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Visibility graphs of random scalar fields and spatial data
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We extend the family of visibility algorithms to map scalar fields of arbitrary dimension into graphs, enabling the
analysis of spatially extended data structures as networks. We introduce several possible extensions and provide
analytical results on the topological properties of the graphs associated to different types of real-valued matrices,
which can be understood as the high and low disorder limits of real-valued scalar fields. In particular, we find a
closed expression for the degree distribution of these graphs associated to uncorrelated random fields of generic
dimension. This result holds independently of the field’s marginal distribution and it directly yields a statistical
randomness test, applicable in any dimension. We showcase its usefulness by discriminating spatial snapshots
of two-dimensional white noise from snapshots of a two-dimensional lattice of diffusively coupled chaotic
maps, a system that generates high dimensional spatiotemporal chaos. The range of potential applications of this
combinatorial framework includes image processing in engineering, the description of surface growth in material
science, soft matter or medicine, and the characterization of potential energy surfaces in chemistry, disordered
systems, and high energy physics. An illustration on the applicability of this method for the classification of the
different stages involved in carcinogenesis is briefly discussed.
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I. INTRODUCTION

The concept of visibility graphs was introduced in com-
putational geometry and graph theory some decades ago in
order to abstract the intervisible structure of a set of points
and obstacles in the Euclidean plane [1]. Each node in this
graph models a point location, and each edge represents a
visible connection between them. Applications of classical
visibility graph theory included principally robot motion
planning, geography, urban planning, and architecture [2].
In recent years, this paradigm was extended to the realm
of time series analysis by looking at time series as finite
samplings of one-dimensional landscapes. In this context,
visibility and horizontal visibility graphs were introduced
as a family of mappings between ordered sequences and
graphs [3,4]. Consider an ordered sequence {x(t)}Nt=1, where
x(t) ∈ Rm, m � 1. For m = 1, the sequence of N data can for
instance represent a univariate time series trajectory describing
the activity of a complex system, such as the time evolution
of a temperature, a stock price asset, or a heart interbeat
measurement. Such dynamical information is subsequently
mapped into a graph of N nodes where any two nodes are
linked in the graph if a particular visibility criterion [defined in
Sec. II, cf. Eqs. (1) and (2) below] holds in the sequence (when
m > 1, we get multivariate time series associated to high-
dimensional dynamics [5]). This mapping thereby establishes
the framework for the combinatorial description of dynamics
and enables the possibility of performing graph-theoretical
time series analysis by building a bridge between the theories
of dynamical systems, signal processing, and graph theory.

In recent years, this mapping has been used to provide
a topological characterization of different routes to low-
dimensional chaos [6–8], or different types of stochastic and
chaotic dynamics [9]. From an applied angle, it is being widely
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used to extract in a simple and computationally efficient way
informative features for the description and classification of
empirical time series in several areas of physics, including
optics [10], fluid dynamics [11–13], geophysics [14], or
astrophysics [15,16], and extend beyond physics in areas such
as physiology [17,18], neuroscience [19], or finance [20].
Whenever each element in a given classification task is
naturally encoded as an ordered sequence, one can map such
sequence into a visibility graph and subsequently extract a
certain set of topological properties of these graphs as the
feature vector with which to train classifiers in supervised
learning tasks.

Here, we extend this methodology from time series
{x(t)}Nt=1 to scalar fields h(x,y) : Rd → R. This extension
has only been scarcely explored [21] and is conceptually
closer to the original context of visibility graphs [1,2]. It
enables the possibility of constructing the visibility graphs of
images, landscapes, and general large-scale spatially extended
surfaces. In what follows, we will introduce the concept
along with a few definitions and properties. In Sec. III we
provide analytical results on some topological properties
of these graphs associated to some types of real-valued
matrices which can be understood as the high and low
disorder limits of real-valued scalar fields. In particular, we
find a closed expression for the degree distribution of these
graphs associated to uncorrelated random fields of generic
dimension, extending the result known for one-dimensional
time series. We show that this result, by holding independently
of the field’s marginal distribution, directly yields a statistical
randomness test, applicable in arbitrary dimensions. In Sec. IV,
we showcase its usefulness by discriminating two-dimensional
white noise from two-dimensional lattice of diffusively cou-
pled chaotic maps (a system that generated high-dimensional
spatiotemporal chaos). In Sec. V, we discuss the range of
potential applications of this combinatorial framework and we
further briefly illustrate its usefulness for characterizing the
process of oncogenesis through cell surface image analysis.

2470-0045/2017/96(1)/012318(11) 012318-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.012318


LUCAS LACASA AND JACOPO IACOVACCI PHYSICAL REVIEW E 96, 012318 (2017)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HVG

VG

x

t

FIG. 1. Illustration of a sample time series and the construction of
the associated horizontal visibility graph (HVG) and visibility graph
(VG) following the definition and criteria given by Eqs. (1) and (2).

