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Efficient allocation of limited medical resources is crucial for controlling epidemic spreading on networks.
Based on the susceptible-infected-susceptible model, we solve the optimization problem of how best to allocate
the limited resources so as to minimize prevalence, providing that the curing rate of each node is positively
correlated to its medical resource. By quenched mean-field theory and heterogeneous mean-field (HMF) theory,
we prove that an epidemic outbreak will be suppressed to the greatest extent if the curing rate of each node is
directly proportional to its degree, under which the effective infection rate λ has a maximal threshold λopt

c = 1/〈k〉,
where 〈k〉 is the average degree of the underlying network. For a weak infection region (λ � λopt

c ), we combine
perturbation theory with the Lagrange multiplier method (LMM) to derive the analytical expression of optimal
allocation of the curing rates and the corresponding minimized prevalence. For a general infection region
(λ > λopt

c ), the high-dimensional optimization problem is converted into numerically solving low-dimensional
nonlinear equations by the HMF theory and LMM. Counterintuitively, in the strong infection region the low-degree
nodes should be allocated more medical resources than the high-degree nodes to minimize prevalence. Finally,
we use simulated annealing to validate the theoretical results.
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I. INTRODUCTION

A challenging problem in epidemiology is how best to allo-
cate limited resources of treatment and vaccination so that they
will be most effective in suppressing or reducing outbreaks of
epidemics. This problem has been a subject of intense research
in statistical physics and many other disciplines [1,2]. Inspired
by the percolation theory, the simplest strategy is to randomly
choose a fraction of nodes to immunize. However, random
immunization is inefficient for heterogeneous networks. Later,
many more effective immunization strategies were developed,
ranging from global strategies such as targeted immunization
based on node degree [3] or betweenness centrality [4], to
local strategies such as acquaintance immunization [5] and
(bias) random-walk immunization [6,7], and to some others
in between [8]. Further improvements were made by graph
partitioning [9] and optimization of the susceptible size [10].
In addition to degree heterogeneity, community structure has
a major impact on disease immunity [11,12]. Recently, a
message-passing approach was used to find an optimal set of
nodes for immunization [13]. The immunization was mapped
onto the optimal percolation problem [14]. Based on the idea
of explosive percolation, an “explosive immunization” method
has been proposed [15]. However, some diseases such as
the common cold and influenza, which can be modeled by
the susceptible-infected-susceptible (SIS) model [30], do not
confer immunity, and individuals can be infected over and over
again. Under those situations, one way to control the spread
of the diseases is to reduce the risk of infection, such as by
adaptive rewiring of the links incident to infected individuals
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[16], and the dynamical interplay between awareness and
epidemic spreading [17].

An alternative way to control the epidemic spreading of
SIS type is by designing an optimal strategy for distributing
the limited medical resources so as to suppress the epidemic
outbreak to the greatest extent, and to minimize the prevalence
once the epidemic outbreak has happened. It is reasonable to
assume the curing rate of each node is positively correlated to
the medical resources allocated to it. Therefore, the optimal
allocation of medical resources is equivalent to that of the
curing rates. Assuming that the medical resources are limited,
the average curing rate is thus considered to be fixed. This
problem has been addressed as a constraint optimization
problem in several previous works. When the curing rate
can only be tuned in a fixed number of feasible values, this
problem has been proved to be NP-complete [18]. Instead,
when the curing rate can vary continuously in a given interval,
some efficient algorithms have been developed for minimizing
the threshold of epidemic outbreak [19,20] or the steady-state
infection density [21].

In the present work, we theoretically solve the constraint
optimization problem in both epidemic-free and endemic
phases within the mean-field framework. On the one hand,
we prove that an epidemic outbreak can be suppressed to the
greatest extent when the curing rate of each node is directly
proportional to its degree under which the epidemic threshold
is maximized, that is, the inverse of the average degree of the
underlying network. On the other hand, once the epidemic
has broken out but is close to the threshold, we analytically
show that the optimal curing rate should be adjusted in terms
of the difference between the node degree and the average
degree, and the distance to epidemic threshold. For the general
infection region, the optimization problem can be simplified
to solve three nonlinear equations. Some closely related works
have studied the SIS model [22] and its metapopulation version
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[23] with the curing rate, μk ∼ kα , but there was no guarantee
that such a power-law form would be the optimal one. In
[24], the authors considered a simple heuristic strategy to
control epidemic extinction, where the curing rate is directly
proportional to the node degree. They showed that on any graph
with a bounded degree, the extinction time is sublinear with
the size of the network. Further improvement was made using
a heuristic PAGERANK algorithm to allocate curing rates based
on the initial condition of infected nodes [25]. The present
study does not require any assumptions about the form of the
curing rates with node degrees in advance except that the mean
curing rate is assumed to be fixed due to the limited medical
resources.

