŵ�

π
− 1

π

{
ŵ arctan

(
ŵ

2rc

)
+ rc ln

(
4r2

c

ŵ2 + 4r2
c

)
+ 2 cos (θc)rc ln

[
2rc sin(θc)√

ŵ2 + 4r2
c sin(θc)2 + ŵ

]

+ 2rc arctanh

[
ŵ cos(θc)√

ŵ2 + 4r2
c sin(θc)2

]
− ŵ arcsin

[
2rc cos(θc)√
ŵ2 + 4r2

c

]}
, (58)

〈W 2〉 = ŵ2�

π
+ 1

π

(
4r2

c + ŵ2
){

arcsin

[
2rc cos (θc)√

ŵ2 + 4r2
c

]
− arctan

(
ŵ

2rc

)}

− 2r2
c

π
[sin (2θc) + π − 2θc] + 2rc

π

[
cos (θc)

√
ŵ2 + 4r2

c sin (θc)2 + ŵ
]
. (59)

Although we have constructed the probability density
function for the distance moved by the cell during each bleb
cycle, experimentalists do not have direct access to this data.
Instead, data is often in the form of time-evolving trajectories
that have been tracked over the course of an experiment. Thus,
we extend the analysis assuming that individual bleb steps are
independent and identically distributed. Explicitly, if P (x,n)
is the probability density function for the displacement of the
cell on the nth step, the evolution of this position is governed
by the general equation [40]

P (x,n + 1) =
∫

P (x − s,n)p(s)ds, (60)

where p(s) is the probability density function for a movement
from the origin to a point s = [w cos(φ),w sin(φ)], that is
p(s) = f (w)/2π . Using the probability distribution, we are
able to compute the expected value of any functional form of
the variables, g(X), over a number of blebbing events through

En[g(X)] =
∫

g(x)P (x,n)dx. (61)

In particular, we are interested in the moments of the
distribution.

First, we note that since the random walk of the cells is
symmetric then the average position of all the cells is the
initial origin, i.e.,En(X) = En(Y ) = 0 for all n. Further, we are
particularly interested in the second moments of the probability
density as they are often used to characterize specific motion
patterns as they can be compared with the mean-squared
displacement of the experimental trajectory data. Higher-order

moments can be calculated using the characteristic function as
derived in the Appendix.

Since each blebbing event is independent and identically
distributed, the variance of the cell’s position is simply the
sum of the step-size variances:

En(X2 + Y 2) = n〈W 2〉. (62)

This property suggests that we can approximate the position
distribution of the cells as a multivariate Gaussian distribution,

g(x,y,t) = 1

2πν2t
exp

[ −1

2ν2t
(x2 + y2)

]
, (63)

with variance, ν2 = 〈W 2〉/2. Further, we can rely on the central
limit theorem, which will cause P (x,n) to converge to a Gaus-
sian as n increases. Note that since the blebbing motion we are
investigating is a random walk with variable step length, then
this approximation should be accurate everywhere, except near
the origin. The origin will be problematic for this continuous
approximation, because of the δ function in Eq. (57).

III. RESULTS

In this section, we compare the approximations derived
in Sec. II with the distributions extracted from stochastically
simulated populations of blebbing cells, to link experimental
data to the properties of the cell.

A. No volume constraint

Initially, we do not constrain the volume. Instead, we use
this degree of freedom to fix � [as defined by Eq. (40)] to
specific values to obtain the relationship between the critical
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FIG. 8. Comparison of the probability density function for the
random variable W calculated approximately from 105 observations
of a simulated blebbing cell (shown as a histogram) and directly,
through Eq. (57). The parameter values are rc = 5 μm, θc = 1/5, (a)
� = −π/4 and (b) � = 0. Note that the first column of the histogram
contains the Dirac δ function contribution.

blebbing angle and the length of one step, w. By varying �

we gain insight into the cases where the arrest of bleb growth
occurs through the repolymerization of the cortex in the bleb.
In this case, the bleb size is not dependent on pressure, and,
therefore, volume. Thus, we have more freedom to choose
the maximum blebbing angle. The simulations proceed by
generating a large number of values of φ ∈ [θc − π/2,�]
and calculating the corresponding values of w, which we can
compare the formulas against.