II. DEFINITIONS AND BASIC PROPERTIES

We start by recalling the basic definition of visibility graphs
(VG) and horizontal visibility graphs (HVG) (see [3,4] and
Fig. 1 for an illustration):

Definition (VG). Let S = {x1, . . . ,xN } be an ordered se-
quence of N real-valued, scalar data points. A visibility graph
(VG) is an undirected graph of n nodes, where each node i ∈
[1,N ] is labeled by the time order of its corresponding datum
xi . Hence, x1 is mapped into node i = 1, x2 into node i = 2,
and so on. Then, two nodes i and j (assume i < j without loss
of generality) are connected by a link if and only if one can
draw a straight line connecting xi and xj that does not intersect
any intermediate datum xk, i < k < j . Equivalently, i and j

are connected if the following convexity criterion is fulfilled:

xk < xi + k − i

j − i
[xj − xi], ∀ k : i < k < j. (1)

The same definition applies to a horizontal visibility graph
(HVG) [4] but in this latter graph two nodes i,j (assume i < j

without loss of generality) are connected by a link if and
only if one can draw a horizontal line connecting xi and xj

that does not intersect any intermediate datum xk, i < k < j .
Equivalently, i and j are connected if the following ordering
criterion is fulfilled:

xk < inf(xi,xj ), ∀ k : i < k < j. (2)

From a combinatoric point of view, HVGs are outer-planar
graphs with a Hamiltonian path [22], i.e.. noncrossing graphs
as defined in algebraic combinatorics [23]. Note that the former
definitions focus on discrete sequences, such that the index
labeling is such that i + 1 ≡ i + �, where � is the spacing

between data. Interestingly, both VG and HVG are invariant
under changes in �. Intuitively, this suggests that, in order to
consider the continuous version of a discrete time series, one
simply needs to take the limit � → 0. This invariance property
in principle allows treating continuous scalar fields as the � →
0 limit of matrices, something that will be discussed later.

Extension classes. One can now extend the definition of
visibility to handle two-dimensional manifolds, by simply
extending the visibility criteria along one-dimensional sections
of the manifold. The question is, in how many different ways
one can do that? As a matter of fact, there exist several
possibilities; here we consider just a few of them. We first
consider manifolds of dimension d which have a natural
Euclidean embedding and define two extension classes, which
we label as canonical and fcc respectively (incidentally, the
name fcc is only loosely inspired in the face-centered cubic
crystal shape). In the canonical extension class, the rule of
thumb for extending the definition of a visibility graph to
a manifold of dimension d will be by applying the VG or
HVG to d orthogonal sections of the manifold (which define
n = 2d directions). In other words, at each point of the
manifold, one constructs the VG or HVG in the direction of the
(canonical) Cartesian axis. On the other hand, the fcc extension
class allows an additional number of sections in the direction
of the main diagonals. Accordingly, in this second class the
number of directions is n = 2d + 2d directions (see Fig. 2 for
an illustration in the case d = 2). Finally, a third extension
class (which in this work will only be defined for d = 2 flat
surfaces) is defined by taking n directions in such a way that
the set of n vectors make a homogeneous angular partition
of the plane with constant angle 2π/n. This class is labeled as
the order-n class. Obviously, the order-8 and order-4 classes
coincide, when d = 2, with the fcc and canonical classes,
respectively, but they differ otherwise. These special classes
are indeed of special relevance as they are perhaps the most
natural algorithmic implementation for image processing. We
are now ready to give a more formal definition of visibility
graphs in these extension classes.

Definition (IVGn). Let I be a N × N matrix, where Iij ∈ R
and N > 0 (note at this point that n and N denote two different
things). For an arbitrary entry ij , make an angular partition of
the plane into n directions, such that direction labeled as p

Canonical extension 
d=2 

     FCC extension 
d=2 

(a) (b)

FIG. 2. Illustration of two extension classes of visibility algo-
rithms in a dimension d = 2 data set (gray box matrix). In the
canonical extension (a) for a given datum (green box) a visibility
algorithm is evaluated along the vertical and horizontal directions. In
the fcc extension (b) visibility is considered also along the diagonals
crossing the green box.
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FIG. 3. Illustration of the IHVG8 construction. (a) Plots a sample
square matrix, where the central entry in the matrix is selected (with
value 0.5). Horizontal visibility criterion [Eq. (2)] along four lines
(fcc extension class, blue arrows) is then applied to select visible
data points over the image and field (red boxed pixels). (b) The
connectivity pattern of the node associated to the selected entry is
shown. By sequentially applying the algorithm to all the pixels in the
matrix, the corresponding IHVG8 can be fully determined. To obtain
the connectivity patterns of that node within IVG8 instead, one only
needs to switch the linking criterion from Eq. (2) to Eq. (1).

makes an angle with the row axis of 2π (p − 1)/n. The image
visibility graph of order n IVGn is a graph with N2 nodes,
where each node is labeled by a duple ij in association with
the indices of the entry Iij , such that two nodes ij and i ′j ′ are
linked if

(1) i ′j ′ belongs to one of the n angular partition lines, and
(2) Iij and Ii ′j ′ are linked in the VG defined over the

ordered sequence which includes ij and i ′j ′.
The image horizontal visibility graph (IHVGn) follows
equivalently if in the second condition we make use of HVG
instead of VG. For illustration, in Fig. 3 we depict a sample
matrix [Fig. 3(a)] where we have highlighted the central
entry, and in Fig. 3(b) of the same figure we describe the
connectivity pattern associated to this entry in the case of
IHVG8 [to obtain the connectivity patterns of that node within

IVG8 instead, one only needs to switch the linking criterion
from Eq. (2) to Eq. (1)].

