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We investigate a family of urn models that correspond to one-dimensional random walks with quadratic
transition probabilities that have highly diverse applications. Well-known instances of these two-urn models
are the Ehrenfest model of molecular diffusion, the voter model of social influence, and the Moran model of
population genetics. We also provide a generating function method for diagonalizing the corresponding transition
matrix that is valid if and only if the underlying mean density satisfies a linear differential equation and express
the eigenvector components as terms of ordinary hypergeometric functions. The nature of the models lead to
a natural extension to interaction between agents in a general network topology. We analyze the dynamics on
uncorrelated heterogeneous degree sequence networks and relate the convergence times to the moments of the
degree sequences for various pairwise interaction mechanisms.
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I. INTRODUCTION

Physical applications of urn problems can be traced to the
Ehrenfest model to describe the second law of thermodynam-
ics [1]. However, systems such as the Ehrenfest model do
not adequately describe the dynamics of interacting particle
systems [2]. To address this, we introduce an extension of the
Ehrenfest model that incorporates interactions between two
agents. In our models, two balls are randomly drawn from the
two urns and are then redistributed stochastically. Naturally,
these models have a wide range of physical applications for
various interpretations of the urns themselves, such as well-
mixed kinetic reactions [3–5] and thermodynamics [1,6]. The
Moran model with mutation in population genetics is another
member of our rich class of models [7,8]. These two-urn
models also have applications to social opinion dynamics,
in which the voter model [9–11] is the only case that is
a martingale. When the system is generalized to three or
more urns, one can analyze Naming Game dynamics on the
complete graph [12–16] in a similar fashion. The solutions
that we provide here is a generalization of the solution of the
Naming Game with many opinions [17]. Further instances of
interacting particle systems are the contact process, exclusion
processes, and stochastic Ising models [2,9].

In addition to the class of models that describe interacting
particle systems, we also provide their exact solutions. As
a result, the method solves a large class of random-walk
models with quadratic transition probabilities. The method
is an extension of the generating function solution of the
Ehrenfest model formulated by Mark Kac in 1947 [6]. We
utilize a generating function method for solving for all of
the eigenvalues and eigenvectors of the Markov transition
matrix for each model. With the explicit diagonalization
of the transition matrix, we can compute several quantities
depending on the application of the model. For instance,
in sociophysics [16], the expected time to consensus is one
quantity of interest that we can calculate exactly [12,14,18–
21]. Based on the parameters of the model, the method of
analysis will vary. Figure 1 describes the classification of
these models based on solvability and relevant macroscopic
properties, which are functions of the model parameters (given
in Sec. II).

The method of calculating all eigenvalues and eigenvectors
of a transition matrix is complementary to a procedure by
Karlin and McGregor [22] to solve for the propagator. In the
latter, the procedure requires a tridiagonal transition matrix,
whose transition probabilities are strictly positive, which has a
consequence that there are no absorbing states in the Markov
chain. From such assumptions, authors construct a recursion
that yields a polynomial representation of eigenvectors that is
orthogonal under a solvable measure. For the bounded models
that are proposed here, the recursion terminates with the final
condition reducing to the characteristic polynomial of the
transition matrix, whose roots become intractable to calculate
for large system sizes. To improve this procedure, we focus on a
method that includes absorbing states as well as pentadiagonal
matrix structure. As such, we primarily consider applications
that contain an absorbing state, which also corresponds to
a consensus state. Furthermore, the method presented here
exactly solves for all eigenvalues without finding roots of a
potentially high degree polynomial.

The mechanics of drawing two balls from two urns
corresponds to pairwise interaction between agents, which
has a natural extension to general networks. In the two-urn
model, any combination of two balls can be drawn with equal
probability. If we interpret each ball as a node in a network,
then the edges correspond to possible pairwise interactions. For
the two-urn model, the network is a complete graph, in which
every node is connected to every other node. As an extension,
we also consider the case in which the network structure
is incomplete. That is, after choosing a node randomly, a
neighboring node is randomly chosen for pairwise interaction.
This is particularly relevant to social interactions and models,
such as the voter model and the Naming Game.