Our first result, presented in Fig. 8, compares the ana-
lytically derived probability distribution for the movement
distance, Eq. (57), with a normalized histogram, calculated
from the observations of W from the stochastic simulations.
We observe that the analytical solution compares extremely
well with the simulated data, justifying the first-order simpli-
fications of fixing rc to be constant and �c = 0.

Note that since we are dealing with a continuous probability
density function, the probability of any particular given value

FIG. 9. Comparison of the mean and standard deviation of W

as estimated from 105 stochastic simulations of a simulated blebbing
cell or calculated from Eqs. (58) and (59). The black solid and dashed
lines represent analytically derived quantities, while the (blue) points
represent the sample mean and the thin (blue) vertical lines represent
one standard deviation about the mean. The parameter values are
rc = 5 μm and θc = 1/5.

of observation 0 < w is zero and, thus, P (W = w) = 0.
Instead, a nontrivial range must be provided. The function
is then integrated over this given range resulting in a value
for the probability that W is within the given range. This dif-
ference between probability and probability density becomes
important when the probability density function takes values
larger than one (note the broken axis of Fig. 8).

The large probability density in the first bar, nearest
zero, confirms that three-dimensional blebbing on a two-
dimensional substrate is particularly inefficient, as most of the
time the cell does not move at all. This inefficiency is due to
only a small number of all the blebs actually expanding in the
direction of the substrate and, moreover, being able to grow
to a size that is able to reach the substrate, thereby causing
movement.

By comparing Figs. 8(a) and 8(b), we confirm that as �

increases, so does the range of W and, in turn, so does the
maximum possible value, ŵ [see also Fig. 10(a)]. Equally,
as � increases, more blebs are able to successfully generate
movement, causing P (W = 0) to decrease, as it is above four
in Fig. 8(a), but only just above one in Fig. 8(b). Furthermore,
we notice that the probability densities have an internal local
maximum [seen clearly around W ∈ [2,4] μm in Fig. 8(b)].

By additionally considering Fig. 9 (which again illustrates
an excellent comparison between theory and simulated data),
we see that despite this lower probability weighting for larger
steps, the mean step length and standard deviation increase
with �. However, the local internal maximum (along with the
delta function at w = 0) of the probability density means that
〈W 〉 is always much smaller than ŵ [see Fig. 10(a)].

The derivative with respect to � of the difference ŵ − 〈W 〉
is illustrated in Fig. 10(b). This gives us a sense of how these
two quantities are related to one another as � increases. We
note that even though the derivative is always positive and,
thus, the two quantities are always diverging away from one
another, there is clearly a local minimum in this divergence

012409-11



WOOLLEY, GAFFNEY, AND GORIELY PHYSICAL REVIEW E 96, 012409 (2017)

FIG. 10. Visualizing the relationship between the mean and
maximum values of W . (a) Comparison of the mean and maximum
of W , as � is varied, using Eqs. (58) and (48). (b) Divergence rate of
the mean and maximum of W , as � is varied. The parameter values
are the same as in Fig. 9.

rate. Thus, we predict that there is an extremal choice between
how far a cell can move on average and how far it can
maximally move in one step. Explicitly, if the blebs of the
numerical simulation are constrained to be small, then the cell
will hardly move during a blebbing event. Conversely, if the
blebs in the simulations are allowed to vary over a large range
of sizes, then we see that the mean step size does not increase as
quickly as the maximum step size, suggesting that these larger
blebs occur too infrequently to be significant for motion.

B. Multiple blebbing events

Next, we consider the spatial probability distribution over
multiple blebbing events and its approximation to the Gaussian
distribution, as derived in Eq. (63) (see Fig. 11).

