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Optomechanical proposal for monitoring microtubule mechanical vibrations
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Microtubules provide the mechanical force required for chromosome separation during mitosis. However,
little is known about the dynamic (high-frequency) mechanical properties of microtubules. Here, we theoretically
propose to control the vibrations of a doubly clamped microtubule by tip electrodes and to detect its motion
via the optomechanical coupling between the vibrational modes of the microtubule and an optical cavity. In the
presence of a red-detuned strong pump laser, this coupling leads to optomechanical-induced transparency of an
optical probe field, which can be detected with state-of-the art technology. The center frequency and line width of
the transparency peak give the resonance frequency and damping rate of the microtubule, respectively, while the
height of the peak reveals information about the microtubule-cavity field coupling. Our method opens the new
possibilities to gain information about the physical properties of microtubules, which will enhance our capability
to design physical cancer treatment protocols as alternatives to chemotherapeutic drugs.
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I. INTRODUCTION

Microtubules (MTs) play essential roles in many funda-
mental physiological processes in all eukaryotic cells. The
most prominent role of MTs is to provide the mechanical
force required for chromosome separation during cell division
(mitosis). MTs are self-assembled from tubulin heterodimers
as hollow cylinders having 25-nm external and 15-nm internal
diameter. The length of MTs can vary from tens of nanometers
to hundreds of microns [1]. Due to the central role of MTs in
mitosis, a disruption of MT function can arrest cell division, so
any physical or chemical mechanism that affects MT assembly
can potentially be useful as a modality in the treatment
of cancer, for example, high-frequency ultrasound or AC
electric fields [2–4]. The mechanical stiffness of individual
MTs controls the mechanical properties of the cytoskeletal
network, and it is modified for different functions in the cell
[5]. Theoretical and experimental analysis of MT structure
reveals their vibrational normal modes over a wide frequency
range from acoustic to GHz frequencies [6–10].

Highly dynamic mitotic-spindle MTs are among the most
successful targets for anticancer therapy [11,12]. Now the
question is: can we induce disruption of MTs in cancer cells
via external physical fields such as intense pulsed ultrasound
or electric field, instead of chemical drugs, to cause the least
possible damage to the healthy cells? Here, we suggest that

having solid knowledge about the mechanical vibrations of
MTs is important to reach this goal. While there are multiple
theoretical and experimental studies on MT static mechanical
properties [13–22], information on dynamic high-frequency
properties of MT comes almost exclusively from theory
[23–28], with little experimental data available for comparison
[29,30]. Having knowledge of MT dynamic properties would
also shed light on hypotheses of MT-based electrodynamic
cellular signaling [31] and information processing [32], and
on controversial results concerning peculiar high-frequency
electronic resonances of MTs [6,33,34]. Regardless of whether
new experimental results on microtubule dynamic properties
support or reject these hypotheses, such results would signif-
icantly enhance our capabilities to rationally design physical
methods to influence microtubule-based cellular functions
such as mitosis, potentially leading to new cancer treatment
protocols. However, no technique has been demonstrated to
be capable of probing high frequency (MHz-GHz) mechanical
properties of individual MTs.

In this paper, we propose a new technique for the analysis
of MT high-frequency dynamics at room temperature by using
the optomechanical coupling to an optical cavity, similar
to what has been done for nanomechanical resonators [35].
Cavity-based optomechanical systems display a parametric
coupling between the displacement X of a mechanical
vibration mode and the energy stored inside a radiation

2470-0045/2017/96(1)/012404(9) 012404-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.012404


BARZANJEH, SALARI, TUSZYNSKI, CIFRA, AND SIMON PHYSICAL REVIEW E 96, 012404 (2017)

mode. Nanoelectromechanical and optomechanical resonators
[36–39] have different applications, including the sensitive
detection of physical quantities such as spin [40,41], charge
and temperature [42,43], monitoring biological samples [44],
testing quantum mechanical behavior at the mesoscopic to
macroscopic level [45–51], weak force detection [52,53], and
frequency conversion [54–57]. A driving laser applied to the
red mechanical sideband of an optical cavity can be used to
slow down and even stop light signals due to optomechanically
induced transparency [58–61]. On the other hand, driving the
optomechanical cavity on the blue sideband can lead to phonon
lasing [62,63] and probe amplification [59,64,65].