The rest of the paper is organized as follows. In Sec. II,
we propose the constraint optimization problem based on
the SIS model. The maximized epidemic threshold and the
corresponding optimal allocation of curing rates are derived
analytically in Sec. III. We present the theoretical treatment of
the constraint optimization problem in Sec. IV for the weak
infection region, and in Sec. V for the general infection region.
In Sec. VI, we show numerical demonstrations for theoretical
results. Finally, the main conclusions and perspective are
addressed in Sec. VII.

II. PROBLEM PROPOSITION

To formulate our problem, we consider the SIS model on
an undirected network of size N . The network is described by
an adjacency matrix A whose entries are defined as Aij = 1 if
nodes i and j are connected, and Aij = 0 otherwise. Each node
is either susceptible or infected. A susceptible node i can be
infected by its infective neighbor with an infection rate β, and
an infected node i recovers with a nonvanishing curing rate μi .
Here, we consider that the curing rate is allowed to vary from
one node to another. In general, the more medical resources are
available for node i, the larger μi is. Assuming that the total
amount of medical resources is limited, the average curing rate
is thus fixed, i.e.,

〈μi〉 = μ and μi � 0, ∀ i. (1)

Our goal is to find an optimal allocation of {μi} under the
constraint Eq. (1) so as to minimize the prevalence ρ, that is,
the fraction of infected nodes.

III. THE MAXIMIZED EPIDEMIC THRESHOLD

In quenched mean-field (QMF) theory, the probability ρi(t)
that node i is infected at time t is described by N -intertwined
equations [26–28],

dρi(t)

dt
= −μiρi(t) + β[1 − ρi(t)]

∑
j

Aijρj (t). (2)

In the steady state, dρi(t)/dt = 0, ρi is determined by a set of
nonlinear equations,

ρi = β
∑

j Aijρj

μi + β
∑

j Aijρj

. (3)

One can notice that ρi = 0 is always a solution of Eq. (2).
This trivial solution corresponds to an absorbing state with

no infective nodes. A nonzero solution ρi > 0 exists if the
effective infection rate λ = β/μ is larger than the so-called
epidemic threshold λc. In this case, the prevalence ρ =∑

i ρi/N is nonzero corresponding to an endemic state. By
linear stability analysis for Eq. (2) around ρi = 0, λc is
determined by the largest eigenvalue of the matrix, −U + βA,
which is zero, where U = diag(μi) is a diagonal matrix. For
the standard SIS model, μi ≡ μ for all i, one can immediately
obtain the well-known result λsta

c,QMF = 1/�max(A) with the
largest eigenvalue of the adjacency matrix �max(A). In our
SIS model, the outbreak of epidemics will be suppressed to
the greatest extent, which implies that the epidemic threshold
of the optimal SIS model will be maximized.

For this purpose, we first decompose the diagonal matrix
U into two diagonal matrices, U = Ū + �U, where Ū =
diag{μki/〈k〉}, with ki being the degree of node i, and �U =
diag{�μi}. Since Tr(U) = Tr(Ū ) = Nμ, �U must satisfy
the constraint Tr(�U) = 0. For the real symmetric matrix,
U − βA, its largest eigenvalue �max satisfies the following
inequality:

�max � vT (−U + βA)v, (4)

where v is a column vector satisfying v ∈ RN and ||v|| = 1. If
we set v = 1√

N
(1, . . . ,1)T , Eq. (4) becomes

�max � vT (−Ū + βA)v − vT �Uv = −μ + β〈k〉. (5)