The manuscript is structured as follows. In Sec. II, we
explicitly define and analyze the two-urn models. We apply
a generating function method for exactly diagonalizing a
subclass of two-urn models, which we call linear urn models.
This solvability distinction is the first split in the diagram given
in Fig. 1. In Sec. III, we analyze some of the exact solutions
that can be found as a result of the diagonalization. These
include the m-step propagator, the moments of consensus time,
and local times. In Sec. IV, we analyze the other cases of
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FIG. 1. Classification tree for the two-Urn problems that shows all
relevant subclasses. Among the linear cases (2γ1 − 2γ2 − α1 + α2 +
β1 − β2 = 0), the martingales (α1 = β1,α2 = β2 = γ1 = γ2 = 0) are
equivalent to the voter model and the nonmartingales constitute a
much larger class of models. Among nonlinear cases, we show that
there exists a phase transition over a single parameter, which results
in a metastable distribution. The tree shows a general outline of this
article prior to the network analysis.

the two-urn models that are nonlinear and therefore cannot
be explicitly diagonalized by the generating function method.
After assuming that consensus of one urn is stable, we show
that there is a phase transition over a single parameter, in
which the consensus time abruptly changes from ln N to
exponentially large in N . The latter of these systems tends
to a metastable distribution that we solve for exactly. In
Sec. V, we consider the case in which equivalent two-urn
models are posed on networks and examine the influence
of uncorrelated heterogeneous degree network topology on
convergence properties. We show that for such a class of
networks, the consensus time is exactly equal to the complete
graph consensus time multiplied by a single coefficient that
describes the network structure.

II. LINEAR TWO-URN MODELS AND SOLUTION

In this section we will define the two-urn models as a
stochastically evolving system. We will also define a subclass
of the general two-urn framework called linear urn models. For
these linear cases, we solve for all eigenvalues and eigenvectors
of the transition matrix for the probability distribution of
macrostates. With these, we can diagonalize the transition
matrix and exactly calculate the probability that the system
attains a given macrostate at an arbitrary future time.

In the general model, there are two urns (call them A and B)
that have N balls distributed between them. In a discrete time
step, two random balls are drawn and redistributed between
the urns stochastically. The redistribution probabilities only
depend on the urns from which the balls came and the order
that they were drawn.

Let nA(m) denote the number of balls in urn A at discrete
time m. The model is characterized by six rate parameters,
which we denote by {α1,α2,β1,β2,γ1,γ2}. The parameters are
defined in terms of the probability of redistribution between

the urns conditioned on which urns the balls came from and
their order. These parameters are given to be

α1 = Pr{�nA = 1|AB} + Pr{�nA = 1|BA}, (1)

α2 = Pr{�nA = 1|BB}, (2)

β1 = Pr{�nA = −1|AB} + Pr{�nA = −1|BA}, (3)

β2 = Pr{�nA = −1|AA}, (4)

γ1 = Pr{�nA = 2|BB}, (5)

γ2 = Pr{�nA = −2|AA}. (6)

Since these parameters correspond to probabilities, all
parameters must be positive, α1 + β1 � 2, α2 + γ1 � 1, and
β2 + γ2 � 1.

An interpretation of the parameters of the urn model is
the influence of agents in social settings. Values of α1 and
β1 correspond to the impact that an agent has on another
with the opposite opinion. Here, two opposing individuals
enter a discussion and one of them changes their opinion
as a result. This is the case for the voter model, which has
parameter configuration {1,0,1,0,0,0}. The other parameters,
α2, β2, γ1, and γ2 can correspond to mutation and competition
between individuals. Also, these parameters can represent
push-pull factors to Lee’s model of migration [23], and
quadratic transition probabilities reflect the assumptions made
in Gravity models of migration and trade [24,25]. Existing
models with explicit parameter configurations also include the
Moran model of genetic drift, with parameters {1 − μ1,μ2,

1 − μ2,μ1,0,0}, where μ1 and μ2 are mutation probabili-
ties [7,8]. For these models, the population size, N , is not
always large and thus the discrete stochastic treatment we
provide is necessary.