In this work, first we present a model describing the
vibrations of a MT based on Euler-Bernoulli beam theory.
In Sec. II, we consider a doubly clamped MT and find both
the Lagrangian and the Hamiltonian of the MT. Furthermore,
the dielectric properties of the MT afford a new opportunity to
control and modulate the MT vibrations with an electrostatic
gradient force, which originates from an inhomogeneous
external electric field. In Sec. III, we show that both vibrational
and equilibrium position of the MT can be modulated by
positioning tip electrodes close to the center of a doubly
clamped MT. In Secs. IV and V, we propose a new method
to read out the information associated with the MT vibrations
by coupling the MT to an optical cavity. The optomechanical
coupling between the optical cavity and the vibrational mode
of the microtubule in the presence of an external driving force
induces a strong optical sideband field due to the anti-Stokes
scattering of light. When the external force frequency (ωd )
is close to the characteristic MT mechanical frequency (�m),
the driving force coherently enhances the oscillation of the
MT, inducing a strong optical sideband field and leading to
optomechanically induced transparency in the transmission of
the probe field. Finally, the discussion and conclusion will be
presented in Sec. VI.

II. ELASTICITY AND VIBRATIONAL MODES
OF THE MICROTUBULE

The vibrations of the MT can be fully characterized via
the Euler-Bernoulli beam theory. In this paper, we consider
a doubly clamped MT with a constant linear mass density μ

and length L in which the radius of circular cross-section R

is much smaller than the length viz,. L � R [see Fig. 1(a)].
The MT is considered as an elastic and homogeneous shell
along the longitudinal axis x ∈ [0,L] in which the in-plane
deflection is described by y(x). Here, we treat the MT as
an elastic shell because the effective wall thickness is small
compared to length and radius. Elastic shell model is one of
the applicable approaches to model microtubule mechanical
properties and vibration modes and was employed by others
as well [8,24,27,66]. A doubly clamped MT can support
mechanical vibrations especially since a MT has a more
flexible structure relative to rigid bodies.

Based on the Euler-Bernoulli beam theory, the Lagrangian
of the MT can be written as follows [67–69]:

L[y(x)] = μ

2

∫
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(
dy(x)

dt

)2

− 1
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FIG. 1. Doubly clamped microtubule. (a) Schematic description
of a doubly clamped microtubule with length L. (b) Controlling the
microtubule vibrations by applying electric fields. Here, we assume
the tip electrodes are placed close to the center of the MT.

where A is the cross-sectional area, Y is the Young modulus,
and σ is the ratio between the bending and compressional
rigidity of the MT. For a cylindrical shell like a MT with
radius R, one finds σ � R/

√
2. We note that in the Lagrangian

Eq. (1), the boundary conditions are obtained by assuming
the two-sided clamped MT where the end points at x = 0
and x = L are fixed, means that y(0) = y(L) = 0 and y ′(0) =
y ′(L) = 0. Note that the double-sided clamping situation for
the subpopulation of microtubules can be achieved in the
metaphase of cell division [70], where the “clamps” are the
centrosome at one end and centromere of the chromosomes
at the other end. Also one can consider this to be the case in
axonal microtubules of neurons, where MT associated proteins
provide fretlike clamps. However, the two-sided clamping can
also be achieved experimentally for isolated microtubules with
a biotin-streptavidin construct [71]. Basically, a subpopulation
of MTs is naturally doubly clamped for cell division and
therefore we use this type of boundary condition for the MT.

The Hamiltonian associated with Lagrangian Eq. (1)
describing MT vibrations is given by (see Appendix)

HMT =
∑

n

(
P 2

n

2mn

+ 1

2
mnω

2
nX

2
n

)
, (2)

where Xn and Pn = mn
∂Xn

∂t
are the deflection and mode

momentum for the nth mode, respectively, while mn =
μ

∫ L

0 ψ2
n (x)dx is the effective mode mass with vibrational

frequencies ωn = σ
√

Y A/μ(ζn/L)2, and ψn(x) is the eigen-
mode of the mode n. The eigenvalues ζn satisfying the
transcendental equation cos(ζn)cosh(ζn) = 1, with solutions
ζn = 4.73,7.85, . . . .