Since �max = 0 at the epidemic threshold, Eq. (5) leads to
an upper bound of the epidemic threshold, λc � 1/〈k〉. The
condition in which the epidemic threshold is equal to the
upper bound holds when v is the eigenvector of U − βA
corresponding to its largest eigenvalue. If we set U = Ū and
β = μ/〈k〉, −U + βA = −μ/〈k〉L, where L is the Laplacian
matrix of the underlying network. It is well known that
the smallest eigenvalue of L is zero and the corresponding
eigenvector is v. Therefore, if the curing rate of each node is
directly proportional to its degree, i.e.,

μi = μ∗
i = μ

ki

〈k〉 , (6)

the epidemic threshold will be maximized,

λ
opt
c,QMF = 1

〈k〉 . (7)

In the QMF theory, the epidemic threshold of the optimal
SIS model is no less than that of the standard SIS model,
λ

opt
c,QMF � λsta

c,QMF, as the lower bound of �max(A) is 〈k〉 for any
types of networks [29].

The above results can also be derived from the heteroge-
neous mean-field (HMF) theory. In the framework of HMF,
these nodes with the same degree are considered to be
statistically equivalent. The constraint Eq. (1) becomes

〈μk〉 =
∑

k
P (k)μk = μ and μk � 0, ∀ k , (8)

where μk is the curing rate of nodes of degree k, and P (k) is
the degree distribution. The dynamical evolution of ρk(t), the
probability of nodes of degree k being infected at time t , reads
[30]

dρk(t)

dt
= −μkρk(t) + β[1 − ρk(t)]k�(t), (9)
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where � is the probability of finding an infected node
following a randomly chosen edge. In the case of uncorrelated
networks, �(t) can be written as

�(t) =
∑

k

kP (k)

〈k〉 ρk(t). (10)

In the steady state, dρk(t)/dt = 0, Eq. (9) becomes

ρk = βk�

μk + βk�
. (11)

Substituting Eq. (11) into Eq. (10), we obtain a self-consistent
equation of �,

� =
∑

k

kP (k)

〈k〉
βk�

μk + βk�
. (12)

The epidemic threshold is determined by which derivation
of the right-hand side of Eq. (12) with respect to � at � = 0
is equal to 1, leading to

βc,HMF = 〈k〉∑
k

k2P (k)
μk

. (13)

For a given P (k), maximizing βc is equivalent to minimizing
the denominator of the right-hand side of Eq. (13). For this
purpose, we employ the Lagrange multiplier method (LMM)
to maximize the epidemic threshold, where the Lagrange
function is written as

L =
∑

k

k2P (k)

μk

+ τ

(∑
k

P (k)μk − μ

)
, (14)

where τ is called the Lagrange multiplier. Taking the derivation
of L with respect to μk ,

∂L
∂μk

= −k2P (k)

μ2
k

+ τP (k). (15)

Letting ∂L/∂μk = 0, we have μk = k/
√

τ , and we insert the
relation into Eq. (8). We arrive at an optimal allocation of {μk},

μk = μ∗
k = μ

k

〈k〉 , (16)

and a maximal epidemic threshold by Eq. (13),

λ
opt
c,HMF = 1

〈k〉 . (17)

Interestingly, the HMF results are consistent with the QMF
ones. Also, in the HMF theory, the epidemic threshold of the
optimal SIS model is no less than that of the standard SIS
model, λ

opt
c,HMF � λsta

c,HMF = 〈k〉/〈k2〉.

IV. NEAR-EPIDEMIC THRESHOLD

For λ larger than but close to λ
opt
c , λ � λ

opt
c , we shall

combine perturbation theory with LMM to optimize the preva-
lence. Toward that end, we assume that for λ = λ

opt
c + �λ,

μk = μ∗
k + �μk and � = �∗ + ��, where �∗ = 1 − μ

β〈k〉 is
the solution of Eq. (12) for μk = μ∗

k . Expanding Eq. (12)

around (μ∗
k,�

∗) to second order, and then using the constraint∑
k P (k)�μk = 0 and simultaneously ignoring the second-

order small quantity ��2, yields (see Appendix A for details)

�� = 1

β2〈k〉
∑

k

P (k)

k
�μ2

k . (18)