By comparing Figs. 11(a)–11(d), we see that the cells
spread radially about the origin. Moreover, although the
Gaussian distribution always underestimates the density near
the origin [due to the δ function that occurs in the probability
density function, Eq. (57)], we observe that as t increases
comparison between the point distribution and the surface

given by Eq. (63) improves as a consequence of the central
limit theorem.

C. Constrained volume

Finally, we reinstate the volume constraint mean-
ing that upon fixing the cellular structural parameters:
	P0, ρc, A,Cκ,μ, and θc (as defined in Sec. II) the variables:
rc, Rb, θ

max
b ,�, and ŵ are uniquely defined. Knowing these

variables allows us to calculate the moments of the random
variables W,X, and Y and, hence, the migration properties
of our blebbing cell model. Thus, our geometric model links
observable migration to unobservable parameters. We choose
θc as a control parameter since the other variables can be
estimated [13,21,35,36,41,42], and because θc is a geometric
variable related to the width of the bleb neck and, in turn, the
region of cortex that becomes delaminated from the membrane
during the initiation of a bleb. Thus, it can be calculated from
observations, which we consider later.

Due to the volume constraint, as θc increases, the neck gets
wider and, so, the bleb does not protrude from the cell as far.
Namely, we see in Fig. 12(a) that as θc is increased from zero,
the maximum step length, ŵ, reduces to zero. Conversely,
Rb increases, which may appear counterintuitive. We may
think that a bleb with a larger radius would be able to reach
further. However, as θc increases, the bleb neck becomes
wider, causing the curvature of the bleb to become smaller
[see Figs. 12(c)–12(e)].

Similar deductions can be made from Fig. 12(b), although
the illustrated curves are not monotonic in contrast to
Fig. 12(a). Specifically, θmax

b initially decreases, demonstrating
that the blebbing angle decreases as the bleb is withdrawn
into the body [compare Fig. 12(c) and 12(d)]. As θc increases
further, θmax

b reaches a minimum and then increases again. The
increase occurs because the neck width is so large that the cell
body and bleb spheres essentially collapse onto one another
[see Fig. 12(e)], and, hence, θmax

b ≈ θc.
The relationship between � [as defined by Eq. (40)] and

θc is similarly nonmonotonic. However, it is the dependence
of the interval [−π/2 + θc,�] on θc that is most significant.
Namely, as θc increases, the interval rapidly shrinks. Thus, not
only do wide blebs have a smaller maximum step distance
[see Fig. 12(a)], but equally, the angular range of φ over which
blebs can be produced, which actually cause movement, is also
greatly reduced.

In summary, the mathematical results in the last three
paragraphs, pertaining to Fig. 12, can be simplified into the
biological result that as the bleb neck size increases the cells
will move much slower. This prediction is confirmed in Fig. 13,
where we see an extremely rapid drop off of 〈W 2〉 as θc

increases. Indeed, cells that produce blebs with neck angles
wider than π/8 are predicted to be extremely inhibited in their
motion. Further, it is consistent with experimental data [13],
where it was seen that cells that produce blebs with consistently
larger necks produce much slower motion.

We now make use of published data. According to Collins-
Hooper et al. [13], young satellite muscle stem cells have an
average one-dimensional diffusion rate of D ≈ 12 μm2/min.
Moreover, there are on average 30 blebbing events per unit
time. Comparing the diffusion rate with the mean-square
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FIG. 11. Comparisons of the probability density functions of a cell being at a position (x,y) over time, where time is measured in terms
of the number of blebbing events, (a) t = 3 blebbing events; (b) t = 6 blebbing events; (c) t = 9 blebbing events; (d) t = 18 blebbing events.
The filled circles illustrate a two-dimensional histogram derived from 105 simulations. Each histogram column has a base area of 1 μm2. The
shaded smooth surface is the Gaussian approximation, Eq. (63). To aid visualization, the simulations and approximation have been projected
along the x and y directions illustrating the fit. The parameter values are rc = 5 μm, θc = 1/5, and � = −π/4. Note that the z axis has been
truncated at 0.01. The coloration of the surface and points is to aid visualization only.