Note that in the preceding definition, I can be understood as
a two-dimensional square lattice, which is naturally embedded
in R2 if we associate a certain lattice length �p > 0 to the
separation between any two neighbors in each direction p.
Since a two-dimensional square lattice is coarsely equivalent
to R2, in the limit N → ∞, �p → 0 this matrix I converges
in some mathematically well-defined sense to a continuous
scalar field h(x,y) : R2 → R. Accordingly, the continuous
version of these graphs can be obtained for n → ∞, and in
that case I(H)VG∞ would be an infinite graph. In this work, we
keep n finite and from now on only consider finite discretiza-
tions of scalar fields, however, the infinite case is certainly of
theoretical interest and is left for future investigations.

For a given dimension d, one can define in a similar
fashion the visibility graphs in the canonical extension class
labeled IVGc(d) by modifying condition (1): i ′j ′ belongs to
one of the d Cartesian axes which span Rd and have origin
in ij . Analogously, the visibility graphs in the fcc extension
class IVGfcc(d) are obtained by modifying again condition
(1) appropriately to allow visibility in the main diagonals.
Finally, again the horizontal version follows equivalently if in
the second condition we make use of HVG instead of VG.

A trivial but important remark is that ∀ I, I(H)VG4 =
I(H)VGc(2) and I(H)VG8 = I(H)VGfcc(2). Note also that the
special class IVGc(2) has been explored recently under the
name row-column visibility graph [21]. Once any of these
graphs has been extracted from a given matrix I, one can
further compute standard topological properties on this graph
using classical measures from graph theory [24] or recent
metrics defined in network science [25], which in turn might
be used to provide a topological characterization of I. For
instance, the degree k of a node is the number of links of that
node. This allows to construct the degree matrix K ∈ NN×N ,
where Kij is the degree of node labeled with the pair i,j . The
degree distribution P (k) determines the probability of finding
a node of degree k and can be straightforwardly computed from
the degree matrix. In this work for concreteness we will only
consider these metrics, however, we should emphasize here
that a large toolbox of measures could be used for feature
extraction in context-dependent applications. Here, we are
motivated to use these very simple metrics as it has recently
been proved that, in the one-dimensional case, the set of
degrees is on bijection with the adjacency matrix and hence is
indeed an optimal feature [26].

In what follows, we depict some exact results on the
topology of these graphs associated to simple types of matrices
which can be understood as the high order and high disorder
limits of real images. From now on we only consider the
horizontal version of the visibility criteria, and we assume
N → ∞ to avoid border effects.

III. SOME EXACT RESULTS

A. Periodicity: Monochromatic images and chess boards

We start by considering trivial configurations at the end
of total order. For monochromatic images where Iij = c,
the IHVGn is such that Kij = n and thus P (n) = 1 and
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FIG. 4. (a) Semi-log plot of the degree distribution (ensemble averaged over 10 realizations) of IHVG8 associated to N × N matrices with
i.i.d. uniform U[0,1]random entries, for N = 27,28, . . . ,212. The solid line is the theoretical value of P (k) given by Eq. (3) for n = 8. In every
case we find excellent agreement for k < k0, where k0 is a cutoff value that denotes the onset of finite size effects. (b) Linear-log plot of the
cutoff k0 as a function of the system’s size N for the same data of (a), suggesting a logarithmic scaling k0 ∼ c log N .

P (k 	= n) = 0. Then, we can consider chess boards. This is a
periodic lattice, where in each row the same periodic sequence
is represented (black, white, black, ...) ≡ (1,−1,1,−1, . . . ),
except for a one-step translation in even rows. Accordingly,
neglecting boundary conditions Iij = 1 if i · j is odd and −1
otherwise. For IHVG4 we find Kij = 8 if i · j is odd and 4
otherwise. For IHVG8 we find Kij = 12 if i · j is odd and
8 otherwise. From this latter matrix the degree distribution
is simply P (k) = 1

2 for k = 8,12 and zero otherwise. For
other types of periodic structures it is easy to see that the
degree matrix will inherit such periodicity and thus the degree
distribution will only be composed by a finite number q of
non-null probabilities, where q in turn is typically bounded by
a function that depends on the period of the periodic structure.