Around (μ∗
k,�

∗), the change �ρ in the prevalence ρ =∑
k P (k)ρk can be written as

�ρ = −�∗

β

∑
k

P (k)

k
�μk + (1 − �∗)��. (19)

Again using LMM to minimize �ρ under the constraints∑
k P (k)�μk = 0 and Eq. (18), we obtain a minimal ρ =

ρ∗ + �ρopt, where ρ∗ = ∑
k P (k) βk�∗

μ∗
k+βk�∗ = 1 − 1

λ〈k〉 is the
prevalence for the SIS model with the fixed μk = μ∗

k , and

�ρopt = − 1

4λ
〈k〉2(〈k−1〉 − 〈k〉−1)�λ2


 −1

4
〈k〉3(〈k−1〉 − 〈k〉−1)�λ2 (20)

measures the difference in prevalence between the optimal
SIS model and the SIS model with the fixed μk = μ∗

k . Since
〈k−1〉 > 〈k〉−1 for any degree inhomogeneous networks in
terms of Jensen’s inequality, �ρopt < 0 and thus ρ will be
reduced. The corresponding optimal allocation is given by
μk = μ∗

k + �μk with

�μk = μ

2
〈k〉λ(〈k〉 − k)�λ 
 μ

2
(〈k〉 − k)�λ. (21)

This implies that as λ is increased from λ
opt
c , the curing

rates of the nodes with degrees less than the average degree
will be increased, while the curing rates of the nodes with
degrees larger than the average degree will be decreased. The
amplitude of the change will depend on the difference between
the degree of the each node and the average degree, 〈k〉 − k,
and the distance of the effective infection rate to its critical
value, �λ.

V. GENERAL INFECTION REGION

For λ larger than but not close to λ
opt
c , λ > λ

opt
c , since the

nonlinear characteristic of the model, the analytical expression
of the optimal allocation of {μk}, and the corresponding
minimal ρ is almost impossible. However, with the aid of HMF
theory and LMM, the high-dimensional optimization problem
can be converted to numerically solving the low-dimensional
nonlinear equations (see Appendix B for details). In the general
infection region, μk satisfies the following equation:

μk =
{√

βk�

τ
+ κβk2

τ 〈k〉 − βk� > 0, k < kc,

0, k � kc,
(22)

where τ and κ are the Lagrange multipliers, and kc is a
threshold degree to guarantee μk > 0 for k < kc, and it will be
determined later. �, τ , and κ are determined by the following
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FIG. 1. Prevalence ρ vs the effective infection rate λ in ER networks (a) and BA networks (b) with equal N = 1000 and 〈k〉 = 4. The solid
lines correspond to the results from the optimal SIS model, the dotted line to the results of the standard SIS model, and the dashed line to the
SIS model with μi = μ∗

i . The squares correspond to the results from SA.

three equations:√
βτ 〈k〉

�

kmax∑
k=kmin

√
ξP (k) − βτ 〈k〉

kmax∑
k=kmin

ξP (k)

−βκτ

kmax∑
k=kmin

kξP (k) − κ

〈k〉�
kmax∑
k=kc

kP (k) = 0, (23)

μ =
√

β�

τ 〈k〉
kc∑

k=kmin

kξ− 1
2 P (k) − β�

kc∑
k=kmin

kP (k), (24)

� =
√

βτ�

〈k〉
kc∑

k=kmin

k2ξ− 1
2 P (k) + 1

〈k〉
kmax∑
k=kc

kP (k), (25)

where we have used ξ = k/(〈k〉 + κk).
To numerically solve �, τ , and κ with Eqs. (23), (24), and

(25), kc must be known in advance. Toward that end, we adopt
a numerical scheme as follows. (i) First, we set kc = kmax,
where kmax is the maximal degree of the underlying network;
(ii) we numerically solve �, τ , and κ using Eqs. (23), (24),
and (25), and then we test the condition μk > 0 for all k < kc

using Eq. (22); and (iii) if the condition is not satisfied, kc

will be decreased by kc ← kc − 1 and return to (ii) until the
condition Eq. (22) is fulfilled.