Equation (2) describes the multimode Hamiltonian for
the doubly clamped MT. The Hamiltonian of the funda-
mental mode n = 1 is given by HMT|n=1 = P 2

2m
+ 1

2m�2
mX2,

where �m = ω1 is the MT’s fundamental frequency and
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m = m1 � 0.3965 μL shows the effective mass of the fun-
damental mode. In general, MTs are considered as hollow
cylinders [72,73] having 25-nm external and 15-nm internal
diameters, and their length can vary from 10 nm to 100 μm.
Their mechanical rigidity is quantified by the Young mod-
ulus Y = (1.2–2.5) × 109N m−2 [10,74,75] and a linear mass
density is μ � 3.4 × 10−13 kg m−1 [76]. Therefore, depending
on the length, the MT’s fundamental frequency ranges from
100 kHz to 100 GHz with the effective mass varying between
10−17 kg to 10−21 kg. The zero-point fluctuation amplitude is

given by x =
√

h̄
2m�m

, which indicates that the spread of the

coordinate in the ground state has a value between 0.01 to
10 pm.

III. CONTROLLING MICROTUBULE VIBRATIONS
WITH AN EXTERNAL FIELD

The dielectric properties of MT’s afford a new opportunity
to control and modulate MT vibrations with an electrostatic
gradient force originated from an inhomogeneous external
electric field [77] applied to MT’s. Here we consider a
configuration shown in Fig. 1(b) in which two tip electrodes
are placed near the center of a doubly clamped MT. The
electrostatic field generated by these tips produces an
additional potential acting on the MT with the following
energy per unit length along the MT as

Uel(x,y) = − 1
2

(
α‖E2

‖ + α⊥E2
⊥
)
, (3)

where E‖ (E⊥) is the external field component parallel
(perpendicular) to the MT axis and α‖ (α⊥) shows
the associated screened polarizability. By expanding
the electrostatic energy Uel(x,y) to the first order in
the displacement variable y, i.e., Uel(x,y) � Uel(x,0) +
y( ∂Uel

∂y
|y=0) and using the modes defined in Eq. (A3), we

obtain the Hamiltonian of the electrostatic force acting on the
MT,

Hel =
∫ L

0
Uel(x,y)dx �

∑
n

FnXn, (4)

where Fn = ∫ L

0 ψn( ∂Uel
∂y

|y=0)dx is the electrostatic force
acting on the MT. Note that in the Hamiltonian Eq. (4) we
have ignored the displacement-independent term Uel(x,0),
which only shifts the energy level of the system since it is
irrelevant for the MT dynamics. The Hamiltonian Eq. (4)
describes the electrostatic force leading to a static deflection of
the MT, which causes a shift in its equilibrium position. This
raises a new possibility to control MT vibrations. We could
also consider time-dependent electric fields acting on MT. In
this case, it is more convenient to discriminate the static and
time-dependent force contributions, i.e., Fd (t) = F̄0 + δFd (t),
where δFd (t) shows the time-dependent external drive acting
on the MT.

In the next section, we present a setup to observe MT
vibrations by using an optical cavity. We show that placing a
MT next to an optical cavity changes the resonance frequency
of the cavity; leading to the appearance of an optomechanical
coupling between the cavity and MT vibrations.

FIG. 2. Sketch of the system. A doubly clamped microtubule
with mass m and resonance frequency �m couples to the evanescent
field of a whispering gallery mode (WGM) microtoroid cavity with
refractive index nc and resonance frequency ωc. The distance between
the microtubule and the cavity rim is d . The MT vibrations can be
controlled by an external electric gradient field. One can monitor
MT vibrations by observing the output of the optical cavity. The
entire system is located inside an aqueous medium with refractive
index nen.

IV. OPTOMECHANICAL COUPLING BETWEEN
THE MICROTUBULE AND THE OPTICAL CAVITY

The system considered here is shown in Fig. 2, in which a
whispering gallery mode (WGM) optical cavity [78,79], with
resonance frequency ωc, is placed next to a doubly clamped
MT with mass m and resonance frequency �m. The evanescent
field of the WGM cavity establishes an optomechanical
coupling with the motion of the MT, in which the cavity field
exerts a radiation pressure force on the MT while the MT
displacement from the equilibrium position simultaneously
changes the resonance frequency of the cavity. To keep the
MT stable in the rod form, we assume that the whole system
is located inside an aqueous medium with refractive index
nen. The Hamiltonian of the system describing the MT-cavity
coupling is given by