B. Uncorrelated random fields

We then consider a limit configuration at the end of total
disorder: a two-dimensional uncorrelated random field, i.e.,
white noise. Then, the following theorem holds for the degree
distribution of IHVGn:

Main theorem. Consider an N × N matrix with entries
Iij = ξ , where ξ is a random variable sampled from a dis-
tribution f (x) with continuous real support x ∈ (a,b). Then,
for n > 0 and in the limit N → ∞ the degree distribution of
the associated IHVGn converges to

P (k) =
{(

1
n+1

)(
n

n+1

)k−n
, if k � n

0, otherwise.
(3)

For the sake of readability, the proof of this theorem has
been put in an Appendix. A few comments are in order.
First, note that this equation reduces, for n = 2 (d = 1),
to the well-known result for time series of i.i.d. variables
P (k) = (1/3)(2/3)k−2 [4]. Second, in the specific class n = 8
(equivalent to the fcc class in d = 2), Eq. (3) yields

P (k) =
{(

1
9

)(
8
9

)k−8
, if k � 8

0, otherwise.
(4)

Third, note that in the limit of large n we would have a
continuous visibility scanning. The extension for any generic
n can also be directly interpreted as a generalization to
higher-dimensional (discrete) scalar fields, so it is easy to
show that Eq. (3) also applies to the degree distribution
of (i) the canonical extension for dimension d = n/2 (i.e.,
only even values of n are allowed in this case), and (ii) the
fcc extension for dimension d, where n = 2d + 2d (i.e., for
n = 8,14,24,42, . . . ). We are now ready to provide the proof
of the theorem.

Finite size effects. To assess the convergence speed to Eq. (3)
for finite N , we have estimated the degree distribution of
IHVG8 associated to N × N random matrices whose entries
are i.i.d. uniform random variables U[0,1]. In Fig. 4 we plot, in
semi-log scales, the resulting (finite size) degree distributions,
for different N = 27,28, . . . ,212. As we can see, the distribu-
tions are in excellent agreement with Eq. (3) for k � k0, where
the location of the cutoff value k0 scales logarithmically with
the system’s size N as shown in the bottom of the figure.
In other words, finite size effects only affect the tail of the
distribution, which converges logarithmically fast with N .

IV. A SIMPLE APPLICATION

The results for uncorrelated random fields found in the
previous section are indeed of practical interest because Eq. (3)
holds independently of the noise marginal distribution f .
Resorting to the contrapositive, if the degree distribution of
IHVGn deviates from Eq. (3) for some empirical field I, one
can conclude that the field is not uncorrelated noise. This
theorem thereby allows for the straightforward design of a
randomness statistical test which would be applicable to data
structure of arbitrary dimension d, where n(d) = 2d if one
uses the canonical extension class, or n(d) = 2d + 2d in the
case of fcc.

Coupled map lattices. To illustrate this, we consider a sim-
ple application of discriminating noise from high-dimensional
chaos. Chaotic processes display irregular and unpredictable
behavior which is often confounded with randomness, how-
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chaotic CML (ε=0.1)

random field (iid)

(a) (b)

(c) (d)

chaotic CML (ε=0.7)

FIG. 5. Gray scale plots of 200 × 200 matrices describing (a) i.i.d. uniform U[0,1] random variables (uniform white noise); (b) a snapshot of
a two-dimensional lattice of diffusively coupled chaotic logistic maps with coupling strength ε = 0 (effectively being uncoupled and therefore
a snapshot of uncorrelated beta distributed white noise); (c) the same coupled map lattice for weak coupling ε = 0.1 for which the system
displays fully developed turbulence (a state of spatiotemporal chaos with a high-dimensional attractor); (d) the same coupled map lattice for
strong coupling ε = 0.7. In this latter case the system shows strong spatial correlations and is easily distinguishable from the rest.

ever, chaos is a deterministic process which indeed hides in
some cases some patterns that can be extracted by appropriate
techniques. The endeavor of distinguishing noise from chaos
has been an area of intense research activity in the last
decades [27] and applications have pervaded nearly every
scientific discipline where complex, irregular empirical signals
emerge. Here, we consider spatially extended structures and
thus we will be dealing with spatiotemporal chaos, i.e., chaotic
behavior in space and in time, and we will explore whether
visibility graphs are able to distinguish such dynamics from
simple randomness. Let us define I(t) as a two-dimensional
square lattice of N2 diffusively coupled chaotic maps which
evolve in time [28]. In each vertex of this coupled map
lattice (CML) we allocate a fully chaotic logistic map xt+1 =
Q(xt ), Q(x) = 4x(1 − x), and the system is then spatially
coupled as it follows:

Iij (t + 1) = (1 − ε)Q[Iij (t)] + ε

4

∑
i ′,j ′

Q[Ii ′j ′ (t)], (5)

where the sum extends to the Von Neumann neighborhood of
ij (four adjacent neighbors). The update is parallel and we use
periodic boundary conditions. The coupling strength ε ∈ [0,1].
For ε = 0 the system is uncoupled and the N2 logistic maps

evolve independently. For positive ε > 0, there is a balance
between the internal (chaotic) dynamics which drives a local
tendency towards inhomogeneity and the diffusion term (in
the right hand of the equation one can easily recognize the
discrete version of the Laplacian) which induces a global
tendency towards homogeneity in space. This balance is tuned
by ε, acting as an effective viscosity constant, and the system
evolves into different spatiotemporal dynamics as ε varies. For
a small yet positive value of the coupling, the system displays
so-called fully developed turbulence, a phase with incoherent
spatiotemporal chaos and high-dimensional attractor [28]. In
other words, the system evolves both temporally and spatially
in a very irregular way, yet it is not totally uncorrelated.
For illustration, in Fig. 5 we plot, for N = 200, gray scale
snapshots of this system for ε = 0 (uncoupled), ε = 0.1
(weak coupling), and ε = 0.7 (strong coupling) along with
a 200 × 200 matrix of U[0,1] i.i.d. random variables (white
noise). Note that the snapshot of the uncoupled case reduces
to a collection of independent and identically distributed
chaotic variables with a marginal distribution that coincides
with the invariant measure of the fully chaotic logistic map:
the beta distribution B(1/2,1/2) = π−1x−1/2(1 − x)−1/2. In
other words, such a snapshot is indistinguishable from

012318-5



LUCAS LACASA AND JACOPO IACOVACCI PHYSICAL REVIEW E 96, 012318 (2017)

)
%

6.
6( 

2 t
ne

no
p

m
o

C

Component 1 (53.8%)

0.5

0.4

0.3

0.2

0.1

0

-0.1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.2

-0.3

-0.4

-0.5

random field (iid)
uncoupled CML (ε=0) 
coupled CML (ε=0.1) 

(c)

(a)

(b)

FIG. 6. (a) Semi-log plot of the degree distribution of IHVG8 associated to a two-dimensional uncorrelated random field of uniform random
variables (black dots), and two-dimensional coupled map lattices of diffusively coupled fully chaotic logistic maps, for coupling constant ε = 0
(diamonds) and ε = 0.1 (crosses). The solid line is Eq. (3) for n = 8. Deviations from the exponential law in the tail are due to finite size effects
(in every case matrices are 200 × 200). Note that the ε = 0 case is effectively a spatially uncorrelated field with i.i.d. entries (with marginal
distribution equivalent to the invariant measure of an isolated logistic map, i.e., the beta distribution). For ε = 0.1 the system is weakly coupled
and displays fully developed turbulence (spatiotemporal chaos with high-dimensional attractor, i.e., the snapshot is weakly correlated). All three
snapshots [Figs. 5(a)–5(c)] look very similar and, expectedly, they all display apparently similar degree distributions. (b) Here we consider 20
realizations of each of the three systems, and in each case compute the χ2 statistic (see the text) measuring the deviation of the empirical degree
distribution (k < 44) from the theory for random fields. As expected, the i.i.d. cases (random field and snapshot of the uncoupled logistic maps)
are indistinguishable, but the weakly coupled system is clearly distinguished, finding stronger deviations from Eq. (3) than those found due to
finite size effects. (c) Principal component analysis (PCA) of the set of degree distributions for the 60 realizations explored in (b). Each degree
distribution P (k) has been projected in a two-dimensional space spanned by the first two principal components (this subspace accounts for
60% of the variability). One does not need to apply any clustering algorithm as the nonrandom matrices are very clearly clustered together and
apart from the i.i.d. cases.

white, beta-distributed noise, which should be then equivalent
under the IHVG mapping to any type of white noise and should
therefore fulfill our theorem. When ε > 0 spatial correlations
settle in and the snapshots are in theory statistically different,
however, this difference is only evident for large coupling.

Distinguishing noise from chaos. To explore such dif-
ferences, we can exploit our theorem as it follows: first,
we estimate the degree distribution of the IHVG8 of each
snapshot, and compare against the theoretical equation for
white noise. To account for finite size effects, it is necessary
to compare the estimation of the chaotic case not just with
Eq. (3) but also with a finite i.i.d. sample. We have generated
20 realizations of each process (random uniform noise, ε = 0
and 0.1) and have extracted the degree distribution of IHVG8

for each case. Sample results of these distributions can be
shown in Fig. 6(a) along with the theoretical prediction for i.i.d
[Eq. (4)]. As expected, the distributions are apparently very
well approximated by Eq. (4) in every case (there are strong
deviations for k > 35 but this is due to finite size effects as
similar deviations take place for the i.i.d. white uniform noise
case). To quantify potential deviations from the theory (which
according to the theorem would imply nonrandomness), for
each case we have computed the χ2 statistic

χ2 = N
∑

k

[Pth(k) − Pexp(k)]2

Pth(k)
,

where we have taken k = 8,9, . . . ,44. Results are shown
in Fig. 6(b), showing now a clear separation between the
uncorrelated cases (uncoupled chaotic maps and uniform white
noise) and the weakly coupled system. This clear distinction
is further confirmed in a principal component analysis (PCA)
depicted in Fig. 6(c), where each degree distribution P (k) has
been projected in a two-dimensional space spanned by the first
two principal components (this subspace accounts for 60%
of the variability). One does not need to apply any clustering
algorithm as the nonrandom matrices are very clearly clustered
together and apart from the i.i.d. cases.