VI. THEORETICAL AND SIMULATION RESULTS

Figure 1 shows the optimized results of ρ as a function
λ (solid line) in Erdös-Rényi (ER) random networks (a) and
Barabási-Albert scale-free networks (b) with equal network
size N = 1000 and average degree 〈k〉 = 4. For comparison,
we also show the results of the standard SIS model (dotted
line) and of the SIS model with the curing rates μi = μ∗

i

(dashed line). As expected by the theoretical prediction, the
epidemic threshold of the optimal SIS model λ

opt
c = 1/〈k〉,

which is significantly larger than that of the standard SIS model
[obtained by numerically solving Eq. (3) for μi ≡ μ], but it
coincides with the case of μi = μ∗

i . In contrast, for λ > λ
opt
c ,

the prevalence for μi = μ∗
i is always larger than the optimal

choice, and even larger than the standard SIS model in the
strong infection region, indicating that μi = μ∗

i is not a good
choice once the epidemic outbreak has happened.

We use the simulated annealing (SA) technique [31] to
validate our theoretical results. SA builds a Monte Carlo
Markov chain that in the long run converges to the minimum
of a given energy function E , where E = ρ can be obtained
by numerically iterating Eq. (3). The main steps of SA are as
follows. At the beginning, we assign to a given set of {μi}
satisfying the constraint Eq. (1) (e.g., μi = μ for all i). Then,
we randomly choose two distinct nodes, say i and j , and try
to make the changes μi ← μi + δ and μj ← μj − δ with the
standard METROPOLIS probability min(1,e−βSA�E ), where δ is
randomly chosen between −μi and μi + μj to guarantee the
curing rate is always not less than zero. βSA is the inverse
temperature of SA, which slowly increases from 10−2 to 104

via an annealing protocol. �E is the change of the energy
function E due the change of μi and μj , We tested several
different annealing protocols, and we adopted one in which the
inverse temperature of SA, βSA, is updated by βSA ← 1.01βSA

after each N attempt for updating {μi}. The SA results are also
shown in Fig. 1 (square dots), which agree with the theoretical
prediction.

In Fig. 2, we show the optimal allocation of {μk} as a
function of node degree k for several distinct λ in ER random
networks (a) and BA scale-free networks (b), in which the
theoretical results and the SA ones are indicated by the lines
and dots, respectively. For λ � λ

opt
c , μk increases linearly as

k with the slope depending on the distance to the epidemic
threshold. The results have been well predicted by Eqs. (16)
and (21). For the region away from the threshold, μk will
deviate from a linear relation with k. For sufficiently large
λ, μk for large k can be less than that for small k, and
even μk vanishes when k exceeds a threshold value, as
given by Eq. (22). This surprising result implies that in the
strong infection region, more medical resources should be
put into these low-degree nodes rather than the high-degree
nodes.
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FIG. 2. The optimal allocation of {μk} as a function of node degree k for several distinct λ in ER random networks (a) and BA scale-free
networks (b) with equal N = 1000 and 〈k〉 = 6. The lines and dots indicate the theoretical and SA results, respectively.

VII. CONCLUSIONS AND PERSPECTIVE

In conclusion, we have theoretically studied the constraint
optimization problem of how best to distribute limited medical
resources (curing rates) to control an epidemic of SIS type.
Based on the QMF and HMF theories, we have shown that the
optimal allocation lies in the effective infection rate λ (or the
basic reproduction number R0 = 〈k〉λ). If R0 � 1, the curing
rate of each node should be in direct proportion to its degree
under which the epidemic outbreak will be suppressed to the
greatest extent and the epidemic threshold will be maximized,
Eq. (7) or Eq. (17). Once the maximal epidemic threshold is
just crossed (R0 � 1), the epidemic will spread persistently.
In this case, we have shown analytically that the change in the
curing rate of each node depends linearly on the difference
between the average degree and its degree and the distance
to epidemic threshold, Eq. (21). For the general infection
region (R0 > 1), it is almost impossible to derive an analytical
solution of the optimization problem; however, it can be
simplified to a much easier problem of numerical calculation
of three nonlinear equations, Eqs. (23)–(25). Surprisingly, we
found that in the strong infection region, the curing rates of
the low-degree nodes can overpower those of the high-degree
nodes to ensure minimization of prevalence.