The parameters affect the transition probabilities of the urn
model when nA = i, which are given to be

p
(1)
i = α1

i(N − i)

N (N − 1)
+ α2

(N − i)(N − i − 1)

N (N − 1)
, (7)

p
(2)
i = γ1

(N − i)(N − i − 1)

N (N − 1)
, (8)

q
(1)
i = β1

i(N − i)

N (N − 1)
+ β2

i(i − 1)

N (N − 1)
, (9)

q
(2)
i = γ2

i(i − 1)

N (N − 1)
. (10)

Here, we define p
(k)
i = Pr{�nA = k|nA = i} and q

(k)
i =

Pr{�nA = −k|nA = i}. Notice that the parameter choice
{1,1,1,1,0,0} exactly simplifies to the Ehrenfest model. Let
a

(m)
i = Pr{nA(m) = i}. We introduce the finite difference

operator �ki acting on a grid function φi defined as �ki[φi] =
φi+k − φi . We form the single step difference equation that
describes the probability distribution in macro-state:

a
(m+1)
i − a

(m)
i = �−1i

[
p

(1)
i a

(m)
i

] + �−2i

[
p

(2)
i a

(m)
i

]
+�+1i

[
q

(1)
i a

(m)
i

] + �+2i

[
q

(2)
i a

(m)
i

]
. (11)

This constitutes a pentadiagonal Markov transition matrix for
the system. We solve for all eigenvalues and eigenvectors of
this model by extending the procedure for diagonalizing the
voter model [20]. For eigenvalue λ and eigenvector v with
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components ci , let G(x,y) = ∑
i cix

iyN−i be the generating
function for the eigenvectors. We rewrite the spectral problem
for the single-step propagator given in Eq. (11) as a partial
differential equation for G using the differentiation and shift
properties of G [20,26–28]. The partial differential equation
for G is

N (N − 1)(λ − 1)G

= γ1(x2 − y2)Gyy + α1x(x − y)Gxy + α2y(x − y)Gyy

− γ2(x2 − y2)Gxx − β1y(x − y)Gxy − β2x(x − y)Gxx.

(12)

To solve this equation, we make the change of variables
u = x − y and H (u,y) = G(x,y). We show below that H

has the same structure as G. That is, we define H (u,y) =∑
i biu

iyN−i . We make this change of variables because we
can solve for bi and λ exactly when

2γ1 − 2γ2 − α1 + α2 + β1 − β2 = 0, (13)

which we call the linearity constraint. The rationale for relating
Eq. (13) with linear systems is given below. If this parameter
constraint is not satisfied, then the generating function method
does not produce explicit results for the eigenvalues and
eigenvectors. Making these substitutions gives the equation
for H :

N (N − 1)(λ − 1)H = [γ1u
2 + (2γ1 + α2)uy]Hyy + [(α1 − 2γ1)u2 + (α1 − 4γ1 − 2α2 − β1)uy]Huy

+ (γ1 − α1 − γ2 − β2)u2Huu. (14)

Rewriting this as recursion relation for bi and solving for bi gives

bi = {[(−2γ1 + α1)(i − 1) + (2γ1 + α2)(N − i)]bi−1 + γ1(N − i + 2)bi−2}(N − i + 1)

N (N − 1)(λ − 1) − (α1 − 4γ1 − 2α2 − β1)i(N − i) − (γ1 − α1 − γ2 − β2)i(i − 1)
. (15)

This allows us to find all eigenvalues exactly. Since ci = 0
for i < 0 and i > N , we require bi = 0 for i < 0 and i >