Phase diagram. As mentioned previously, the spatiotem-
poral dynamics of the coupled map lattice shows a rich phase
diagram as we increase the coupling constant ε. An easy way
of encapsulating and visualizing such richness in a single
diagram is presented in Fig. 7(a). For each ε, we compute
the degree distribution of the associated IHVG8. Then, we
compute the distance D between the degree distribution at
ε and the corresponding result for ε = 0 [Eq. (4)] D =∑

k |P (k) − (1/9)(8/9)k−8|.D acts as a scalar order parameter
describing the spatial configuration of the CML and, inter-
estingly, evidences sharp changes for the different phases,
such as for ε < 0.12, the system develops fully developed
turbulence (FDT) with weak spatial correlations. This regime
shifts to a periodic structure (PS) for 0.12 < ε < 0.27. This
regime then parsimoniously shifts into a phase with spatially
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FIG. 7. (a) Scalar parameter D (see the text) as a function of the coupling constant ε, computed from the degree distribution of IHVG8

associated to 100 × 100 CMLs of fully chaotic logistic maps. D captures the spatiotemporal phases: fully developed turbulence (FDT), periodic
structure (PS), coherent structure (CS), and a mixed phase. Snapshots characteristic of these phases are depicted in Fig. 9 in an Appendix.
(b) Principal component analysis (PCA) of the degree distributions of IHVG8 associated to the same data of (a). The plot is a projection into
the first two principal components (accumulating over 90% of the data variability). The different heuristic phases are highlighted.

coherent structures (CS), which ultimately break down for
ε > 0.88 in favor of periodic patterns. For 0.88 < ε < 1
the spatial structure shows a mix between CS and PS. We
conclude that the degree distribution of the IHVG8 captures
this rich spatial structure, something confirmed via principal
component analysis in Fig. 7(b).

V. DISCUSSION

This framework allows the possibility of describing dis-
cretized scalar fields of arbitrary origin in a combinatorially
compact fashion, and enables using the tools of graph
theory and network science for the practical description and
classification of spatially extended data structures. For the sake
of exposition and concreteness, in this work we have only
used a couple of graph measures (degree matrix and degree
distribution) which can be argued that were optimal in the
one-dimensional case [26], but it should be highlighted that
this method is much more general and allows to extract from
these graphs any desired property.

For d = 1 the method was naturally designed for the task of
time series analysis, and has been exploited accordingly and
extensively in the last years, both from a theoretical point of
view and for applications, as was acknowledged in the Intro-
duction section. Here, we have presented a natural extension
of these algorithms to deal with (discretized) scalar fields of
arbitrary dimension, along with a few exact results on simple,
yet relevant, cases. From a mathematical point of view, the task
of characterizing the graphs in these extension classes provides
a wide range of challenging open questions, which could
parallel recent advancements in the one-dimensional case [9].
Now, what are the potential applications of this framework?

For d = 2 (either using the canonical or fcc extension
classes, or the order-n class), a plethora of applications
emerge, here we only enumerate and discuss a few: (i) Image
processing: A (gray scale) image is just a discrete scalar
field. Once we extract the visibility graphs of a given image,
can we use the topological properties of this graph to build
feature vectors which can feed automatic classifiers for several
statistical learning tasks involving images [29]? Can we define

the distance between two images using graph kernels [30] on
the associated visibility graphs? (ii) Physics of interfaces: Can
we provide a topological characterization of fractal surface
growth [31]? Can we, for instance, account for spatial self-
similar structures much in the same way the Hurst exponent
of fractional Brownian motion was estimated with visibility
graphs [32] (a preliminary analysis via row-column visibility
graphs has partly addressed this issue recently [21]). Further-
more, can we apply this methodology in biologically relevant
problems and beyond, for instance, to classify tumoral or calli
surfaces? (iii) Urban planning: Can we automatically cluster
cities by only resorting to combinatorial properties extracted
from their visibility graphs? And can we link such emerging
clusters with architectural, historical, or cultural properties of
cities? (iv) Random matrix theory: Is there a visibility graph
characterization of different random matrix ensembles?