H = HMT + h̄ωca
∗a + g0Xa∗a, (5)

where |a|2 is the stored cavity energy and HMT describes
the Hamiltonian of MT’s vibration. The second term of the
Hamiltonian Eq. (5) shows the free energy of the optical cavity
while the last term indicates the optomechanical coupling
between the cavity field and MT’s vibrations in which the
deflection of the MT shifts the resonance frequency of the
cavity with a rate given by [see Appendix]

g0 = ∂ωc

∂X
�

(
ωcα||k⊥ζ 2

n2
cε0Vc

e−2k⊥d

)
Ac, (6)

where λc = 2πc/ωc and nc are the wavelength and re-
fractive index of the microcavity, respectively, and k−1

⊥ =
1/

√
n2

c − n2
enk is the decay length of the evanescent field,

with k = 2π/λc being the wave number of the field. nen

is the refractive index of the cavity and MT environment,
where ζ = 0.42λc

R
√

n2
c−n2

en

, while d is the distance between the MT

center and the cavity rim and Vc is the mode volume of the
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optical mode. The correction term Ac � 0.17[k⊥(d + R)]−1/2

accounts for the misalignment and mispositioning of the MT
with respect to the cavity rim [69]. In the derivation of Eq. (6),
we have neglected the contribution of the perpendicular
polarizability as we assume the parallel polarizability of the
MT provides the main contribution to the optomechanical
coupling.

V. MICROTUBULE-INDUCED OPTICAL TRANSPARENCY

In this section, we propose a scheme to measure vibrations
of a MT, which is driven by an external time-harmonic
driving force δFd (t) = fdcos(ωdt + φd ) with frequency ωd ,
amplitude fd , and phase φd . The optical cavity is driven
by a strong pump field of frequency ωl and a very weak
probe field of frequency ωp. We introduce the amplitudes
of the pump field and the probe field inside the cavity

El =
√

Pl

h̄ωl
and Ep =

√
Pp

h̄ωp
, respectively, where Pl is the pump

power and Pp is the power of the probe field. Similar to
Eq. (5), the Hamiltonian describing the MT-cavity interaction
in the presence of a time-harmonic-driving force (see Fig. 2)
reads

H = P 2

2m
+ 1

2
m�2

mX2 + h̄ωca
∗a + h̄g0Xa∗a

− [F̄0 + fd cos(ωdt + φd )]X

+ ih̄
√

κe[(Ele
−iωl t + Epe−iωpt−iφp )a∗ − H.c.], (7)

where φp is the initial phase of the probe field and κe is the
extrinsic damping rates of the cavity. Note that we limit our
analysis to the fundamental mode of the MT because the
strength of external and optomechanical forces are assumed
to be small so they excite the higher-order motional modes of
the MT with much smaller efficiency. Therefore, we neglect
the contribution of higher vibrational modes in the response
of the cavity.

In a frame rotating at ωl and by considering the ther-
mal noise of the mechanical oscillator Fth and ain, we
obtain the equations of motion associated with Hamiltonian
Eq. (7),

Ẋ = P

m
, (8a)

Ṗ = −m�2
mX − h̄g0a

∗a − γmP + F̄0

+ fd cos(ωdt + φd ) + Fth, (8b)

ȧ =
(

i�0 − κ

2

)
a − ig0Xa

+√
κe(El + Epe−iδt−iφp ) + ain, (8c)

where �0 = ωl − ωc, δ = ωp − ωl and the total cavity decay
rate is κ = κe + κi in which κi is the intrinsic damping rate
of the cavity. Here, γm is the damping rate of the MT and
Fth denotes the sum of all incoherent external forces (such
as random Langevin and/or viscous forces) that are acting
on the MT, and obeys 〈Fth(t)Fth(t ′)〉 = kBT mγmδ(t − t ′),
where kB is the Boltzmann constant and T is the absolute
temperature of the reservoir. Equations (8a) and (8b) can be

rewritten as

Ẍ + γmẊ + �2
mX = − h̄g0|a|2

m
+ F̄0

m

+ fd

m
cos(ωdt + φd ) + Fth

m
, (9)

where −h̄g0|a|2 is the cavity field radiation pressure acting on
the MT. The above equations are non-linear and one cannot
solve them analytically. Thus, we can use perturbation methods
to obtain an approximate analytical solution for the case that
the probe field is much weaker than the pump field, i.e.,
Ep � El .