N as well. Since Eq. (15) is an explicit linear difference
equation, every bi = 0 unless the equation is singular for some
i = k. However, this corresponds to the trivial solution to the
eigenvalue problem. Thus, the denominator of Eq. (15) must
be zero when i = k. Solving for λ shows that the eigenvalues
are

λk = 1 − (−α1 + 4γ1 + 2α2 + β1)k(N − k)

N (N − 1)

− (−γ1 + α1 + γ2 + β2)k(k − 1)

N (N − 1)
(16)

for k = 0 . . . N . This allows bk to take any value. Values for bi

for any i > k can be found by repeated application of Eq. (15).
Expressing H (u,y) in the original coordinates gives

G(x,y) =
N∑

i=0

N∑
j=i

(−1)j−i

(
j

i

)
bjx

iyN−i , (17)

which shows that H and G have the same form [20]. Thus the
spectral problem is solved for all urn models that satisfy 2γ1 −
2γ2 − α1 + α2 + β1 − β2 = 0. If this equality constraint does
not hold, then bi could not be solved explicitly. This parameter
constraint is related to the equation for the mean density of the
system. Let ρ̄ be the expected value of ρ = nA/N . Using the
transition rates, we find that

E[�nA|nA = i] = 2p
(2)
i + p

(1)
i − q

(1)
i − 2q

(2)
i . (18)

For �t = 1/N , we have that �nA = �ρ/�t . Replacing
i/N → ρ̄, we find that for large N , the equation for ρ̄ is

dρ̄

dt
= 2γ1 + α2 + (α1 − 4γ1 − 2α2 − β1)ρ̄

+ (2γ1 − 2γ2 − α1 + α2 + β1 − β2)ρ̄2. (19)

This differential equation is linear if and only if 2γ1 −
2γ2 − α1 + α2 + β1 − β2 = 0, which coincides exactly with
our solvability condition for the above generating function
method. Therefore, we define a linear urn model as any two-
urn model whose parameter configuration yields 2γ1 − 2γ2 −
α1 + α2 + β1 − β2 = 0. If this condition is not satisfied, we
call the model nonlinear. We conjecture that no other change
of variables (x,y) → (u,v) will solve the nonlinear cases in
this fashion, although a proof of this claim is not given. This
is the first major categorical distinction shown in Fig. 1.

The treatment of the spectral problem by generating
functions is equivalent to a similarity transformation of the
transition matrix. Let T denote the transition matrix given by
Eq. (11) and let w = Pv for some transformation matrix P.
Then, the spectral problem for w is given by PTP−1w = λw.
The generating function method prescribes the matrix P so the
new matrix L = PTP−1 is lower triangular with a bandwidth
of at most two. The transformation, P, is exactly the upper
Pascal matrix [29]. This matrix and its inverse is given
component-wise by

[P]ij =
(

j

i

)
, (20)

[P−1]ij = (−1)j−i

(
j

i

)
. (21)

We use the convention that
(
j

i

) = 0 when i > j , which implies
that P and P−1 are upper triangular.

The spectral decomposition of the transition matrix can
be found by this similarity transformation. We do this
by diagonalizing the matrix L = W	W−1. Here, 	 =
diag(λ0, . . . ,λN ) and W are the eigenvectors of L. The
components of these eigenvectors are bi corresponding to
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eigenvalue λk . Since bi = 0 for i < j , W is lower triangular.
Therefore, W−1 can be found explicitly via forward substitu-
tion. Diagonalization of L allows us to explicitly diagonalize
the transition matrix as

T = P−1W	W−1P. (22)

Note that the matrix of eigenvectors is given by P−1W.

Tridiagonal case: Hypergeometric solution

When the transition matrix for the two-urn model is
tridiagonal (γ1 = γ2 = 0), we find that the generating function
for the eigenvectors can be reduced even further in the above
solution. We return to Eq. (15) and consider the following two
cases.