To illustrate the potential applicability of the method to
the case of tumor description, in Fig. 8(d) we plot the
degree distribution of the IHVG8 associated to three atomic
force microscopy (AFM) images (94 × 94 after gray scale
preprocessing) of normal [Fig. 8(a)], immortal [premalignant,
Fig. 8(b)], and cancer [malignant, Fig. 8(c)] cervical epithelial
cells [33]. This very preliminary evidence suggests that
the carcinogenesis transition normal → premalignant →
cancer is paralleled in IHVG8 graph space by a systematic
deviation of the degree distribution from the i.i.d. case.
In Figs. 8(e)–8(g) we plot the degree distributions associated
to IVG8 instead, whose tails have been fitted to exponential
functions ∼exp(−λk). We find that exponents seem to change
during carcinogenesis as λnormal < λimmortal < λcancer [34].
These are of course very preliminary results given simply for
illustration, and future research should confirm their accuracy
and their potential use for carcinogenesis description and early
detection.

The most exciting application for higher dimensions d � 2
is perhaps on describing the spatial structure of generic energy
landscapes [35] V : x ∈ Rd → R, where d is the number of
degrees of freedom. Typically, these fields describe an energy
function whose minimum is associated to the macroscopic
behavior of many-body systems, and play a major role
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normal immortal cancer

(a) (b) (c)

(d)

(e)

(f)

(g)

FIG. 8. (a)–(c) Gray scale atomic force microscopy images of normal (a), immortal (premalignant) (b), and cancer (malignant) (c) cervical
epithelial cells (extracted from [33] after permission from Sokolov). (d) Semi-log plot of the degree distribution of IHVG8 associated to the
three images: normal (red dots), immortal (black triangles), and cancerous (black hollow squares) cells [33]. Normal cells display a distribution
closer to an uncorrelated random field [Eq. (3) for n = 8], and this preliminary evidence suggests that the transition normal → immortal →
cancer is paralleled by a systematic deviation from the random field case for most of the degrees k in P (k). (e)–(g) Analogous plot for the degree
distributions in the case of IVG8. The distributions now have a clear exponential tail, and we have used least squares to fit exponential functions
∼exp(−λk) to the tails of the distributions, i.e., in the range k � 30 (dispersion is Gaussian distributed, a requirement to use least-squares
minimization). Fitting suggests λnormal < λimmortal < λcancer, something that should be carefully validated in a larger study.

in physics and chemistry. The structure of these fields is,
however, rather messy. As a matter of fact, in spin glasses and
other disordered systems, their macroscopic properties do not
necessarily relate directly to a configuration of minimal energy
as the system gets trapped in local, metastable minima of this
energy surface: in this sense the spatial distribution and overall
structure of these minima (stationary points) gives valuable
information on the system dynamical evolution. These energy
surfaces are also of great interest in chemistry (Kramer’s
reaction rate theory for the thermally activated escape from
metastable states) and high energy physics (e.g., local minima
of supersymmetric energy landscape corresponds to the field
theory vacuum). The formalism presented here would enable
the description of such energetic landscapes, opening a thread
of questions such as follows: Can we classify different types of
field theories only using combinatorial criteria on their energy
landscapes? What is the spatial distribution of stationary points

of different canonical disordered systems in the light of this
new method?

To conclude, we hopefully made the case that to encode
spatially extended structures in a combinatorial fashion is an
enterprise that opens exciting theoretical questions as well as
applications. The approach presented here is promising and
there exist several possible avenues for future research, and
we hope that these methods spark interest in some of these
communities accordingly.
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APPENDIX: PROOF OF THE MAIN THEOREM

The proof of the main theorem stated in Sec. III B essentially
makes use of the diagrammatic formalism introduced in
Refs. [4,9] where, in the case of time series, the probability of
each degree was expanded in a series expansion of terms, each
term associated to a different diagram and contributing with
different amplitude. Let us start by considering the concrete
case n = 8 (which describes the case implemented in our
algorithm for image filtering) and we will generalize for all
n thereafter. Using the jargon developed in Refs. [4,9], a node
chosen at random which has horizontal visibility of k others
can be modeled as a seed (contributing with probability S)
which has visibility of k − 8 inner nodes (contributing with
I) distributed along the n = 8 directions (such that direction
i contributes with ki inner nodes), and whose visibility is
finally bounded by eight bounding nodes (contributing with
probability B). The probability that a node chosen at random
has horizontal visibility of k other nodes can thus be formally
expressed as

P (k) =
∑

{k1,k2...k8}
SB

8
8∏

i=1

Iki
, (A1)

where the sum enumerates all admissible combinations of
{(k1,k2, . . . ,k8)} such that

∑8
i=1 = k − 8 (by construction,

every node always has visibility of its boundary, here formed
by n = 8 nodes). It is easy to see that a possible enumeration
is

ki = 0,1, . . . ,k − 8 −
i−1∑
m=1

km for i = 1,2, . . . ,7;

k8 = k − 8 −
7∑

i=1

ki.

Making use of the cumulative distribution F (x) = ∫ x

a
f (x ′)dx ′

[with F (a) = 0, F (b) = 1] and following [4,9], geometrically
it is easy to see that

S =
∫ b

a

f (x0)dx0; B =
∫ b

x0

f (x)dx = 1 − F (x0).