In this paper, we are interested in the transmission of the
probe field which is the ratio of the probe field returned from
the system aout divided by the sent probe field Epe−i(ωpt+φp)

and it is given by [see Appendix]

Tp(ω) = 1 −
√

κe

Epe−iφp
(α−

1 + α−
2 ), (10)

where we assumed the cavity is driven in red-sideband
� = −�m, where � = �0 − g0x0 being the effective optical
detuning in which x0 is the equilibrium displacement of the
MT. In Eq. (10), the real part of

√
κe

Epe−iφp
(α−

1 + α−
2 ) shows

the absorptive behavior of the cavity and its imaginary part
describes the dispersive behavior. Note that the second term of
the above equation (

√
κeα

−
1 /Epe−iφp ) indicates the effect of the

vibrations of the MT on the transmission of the probe field [see
Appendix], while the third term (

√
κeα

−
2 /Epe−iφp ) shows that

applying the external force could substantially change the MT
vibration and consequently alters the response of the system.
In the resolved sideband regime, i.e., �m � κ , Eq. (10)
can be simplified further Tp(�m) � 1 − 2(1 − Gdeiφ√

κeEp
), where

Gd = g0
√

ndXd is the effective MT-cavity field coupling
rate, φ = φp − φd , and Xd = fd

mγm�m
is the total displacement

imposed by the time-dependent external force. Here, nd =
4κ2

e E2
l

κ2+4�2 shows the total number of photons inside the cavity.
Note that we have chosen fd such that k⊥Xd � 1. In principle,
Eq. (10) shows that when the external-force frequency is
close to �m, the MT motion driven through the external
force induces an optical sideband field due to the anti-Stokes
scattering of light, which interferes with the probe field and
the anti-Stokes field induced by probe field, leading to the
modification of the output field.

In Fig. 3(a), we plot the probe transmission parameter |Tp|2
[Eq. (10)] versus normalized frequency ωd/�m for different
values of the force fd and for φ = 0.

Here, we consider the experimentally feasible parameters:
a microtoroid silica cavity with refractive index nc = 1.44,
wavelength λc = 2π/ωc = 1.55 μm, damping rate κ/2π �
κe/2π = 5 MHz, with small internal loss κi/2π = 7 kHz,
circumference Lc = 0.1 mm, radius R = 1 μm, and mode
volume Vc ∼ 1.57 × 10−16 m3 [78–80]. The cavity is placed
inside a water bath with refractive index nen = 1.33, where
the decay length of the evanescent field is 1/k⊥ = 0.56 μm.
We consider a doubly clamped MT with length L = 1 μm
and the effective mass m � 1.347 × 10−19 kg that is placed
at a distance d = 0.1 μm from the cavity rim whose po-
larizability is α‖ = 1.1 × 10−33 Cm2/V (corresponds to the
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fd= 0 
|Tp|

2

fd= 16.5 pN 

fd= 33    pN 

fd= 49.5 pN 

FIG. 3. Microtubule-induced transparency. The probe transmis-
sion parameter |Tp|2 versus normalized frequency ωd/�m and for
different values of the force fd and for φ = 0. Here, we consider a
microtoroid silica cavity with refractive index nc = 1.44, wavelength
λc = 2π/ωc = 1.55 μm, damping rate κ/2π � κe/2π = 5 MHz,
with negligible internal loss κi/2π = 7 kHz, circumference Lc =
0.1 mm, radius R = 1 μm, and mode volume Vc ∼ 1.57 × 10−16 m3.
The decay length of the evanescent field is 1/k⊥ = 0.56 μm. We
consider a doubly clamped MT with length L = 1 μm and the
effective mass m � 1.34 × 10−19 kg that is placed at a distance
d = 0.1 μm. The polarizability of the MT α‖ = 1.1 × 10−33 Cm2/V,
which corresponds to the refractive index nMT � 1.6 (yielding
high frequency dielectric constant 2.56). The MT fundamental
vibrational frequency is �m/2π = 20.68 MHz with quality factor
Qm = �m

γm
= 4.1. The estimated MT-cavity field coupling rate is

g0 � 0.165 GHz/m. We also assume the cavity is coherently driven
by an external laser at red-sideband � = −�m whose input power
Pl = 900 μW; corresponding to nd � 1.23 × 107 photons inside the
cavity. The total probe photons inside the cavity is considered to be
very small nprob = a∗a � 1.

refractive index nMT � 1.6 yielding high-frequency dielectric
constant 2.56) [81]. We consider a MT with the fundamental
vibrational frequency �m/2π = 20.68 MHz and damping rate
γm/2π = 5 MHz—the quality factor is Qm = �m