1. Case: α2 − α1 �= 0

Iterating Eq. (15) when γ1 = γ2 = 0 and taking bk = 1
gives

bi =
i∏

j=k+1

−[
j + α2N−α1

α1−α2

]
(j − N − 1)

(j − k)
[
j + k + (α2+β2)N−(α1+β2)

α1−α2

] , (23)

which has explicit solution given by

bi = (−1)i−k
(
k + α2N−α2

α1−α2

)
i−k

(k − N )i−k

(i − k)!
[
2k + (α2+β2)N−(α2+β2)

α1−α2

]
i−k

. (24)

Here, the notation (x)i denotes the Pochhammer symbol [30],
which is defined for non-negative integer n by

(x)n = x(x + 1) . . . (x + n − 1). (25)

For i < k, recall that we take bi = 0. Taking these as the
coefficients for H (u,y) gives

H (u,y) = ukyN

N−k∑
i=0

(−1)i
(
k + α2N−α2

α1−α2

)
i
(k − N )i

i!
[
2k + (α2+β2)N−(α2+β2)

α1−α2

]
i

(
u

y

)i

.

(26)

Recalling that u = x − y and taking y = 1 gives the con-
ventional generating function for the components of the kth
eigenvector, given by

gk(x) = G(x,1) =
N∑

i=0

cix
i . (27)

Since G(x,1) = H (x − 1,1), we have

gk(x) = (x − 1)k2F1(k + A,k − N ; 2k + B; 1 − x), (28)

where

A = α2

α1 − α2
(N − 1), (29)

B = α2 + β2

α1 − α2
(N − 1). (30)

2. Case: α1 = α2

This case corresponds to the generalization of the Ehrenfest
urn model by Krafft and Schaeffer [31,32]. This is because
we assume γ1 = γ2 = 0, α1 = α2 = α, and therefore β1 =
β2 = β by the linearity constraint. Taking Eq. (15) with these

parameters gives

bi =
i∏

j=k+1

−α(j − N − 1)

(α + β)(j − k)
, (31)

=
(

− α

α + β

)i−k (k − N )i−k

(i − k)!
, (32)

=
(

α

α + β

)i−k(
N − k

i − k

)
. (33)

Therefore, H is given by

H (u,y) = ukyN

N−k∑
i=0

(
N − k

i

)[
αu

(α + β)y

]i

, (34)

= ukyN

[
αu

(α + β)y
+ 1

]N−k

. (35)

Taking gk(x) = G(x,1) = H (x − 1,1) as the conventional
generating function for the eigenvector components gives

gk(x) = (x − 1)k
(

αx + β

α + β

)N−k

, (36)

which is a generalization of the solution to the Ehrenfest model
given by Kac [6].

III. APPLICATIONS OF THE SPECTRAL SOLUTION

The immediate consequence of the explicit diagonalization
of the transition matrix is the solution of the m step propagator.
That is, we can find all future probability distributions
of macrostates explicitly. Let dk be the initial distribution
expressed in the eigenbasis. That is, dk are the components
of d = W−1Pa(0). With dk known, all future probability
distributions are given by

a
(m)
i =

N∑
k=0

dkλ
m
k [vk]i . (37)

Using this, other exact solutions can be found, such as the
expected time to consensus and expected local times. These
solutions are summarized in Table I and the details are given
in the following subsections.

A. Consensus time

The consensus time is the amount of time spent before the
system reaches an absorbing state in which all of the balls are in
a single urn. In this section, we only consider linear models in
which consensus of B is absorbing. This is because if both con-
sensus of A and B were absorbing, then α2 = β2 = γ1 = γ2 =

TABLE I. Summary of exact solutions.

Quantity Discrete Solution

Macro-state probability a
(m)
i = ∑N

k=0 dk[vk]iλm
k

Consensus time E[τp] ∼ ∑N

k=1
dkp!