To describe the probability of finding p inner nodes Ip,
by construction we shall take into account that an arbitrary

number r (from zero to an infinite amount) of hidden data (i.e.,
nodes that are not visible from the seed) can lie in-between
every pair of aligned inner nodes. Such arbitrary number of
hidden data should contribute with the following amplitude:

∞∑
r=0

r∏
j=1

∫ x

a

f (nj )dnj = 1

1 − F (x)
,

where we have used the properties of the cumulative distri-
bution to find the last identity. Accordingly, the concatenation
of p inner data which might have an arbitrary number of
interspersed hidden data can be expressed as

Ip =
∫ x0

a

f (x1)dx1

1 − F (x1)

n−1∏
j=1

∫ x0

xj

f (xj+1)dxj+1

1 − F (xj+1)
. (A2)

This latter calculation is easy but quite tedious. One proceeds
to integrate Eq. (A2) step by step and a recurrence quickly
becomes evident. One can easily prove by induction that

Ip = (−1)p

p!
{ln[1 − F (x0)]}p.

We are thus ready to tackle Eq. (A1). Taking advantage of the
closure

∑8
i=1 Ki = k − 8, we first have

8∏
i=1

Iki
= (−1)k−8{ln[1 − F (x0)]}k−8∏8

i=1(ki)!
,

so after some reordering,

P (k) =
∑

{k1,k2...k8}

(−1)k−8∏8
i=1(ki)!

∫ b

a

f (x0)[1 − F (x0)]8

×{ln[1 − F (x0)]}k−8dx0.

Now, in this latter equation the integral is easy to compute:∫ b

a

f (x0)[1 − F (x0)]8{ln[1 − F (x0)]}k−8dx0

= (−1)k−8(k − 8)!
(

1
9

)k−7
.

Consider finally the term

∑
{k1,k2...k8}

(k − 8)!∏8
i=1(ki)!

= (k − 8)!
k−8∑
k1=0

k−8−k1∑
k2=0

· · ·
k−8−∑7

j=1 kj∑
k7=0

1

k1!

1

k2!
· · · 1

k7!

1(
k − 8 − ∑7

j=1 kj

)
!

= 8k−8, (A3)

where the last identity was found by iteratively applying the binomial theorem
∑a

k=0

(
a

k

)
rk = (1 + r)a. Altogether, we can write

explicitly for n = 8

P (k) = (
1
9

)(
8
9

)k−8

for k � 8 and zero otherwise. This result is independent of f (x) as expected since HVG is an order statistic [36], and coincides
with Eq. (3) for n = 8 [i.e., Eq. (4)].

We are now ready to generalize the whole derivation. For a generic n, trivially

P (k) =
∑

{k1,k2...kn}

(−1)k−n∏n
i=1(ki)!

∫ b

a

f (x0)[1 − F (x0)]n{ln[1 − F (x0)]}k−ndx0
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(a) (b)

(d) (e)

(c)

(f)

FIG. 9. Gray scale snapshot plots of 100 × 100 CMLs [Eq. (5)] for different values of ε. From top left to bottom right, respectively:
ε = 0.05 [fully developed turbulence (a)], ε = 0.15 and 0.25 [periodic structure (b) and (c), respectively], ε = 0.4 and 0.8 [coherent structure
(d) and (e), respectively], and ε = 0.95 [coexistence state with both coherent and periodic structures intertwined (f)].

with ∫ b

a

f (x0)[1 − F (x0)]n{ln[1 − F (x0)]}k−ndx0

=
(

1

n + 1

)k−n+1

(−1)k−n(k − n)!

such that

P (k) =
(

1

n + 1

)k−n+1 ∑
{k1,k2...kn}

(k − n)!∏n
i=1(ki)!

.

Finally, since ∑
{k1,k2...kn}

(k − n)!∏n
i=1(ki)!

= nk−n,

we find

P (k) =
(

1

n + 1

)k−n+1

nk−n =
(

1

n + 1

)(
n

n + 1

)k−n

,

which concludes the proof. �
Note that a similar result can be found much more easily

at the expense of using a nonrigorous heuristic argument.

In the case n = 8, the probability that the seed node has
visibility of exactly k nodes can be expressed as the probability
that there are k − 8 nodes that are not bounding times the
probability that after these, the boundary prevents larger
visibility. Accordingly, we shall write

P (k) = [1 − P (8)]k−8P (8).

For k = 8, ki only takes the value ki = 0 ∀ i = 1 . . . 8, hence,
this term is straightforward to compute:

P (8) = SB
8 =

∫ b

a

f (x0)

[ ∫ b

x0

f (x)dx

]8

dx0 = 1

9
, ∀ f

which then yields the correct shape for P (k):

P (k) = [1 − P (8)]k−8P (8) = (
1
9

)(
8
9

)k−8
.

A similar argument can be used for a generic n, yielding

P (k) = [1 − P (n)]k−nP (n) =
(

1

n + 1

)(
n

n + 1

)k−n

for k � n and zero otherwise, in agreement with Eq. (3).
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