γm
= 4.1. For

these values, the estimated MT-cavity field coupling rate is
g0 � 0.165 GHz/m. The cavity is coherently driven by an
external laser at red-sideband � = −�m whose input power
Pl = 900 μW corresponds to nd � 1.23 × 107 photons inside
the cavity. In contrast, the total probe photons inside the cavity
is considered to be very small nprob = a∗a � 1. Note that in
this paper we always limit our analysis to the case k⊥(Xd +
d) � 1, in which the MT displacement is small compared to
the decay length 1/k⊥ of the evanescent field. This condition
imposes a constraint on the amplitude of the applied force
fd � [(k−1

⊥ − d)mγm�m] � 0.2 nN. However, we work in the

area of monostabillity in which nd � 2mκ�2
m/(h̄g2

0) [36,82].
Figure 3(a) shows that in the absence of an external force

fd = 0, due to retardation effect of the cavity, a dip appears in
the first MT’s sideband ωd = �m, while the MT vibration in
the presence of the external force totally changes this behavior
and leads to the appearance of a transparent window in the
transmission of the probe field. In particular, we can see
that the stronger driving force makes the dip of absorption
shallower and eventually the dip emerges in the peak, leading
to optomechanically induced transparency of the probe field.

In principle, the radiation pressure exerted by the probe
field on the MT and the external driving force results in
the anti-Stokes scattering of light from the drive field, which
produces two kinds of anti-Stokes fields induced by the probe
field and the external force, respectively. Then the interference

FIG. 4. Transparency with respect to the relative phase. The probe
transmission parameter |Tp|2 versus ωd/�m and relative phase φ for
fd = 55 pN. Here, the other parameters are the same as described in
the caption of Fig. 3.

of these two anti-Stokes fields and the intracavity probe field
leads to the transparency of the probe field and the appearance
of the peak in the transmission of the probe. In other words,
the external driving force coherently enhances the oscillation
of the MT, leading to optomechanically induced transparency.
We can realize the optomechanically induced transparency for
a resonantly injected probe in the MT-cavity system by appro-
priately adjusting the amplitude of the probe (or drive) and the
external force. As seen from Eq. (10), around MT frequency
�m, the magnitude of this transparency peak is given by Gd√

κeEp
.

However, the response of the system also tightly depends
on the relative phase between the probe field and the external
driving force. In Fig. 4 we plot the probe transmission
parameter |Tp|2 versus ωd/�m and relative phase φ. It is clear
that the symmetric peaks and therefore the probe transparency
appear around φ = 0. The center frequency and line width
of the transparency peak, respectively, give the resonance
frequency �m and damping rate γm of the MT, while the height
of the peak reveals information about g0 and fd . On the other
hand, the deep dips (no transparency) appear at φ = ±π , while
the asymmetric structures rises up when the relative phase φ

approaches to ±π/2. In this case, the probe transmission stands
between the peaks of φ = 0 and the dips of φ = ±π .

In Fig. 5, we also study the effect of the different
vibrational quality factor on the transparency pattern. Lower

|Tp|
2

FIG. 5. Effect of the quality-factor on transparency pattern. The
probe transmission parameter |Tp|2 versus ωd/�m for different qual-
ity factors: Q = 1.03 (fd = 0.2 nN),Q = 0.51 (fd = 0.4 nN), and
Q = 0.02 (fd = 10 nN). Here, the other parameters are the same as
described in the caption of Fig. 3.
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quality factor (higher damping rate) leads to suppression
of the transparency peak. To keep the transparency peak
one should vary the external driving force and increase it
correspondingly. Note however, in Fig. 5 we can only see
the transparency peak because the MT’s line width is much
larger than the cavity linewidth, i.e., γm � κ . In this case,
the cavity is overwhelmed with the MT transparency window;
therefore, the cavity response dip is totally covered by the
transparency peak.

We now discuss two potential challenges regarding the
experimental implementation of our proposal. First, we have
limited our analysis to the overcoupled regime, where the
optical cavity is strongly coupled to the desired input port and
poorly coupled to other losses channels. The interaction of the
evanescent field of the optical cavity with the MT may induce
an extra loss. However, by carefully designing the system and
optimizing the geometry of the structure, one can minimize this
extra optical loss. The second challenge is the relatively small
change in the transmission of the optical cavity due to vibration
of the MT. Measuring such small variation in the response
of the optical cavity requires high precision measurement
and long time averaging. However, using different whispering
gallery mode cavities (with larger mode volume) and strongly
driving the MT with an external force can improve significantly
the effect of the MT on the transmission of the optical
cavity.