[N(1−λk )]p+1

×{
β1[vk]1 + 2γ2

N−1 [vk]2

}
Local time E[M] ∼ 1

N

∑N

k=0λk �=1
dk

1−λk
vk
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0. By linearity, we have α1 = β1, which reduces to the voter
model on the complete graph. These are the only cases of the
two-urn models that are martingale, and has already been ad-
dressed in previous work [20]. Therefore, we only consider the
nonmartingale cases in which consensus of one urn is absorb-
ing. For nA = 0 to be an absorbing state, we require Pr{�nA =
0|nA = 0} = 1. For this to be true, we need α2 = γ1 = 0.

We can find the moments of the consensus time by using the
solution to the spectral problem. Let sm be the probability that
the system reaches consensus at discrete time m. Let τ = m/N

be the consensus time. Then, we have

E[τp] =
∞∑

m=1

sm(m/N )p. (38)

The probability of consensus, sm, can be expressed as
the probability that the system is one step from consensus
multiplies by the probability that the system moves into
the consensus state. This is expressed as sm = q

(1)
1 a

(m−1)
1 +

q
(2)
2 a

(m−1)
2 . Since a

(m)
i is given by the diagonalization of the

transition matrix, we write this as

sm =
N∑

k=1

dkλ
m−1
k

{
β1

N
[vk]1 + 2γ2

N − 1
[vk]2

}
. (39)

Making this substitution into Eq. (38) and evaluating the
infinite geometric series gives

E[τp] ∼
N∑

k=1

dkp!

[N (1 − λk)]p+1

{
β1

N
[vk]1 + 2γ2

N − 1
[vk]2

}
.

(40)

This solution for the moments of consensus time is exact;
however, it does not clearly describe how it depends on
N asymptotically. We can approximate the consensus time
without resorting to the full diagonalization of the transition
matrix. We do this by estimating when the survival probability
of the system becomes small (1/N). With high probability, the
drift moves the system near consensus in O(1) time. Then,
the probability that the system has not reached consensus by
discrete time m can be estimated by λm

1 . Since we define the
consensus time to be τ = m/N , we wish to solve

λτN
1 = 1

N
. (41)

Using the eigenvalues given by Eq. (16), we have that λ1 =
1 − (β1 − α1)/N . Therefore, solving for τ and using ln λ1 ∼
−(1 − λ1), we find that

E[τ ] ∼ ln N

β1 − α1
+ O(1). (42)

Figure 2 compares simulation data against this estimate and
shows that there is good agreement between them.

B. Local time

The local time is the amount of scaled time (m/N ) that the
system spends at each macrostate prior to consensus. Again,
we assume that consensus of B is the only absorbing consensus
state. The local time is given as a vector M, whose components,
Mi , are the local time for the corresponding macrostate. Let
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FIG. 2. Consensus times for three linear models averaged
over 3 000 runs is plotted on a logarithmic scale in N . These
models have parameter configurations {1/4,0,1,1/4,0,1/4} (◦),
{1/2,0,1,1/6,0,1/6} (×), and {3/4, 1,1/2,0,1/12} (�). Solid lines
are the estimates given by Eq. (42) with a fitted additive constant.
The constant is dominated by the logarithm for large N .

Mi(m) be the local time for macrostate nA = i by time m. To
find the expected local time, we consider E[�Mi(m)], where
�Mi(m) = Mi(m + 1) − Mi(m). The change in the local time
from step m to m + 1 is 1/N if the system is in macrostate
nA = i and 0 otherwise. So, the expected change in the local
time is equal to a

(m+1)
i . This implies that the expected time

spent at a macrostate prior to consensus is expressed as

E[Mi(∞)] − E[Mi(0)] =
∞∑

m=0

E[�Mi(m)] = 1

N

∞∑
m=0

a
(m+1)
i .

(43)

E[Mi(0)] is exactly the initial probability distribution of the
model: a

(0)
i . Using the diagonalization of linear urn models

given by Eq. (37), we can find E[Mi(∞)] exactly. Making
the substitution, evaluating the geometric series gives, and
organizing Mi(∞) into the vector M gives

E[M] = 1

N

N∑
k=1

dkvk

1 − λk

. (44)

The k = 0 term is not included because d0 = 0. This is
because k = 0 corresponds to the consensus state, and we stop
measuring the local time once consensus has been attained.