displacement, we have 2D = 24 = 30ν2 = 15〈W 2〉, thus,
〈W 2〉 = 1.6 μm2. Using a root-finding algorithm on the curve
illustrated in Fig. 13, we find that this corresponds to θc ≈ 0.2,
which is within with the range that is observed in the literature
and, in particular, corresponds to the neck size seen in Fig. 1.
However, it should be noted that, depending on the type of the
cell, the age of the cell, and what treatments have been applied
to the cell, θc can cover a range from 0.05, for very small blebs,
to 0.9, for wide blebs that undergo circus motion [12].

IV. SUMMARY AND CONCLUSION

We have derived a simple geometric model of blebbing
based on a mechanical model. The simplification was based
on the assumption that the cell and blebs maintain spherical
symmetry throughout their expansion and retraction phases.
Further, by assuming that the blebs were independent, this
model produces an active dynamical model of cyclical bleb
expansion and contraction. This structure was then placed on
a two-dimensional substrate to which it was allowed to adhere.

Assuming that only a single bleb event occurs at any given
time, we derived analytical formulas linking the geometry and,
most notably, migration properties of the blebbing cell with the

fundamental structural parameters of the cell. Critically, we
showed that even though the cell may undergo a random walk,
with non-Gaussian distributed step sizes its long-time motion
is well approximated by a Gaussian function with parameters
linked to cell-level properties.

Here, we use a uniform random distribution of bleb
locations, suggested from experimental observations. Other
cell types may bleb in a polarized manner. This would lead to
an alternative distribution of blebs that could be incorporated
in the following framework, which is intentionally general.
Although the resulting expressions may not be analytically
tractable, it should still be possible to numerically simulate
the results. These simulations, in turn, will provide insights
into how the movement of a cell depends on the underlying
blebbing distribution. This work is intended as a future con-
sideration for the authors. Further, the presented model only
contains stochastic terms in the location of bleb appearance.
However, blebbing cells are known also to contain stochastic
neck sizes. Equally, the substrate that the cell moves upon will
frequently contain random heterogeneities. It is our intention
that the future work will include such probabilistic factors.

We have only chosen to vary θc, while fixing the parameters
	P0, ρc, A,Cκ , and μ. If, instead, we wanted to use the model
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FIG. 12. Illustrating the influence of θc on (a) Rb and ŵ, produced through Eq. (29) and combining Eqs. (41) and (48), respectively; and
(b) θmax

b and �, produced through Eq. (30) and Eq. (41), respectively. (c), (d), and (e) help demonstrate the trends seen in (a) and (b) as they
are cell profiles that illustrate the maximum bleb extension, hence, rb = Rb, w = ŵ, θb = θmax

b , and φ = �. The parameter values are the same
as described in the caption of Fig. 6 and in (c), (d), and (e), θc = π/16, π/8, and π/4, respectively.

to estimate one of the other parameters, then θc and ρc can be
estimated from experiments. Further, it has been demonstrated
previously [29,31] that μ only has a weak influence on the
properties of the cell and, thus, can be fixed at its intermediate
value of μ = 1/2. Thus, we are left with estimating 	P0, A,
and Cκ . Although difficult, it is possible to estimate these
parameters experimentally [35,36,43,44]. However, the results

FIG. 13. Illustrating the relationship between θc and 〈W 2〉,
produced by combining Eqs. (29), (30), (41), (48), and (59). The
parameter values are the same as in Fig. 6.

from this paper illustrate that only two of these three need
be derived from data: the third can be predicted through
the relationships generated in Sec. II. Even if only one of
these parameters can be fixed through data we would still be
able to generate a relationship concerning the dependencies
of the other two. This would lead to at least a qualitative
understanding of how the parameters may be correlated with
each other and may even suggest parameter regions within
which the two parameters must lie.