A direct generalization for resource allocation is in the
form of vaccination for prevention rather than curing, that is,
the allocation is formally related to the infection rate β, not
the curing rate μ. Since the prevalence is determined by the
reproduction number defined by the ratio β/μ, our results
maybe provide some reference value for the generalization.
Another interesting generalization is how to solve the present
constraint optimization problem based on other existing
theoretical methods, such as the pair mean-field method,
that takes into account the role of dynamical correlations
between neighboring nodes [32–40]. Moreover, the method
presented here could be applied to a number of other
optimization problems, such as controlling opinion dynamics
in social networks [41]. This will be a subject of future
work.
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APPENDIX A: WEAK INFECTION REGION

For λ larger than but close to λ
opt
c , λ � λ

opt
c , we have

combined perturbation theory with the Lagrange multiplier
method (LMM) to optimize the prevalence ρ. For λ =
λ

opt
c + �λ, we have μk = μ∗

k + �μk and � = �∗ + ��,
where μ∗

k = μk/〈k〉, and �∗ = 1 − μ

β〈k〉 is the solution of the
self-consistent equation of �, Eq. (12) in the main text, under
μk = μ∗

k . Since � > 0 in the region of epidemic spreading,
Eq. (12) in the main text can be rewritten as

β

〈k〉
∑

k

k2P (k)

μk + βk�
= 1. (A1)

Expanding the above equation around (μ∗
k,�

∗) to second order
yields

∑
k

∂f

∂μk

∣∣∣∣
(μ∗

k ,�
∗)

�μk + ∂f

∂�

∣∣∣∣
(μ∗

k ,�
∗)

��

+ 1

2

∑
k

∑
k′

∂2f

∂μk∂μk′

∣∣∣∣
(μ∗

k ,�
∗)

�μk�μk′

+
∑

k

∂2f

∂μk∂�

∣∣∣∣
(μ∗

k ,�
∗)

�μk��+ 1

2

∂2f

∂�∂�

∣∣∣∣
(μ∗

k ,�
∗)

��2 =0,

(A2)
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where f
�= β

〈k〉
∑
k

k2P (k)
μk+βk�

−1, and

∂f

∂μk

∣∣∣∣
(μ∗

k ,�
∗)

= −P (k)

β〈k〉 ,

∂f

∂�

∣∣∣∣
(μ∗

k ,�
∗)

= −1,

∂2f

∂μk∂μk′

∣∣∣∣
(μ∗

k ,�
∗)

= δkk′
2P (k)

β2〈k〉k ,

∂2f

∂μk∂�

∣∣∣∣
(μ∗

k ,�
∗)

= 2P (k)

β〈k〉 ,

∂2f

∂�∂�

∣∣∣∣
(μ∗

k ,�
∗)

= 2. (A3)

Substituting Eq. (A3) into Eq. (A2), we obtain

− 1

β〈k〉
∑

k

P (k)�μk − �� + 1

β2〈k〉
∑

k

P (k)

k
�μ2

k

+ 2

β〈k〉
∑

k

P (k)�μk�� + ��2 = 0. (A4)

Using the constraint
∑

k P (k)�μk = 0 and ignoring the
second-order small quantity ��2  ��, Eq. (A4) becomes

�� = 1

β2〈k〉
∑

k

P (k)

k
�μ2

k . (A5)

Around (μ∗
k,�

∗), the change �ρ in the prevalence ρ =∑
k P (k)ρk can be expanded in leading order,

�ρ =
∑

k

∂ρ

∂μk

∣∣∣∣
(μ∗

k ,�
∗)

�μk + ∂ρ

∂�

∣∣∣∣
(μ∗

k ,�
∗)

��, (A6)

where

∂ρ

∂μk

∣∣∣∣
(μ∗

k ,�
∗)

= −P (k)�∗

βk
,

∂ρ

∂�

∣∣∣∣
(μ∗

k ,�
∗)

= 1 − �∗. (A7)

Substituting Eq. (A7) into Eq. (A6), we obtain

�ρ = −�∗

β

∑
k

P (k)

k
�μk + (

1 − �∗)��. (A8)

In the following, we use LMM to minimize �ρ under the
constraints

∑
k P (k)�μk = 0 and Eq. (A5). Note that the first

constraint is due to the fixed average curing rate, and the
second one is the requirement of the HMF dynamics. Utilizing
Eq. (A8) and the two constraints, the Lagrange function can
be written as