VI. DISCUSSION AND CONCLUSION

In this paper, we have suggested new ways to control,
manipulate, and read out microtubule vibrations. The dielectric
properties of microtubules provide a new possibility to control
and manipulate the microtubule vibrations via the electrostatic
gradient force from an inhomogeneous external electric field.
This can be achieved by positioning tip electrodes close to the
center of a doubly clamped microtubule. Information about
the microtubule mechanical vibrations can be obtained by
coupling the microtubule to an optical cavity. We have shown
that the optomechanical coupling between the microtubule
and the evanescent field of the optical cavity modifies the
response of the cavity field in the presence of a strong
pump laser on the red mechanical sideband, leading to the
appearance of transparency peaks in the transmission of an
optical probe field. Analyzing the center frequency and line
width of the transparency peak, one can extract the resonance
frequency and damping rate of the vibrational mode of the
microtubule. By varying the parameters of the system, in
particular the magnitude of the driving force, one can observe
higher vibrational frequencies (up to 1 GHz).

The possible disruption of a microtubule during mitosis
can control the duplication of a cancer cell. Cancer detection
and treatment may be possible based on the detection and
control of microtubule mechanical oscillations in cells. Having
good knowledge about the broad spectrum of mechanical
frequencies in microtubules can open new doors for cancer
therapy via external physical signals (e.g., electromagnetic or
ultrasound) instead of chemical drugs, to minimize damage
to healthy cells while achieving high control of cancer
cells.
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APPENDIX A: MICROTUBULE EQUATIONS OF MOTION

In the absence of dissipation and other external forces,
the dynamic behavior of the flexural MT can be obtained by
Lagrangian Eq. (1), which gives

μ
∂2y

∂t2
+ (σ 2Y A)

∂4y

∂x4
= 0, (A1)

The eigenmodes of this equation are given by

ψn(x) = 1

Cn

[
sin(ζnx/L) − sinh(ζnx/L)

sin(ζn) − sinh(ζn)

− cos(ζnx/L) − cosh(ζnx/L)

cos(ζn) − cosh(ζn)

]
, (A2)

where Cn represent the normalization constants and
the eigenvalues ζn satisfying the transcendental equation
cos(ζn)cosh(ζn) = 1, with solutions ζn = 4.73,7.85,.... As a
result, one can expand the general solution of Eq. (A1) in
terms of eigenmodes Eq. (A2); i.e.,

y(x,t) =
∑

n

ψn(x)Xn(t). (A3)

Using the Lagrangian in Eq. (1) along with Eq. (A3), one
obtains the Hamiltonian describing MT vibrations,

H0 =
∑

n

(
P 2

n

2mn

+ 1

2
mnω

2
nX

2
n

)
. (A4)

APPENDIX B: ESTIMATING THE MT-CAVITY FIELD
COUPLING RATE

For simplicity, we consider only the motion and the elastic
deformations of the MT taking place along the spatial direction
x, orthogonal to its reflecting surface. The evanescent field
of the optical cavity, with electric field �E(�r), generates an
interaction with the dipoles in the MT. In fact, the evanescent
field of the cavity exerts a radiation pressure force on the
MT, which is proportional to its intensity and its phase is
simultaneously shifted by the MT displacement from the
equilibrium position. In the limit of small MT displacements,
the coupling part of the Hamiltonian is given by [69]

HMC = −1

2

∫
VMT

�P (�r). �E(�r) dV, (B1)

where �P (�r) = �α. �E(�r) is the polarization vector with �α being
the screened polarizability tensor of the MT. Here, the
integration is applied over the MT’s volume VMT.
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To find the optomechanical coupling rate between the
MT and the cavity field, we represent the electric field in its
following form:

�E(�r) =
√

h̄ωc

2ε0
(a + a∗)ψφ(�r)φ, (B2)

where ε0 is the vacuum permittivity and �ψ(�r) =
ψr (�r)r + ψθ (�r)θ + ψφ(�r)φ is the normalized eigenmode
of the field, satisfying∫

ε(�r)

ε0
| �ψ(�r)|2 dV = 1. (B3)

For a toroidal microcavity of radius R, the normalized
eigenmode of the field outside the cavity (r > R) in φ

direction is given by [79,80]