Our theoretical framework is able to capture the essential
features of the blebbing motion, as it is able to predict
parameter values that match experimental data. Moreover, we
are able to encompass certain experimental perturbations, such
as treatment with the methyl ester, L-NAME [24]. L-NAME
acts a competitive inhibitor preventing the synthesis of nitric
oxide, which has been highlighted as an important pathway
in regular blebbing motion [13]. Critically, the blebs that
are produced from L-NAME-treated cells are still viable and
undergo the same extension and retraction phases; however,
there are far fewer blebs in number (often only one at a
time) and their neck angle, θc, is much wider. Specifically,
wild-type cells are similar to those in Fig. 12(c), whereas
L-NAME-treated cells have blebs much more like those
seen in Fig. 12(d). Although we do not have specific data
to compare with our results, we can at least qualitatively
match the characteristics of the observations, namely that
L-NAME-treated cell spread out in space much slower than
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wild-type cells, which is consistent with the predictions from
Fig. 13.

The results illustrated in Figs. 12 and 13 reinforce the
findings of Woolley et al. [29], where it was argued that blebs
with neck widths smaller than their maximum widths (known
as small-necked-blebs) play an important role. Specifically, it
was seen that small-necked-blebs were difficult to maintain
as the forces acting on the cortex-membrane adhesions were
large enough to cause the membrane to peel away from the
cortex. As the membrane peels away from the cortex the
neck width of the bleb increases, resulting in a cell profile
similar to that of Fig. 12(d), rather than Fig. 12(c). Here, we
offer an answer to an accompanying question, namely, since
small-necked-blebs are hard to maintain, how critical is their
contribution to motility? We find that if the bleb’s neck is
allowed to grow, the bleb’s extension is significantly reduced.
In turn, this leads to a dramatic reduction in the migration
abilities of the cell. For the muscle stem cells that we are
considering, this would suggest that they are not able to search
and find damaged muscle as efficiently.
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APPENDIX: DERIVATION OF THE
CHARACTERISTIC FUNCTION

The evolution equation of the cell’s position is

P (x,y,n + 1) =
∫ 2π

0

∫ ŵ

0
P [x − w cos(θ ),y − w sin(θ ),n]

× f (w)

2π
dwdθ. (A1)

Equation (A1) can then be notionally solved by converting
the integral into Cartesian coordinates and using Fourier

transforms,

P (x,n) = F−1

[
F

(
f (|x|)
2π |x|

)n]
, (A2)

where we have used the initial condition P (x,0) = δ(|x|) and
the identity,

F[δ(|x|)] =
∫ ∞

−∞

∫ ∞

−∞
e−ik1x−ik2yδ(|x|)dxdy = 1. (A3)

Using Eq. (A2), we construct the characteristic function, or
complex moment generating function, which will provide us
with an analytical form for all of the moments of the probability
density. The characteristic function is

En(eit1X+it2Y ) =
∫ ∞

−∞

∫ ∞

−∞
eit1x+it2yP (x,y,n)dxdy. (A4)

Critically, we notice that

En(eit1X+it2Y ) = F (P )(−t1, − t2)

=
[
F

(
f (|x|)
2π |x|

)
(−t1, − t2)

]n

, (A5)

where we have used Eq. (A2). Converting the equation back
into polar coordinates, the Fourier transform becomes a finite
Hankel transform [45],

En(eit1X+it2Y ) =
[ ∫ ŵ

0
f (w)J0(rt)dw

]n

, (A6)

where we have substituted t =
√

t2
1 + t2

2 = |t| and J0 is
the zeroth-order Bessel function of the first kind. Thus, in
summary,

En(Xm1Ym2 ) = (−i)m1+m2
dm1+m2

dt
m1
1 dt

m2
2

∣∣∣∣
t=(0,0)

×
[ ∫ ŵ

0
f (w)J0(wt)dw

]n

. (A7)

Such results allow the evaluation of any moment for the
analytical model as required.
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