L = − �∗

β

∑
k

P (k)

k
�μk + (

1 − �∗)��

+ τ

(
−��+ 1

β2〈k〉
∑

k

P (k)

k
�μ2

k

)
+ κ

∑
k

P (k)�μk,

(A9)

where τ and κ are the Lagrange multipliers. Taking the
derivative of L with respect to �� and �μk , we obtain

∂L
∂��

= (
1 − �∗) − τ (A10)

and

∂L
∂�μk

=−�∗

β

P (k)

k
+τ

1

β2〈k〉
2P (k)

k
�μk+κP (k). (A11)

Letting ∂L
∂��

= 0 and ∂L
∂�μk

= 0, we obtain

τ = 1 − �∗ (A12)

and

−�∗

βk
+ 2τ

β2k〈k〉�μk + κ = 0, (A13)

respectively. Substituting Eq. (A13) into the constraint∑
k P (k)�μk = 0, we obtain

κ = �∗

β〈k〉 . (A14)

Combining Eqs. (A12), (A13), and (A14), we obtain

�μk = μ

2
〈k〉λ(〈k〉 − k)�λ 
 μ

2
(〈k〉 − k)�λ. (A15)

Substituting Eq. (A5) and Eq. (A15) into Eq. (A8), we obtain

�ρopt = − 1

4λ
〈k〉2(〈k−1〉 − 〈k〉−1)�λ2


 −1

4
〈k〉3(〈k−1〉 − 〈k〉−1)�λ2. (A16)

APPENDIX B: GENERAL INFECTION REGION

For λ larger than but not close to λ
opt
c , due to the nonlinear

character of the model, an analytical expression of the optimal
allocation of {μk} and the corresponding minimal ρ is in
general impossible. However, with the aid of HMF theory
and LMM, the high-dimensional optimization problem can be
converted to numerically solving low-dimensional nonlinear
equations. We first write a Lagrange function as

L =
∑

k

P (k)
βk�

μk + βk�
+ τ

(∑
k

P (k)μk − μ

)

+ κ

(∑
k

kP (k)

〈k〉
βk�

μk + βk�
− �

)
, (B1)
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where τ and κ are the Lagrange multipliers. Taking the
derivative of L with respect to μk and �, we obtain

∂L
∂μk

= −P (k)
βk�

(μk + βk�)2 + τP (k) − κ
kP (k)

〈k〉
βk�

(μk + βk)2

(B2)

and
∂L
∂�

=
∑

k

βkP (k)

μk + βk�
−

∑
k

β2k2P (k)�

(μk + βk�)2

− κ
∑

k

kP (k)

〈k〉
β2k2�

(μk + βk�)2 . (B3)

Taking the derivative of L with respect to the Lagrange
multipliers τ and κ , we obtain the constraint equation (8) and
the self-consistent equation (12) of � in the main text.

Letting ∂L/∂μk = 0, we obtain

μk =
{√

βk�

τ
+ κβk2

τ 〈k〉 − βk� > 0, k < kc,

0, k � kc,
(B4)

where kc is a threshold degree to guarantee μk > 0 for k < kc,
and it will be determined later. Substituting Eq. (B4) into

Eq. (B3) and letting ∂L/∂� = 0, we obtain

√
βτ 〈k〉

�

kc∑
k=kmin

P (k)
√

k√〈k〉 + κk
− βτ 〈k〉

kc∑
k=kmin

P (k)k

〈k〉 + κk

−βκτ

kc∑
k=kmin

P (k)k2

〈k〉 + κk
− κ

〈k〉�
kmax∑
k=kc

kP (k) = 0. (B5)

Combining Eq. (8) in the main text and Eq. (B4), we obtain

μ =
√

β�

τ 〈k〉
kc∑

k=kmin

P (k)
√

k(
√

〈k〉 + κk) − β�

kc∑
k=kmin

P (k)k.

(B6)

Combining Eq. (12) in the main text and Eq. (B4), we obtain

� =
√

βτ�

〈k〉
kc∑

k=kmin

P (k)k3/2

√〈k〉 + κk
+ 1

〈k〉
kmax∑
k=kc

kP (k). (B7)
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