ψφ(�r) � −0.42λc

R
√

n2
c − n2

ennc

√
Vc

√
R

r
e−k⊥(r−R), (B4)

where λc = 2πc/ωc and nc are the wavelength and
refractive index of the microcavity, respectively, and
k−1
⊥ = 1/

√
n2

c − n2
enk is the decay length of the evanescent

field, with k = 2π/λc being the wave number of the field. nen

is the refractive index of the cavity-MT environment and r is
the radial distance from the center of the cavity. We employ
the following definition for the mode volume:

Vc =
∫

ε(�r)

n2
cε0

| �E(�r)|2
| �Emax|2

dV, (B5)

where �Emax stands for the maximum of the electric field.
We assume that the MT displacement X is small compared

to the decay length 1/k⊥ of the evanescent field. Therefore,
we consider the electric field to be constant inside the MT
volume VMT and we can linearize the optomechanical coupling
�E.�α. �E around the equilibrium position of the MT. Substituting
Eqs. (B2)–(B5) into Eq. (B1) and comparing the result with
Hamiltonian Eq. (5) gives the MT-cavity field a coupling rate,
which is approximated as

g0 �
(

ωcα||k⊥ζ 2

n2
cε0Vc

e−2k⊥d

)
Ac, (B6)

where ζ = 0.42λc

R
√

n2
c−n2

en

and d is the distance between the

MT center and the cavity rim. The correction term Ac �
0.17[k⊥(d + R)]−1/2 accounts for the misalignment and mis-
positioning of the MT with respect to the cavity rim [69]. In
the derivation of Eq. (B6), we have neglected the contribution
of the perpendicular polarizability as we assume the parallel
polarizability of the MT provides the main contribution to the
optomechanical coupling.

APPENDIX C: RESPONSE OF THE SYSTEM

To solve Eq. (9) we take account of the first-order sidebands
and ignore the higher-order sidebands by considering the
following ansatz:

a = √
nd+α−

1 e−iδt+α+
1 eiδt+α−

2 e−iωt+α+
2 eiωt , (C1a)

X = x0 + x1e
−iδt + x∗

1eiδt + x2e
−iωt + x∗

2eiωt . (C1b)

By substituting the ansatz Eq. (C1) into Eqs. (9) and
retaining the first-order terms, we can find all unknown
parameters in Eq. (C1).

The output field of the cavity, in the laboratory frame
(unrotated frame), can be obtained by using the input-output
relation:

aout = (Ele
−iωl t + Epe−iωpt−iφp ) − √

κea

= (El − √
κe

√
nd )e−iωl t + (Ep e−iφp − √

κeα
−
1 )e−iωpt

−√
κe

(
α+

1 e−i(2ωl−ωp)t + α−
2 e−i(ωl+ω)t + α+

2 e−i(ωl−ω)t
)
,

(C2)

where

x0 = − h̄g0nd + F̄0

m�2
m

, α−
1 =

[
1 + ih̄g2

0ndχm(ω)
i(�−ω)+ κ

2

]√
κeEpe−iφp

2ih̄g2
0ndχ(ω)�

i(�−ω)+ κ
2

+ κ
2 − i(� + ω)

,

α−
2 = 1

2

−ig0
√

ndχm(ω) fd e−iφd

2ih̄g2
0ndχm(ω)�

i(�−ω)+ κ
2

+ κ
2 − i(� + ω)

.

Here, nd = 4κ2
e E2

l

κ2+4�2 shows the total number of photons inside
the cavity with � = �0 − g0x0 being the effective optical
detuning. χ−1

m (ω) = m(�2
m − ω2 − iγmω) is the mechanical

susceptibility of the MT. Note that, in Eq. (C2), the terms
related to α±

1 introduce two sidebands induced only by the MT
and driving pump field while the terms associated with α±

2
determine the extra sidebands induced by the external driving
force acting on the MT.

In this paper, we are interested in the transmission of the
probe field, which is the ratio of the probe field returned from
the system divided by the sent probe field, and it is given by
[58,59]

Tp = aout

Epe−i(ωpt+φp) . (C3)

By plugging Eq. (C2) into Eq. (C3) and neglecting the fast-
rotating terms at �m and for ωp = ωc and ω = �m, we obtain

Tp(ω) = 1 −
√

κe

Epe−iφp
(α−

1 + α−
2 ). (C4)
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