IV. NONLINEAR MODELS

Here we study models for which 2γ1 − 2γ2 − α1 + α2 +
β1 − β2 �= 0. This means that the eigenvalues and eigenvectors
of the transition matrix cannot be explicitly found by the
generating function method proposed in Sec. II. We show
below that nonlinear models also have a much wider range of
qualitative behaviors that would be difficult to extract from a
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similar generating function method. In particular, we consider
nonlinear models such that consensus of B is an absorbing
state. First, we will show that there exists a phase transition
across α1 = β1.

A. Phase transition

Here we consider similar stable consensus type models as in
the linear case. That is, when all of the balls are in urn B, then
all of them will remain in urn B with probability 1. Consensus
of B is an absorbing state in the Markov-chain model. For this
to be true, we must set γ1 = α2 = 0. We take Eq. (19) and
make these substitutions to find

dρ̄

dt
= (−2γ2 − α1 + β1 − β2)ρ̄

×
(

α1 − β1

−2γ2 − α1 + β1 − β2
+ ρ̄

)
. (45)

Clearly, ρ̄1 = 0 is stationary. This is anticipated because
consensus of B is an absorbing state. However, this root
is not always stable and that there exists a phase transition
when α1 = β1. This can be seen by considering Eq. (45)
for ρ̄ � 1.

The second root, ρ̄2, can be expressed by a single parameter,
ω. We let

ω = α1 − β1

2γ2 + β2
(46)

and observe that

ρ̄2 = ω

1 + ω
. (47)

The location and stability of the roots are characterized
completely by ω because for ω > 0, the root at the origin
is unstable and ρ̄2 becomes stable. The root ρ2 also exists
within the physical domain (0 � ρ̄ � 1), which indicates that
the system is attracted to a metastable state. Stochastically,
the system will also randomly fluctuate within this interval
and always has a nonzero probability of achieving consensus.
So, even though the system is attracted to the metastable
distribution with high probability, it will eventually achieve
the consensus state in finite time. The consensus time for the
metastable case, however, is exponential with N . The special
case when γ2 = β2 = 0 should be interpreted as ω = ±∞ and
corresponds to a biased voter model [19]. In this case, the
consensus time may not be exponential because the stable
equilibrium is a consensus state.

For ω < 0, the origin is stable, and ρ2 is unstable. In this
case, the solution to Eq. (45) is the logistic function. For ρ̄

small, the equation resembles a linear model, so the consensus
time is qualitatively the same as the linear cases. That is, the
consensus time is E[τ ] ∼ ln N/(β1 − α1). So, we will only
focus on the remaining cases: the phase transition itself (ω =
0) and the metastable state (ω > 0).

When ω = 0, the two roots are coincident, which indicates
a transcritical bifurcation [33]. Figure 3 shows the bifurcation
diagram of these nonlinear two-urn models.

Although the consensus time is proportional to ln N when
ω < 0, we will show that when ω = 0, this value increases to√

N for γ2 + β2 �= 0.

−4 −2 0 2 4

−
1
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ω

ρ

FIG. 3. Bifurcation diagram showing the stability of the station-
ary points of Eq. (45) for nonlinear consensus models. The solid lines
indicate that the point is stable, while dashed lines indicate that it
is unstable. The red lines correspond to the root at ρ̄1 = 0, and the
blue curve corresponds to the second root, ρ̄2. For ω > 0, the system
attracts to a metastable state and for ω < 0, the systems resemble
linear models.

Consensus formation with mutation

Socially, we consider a model that may correspond to the
decay of a popular trend, A, that dominates the system. Those
who do are not involved with the trending fad are considered
to have state B. Those who do not accept A can be convinced
to adopt it with probability α1 when exposed to it. Similarly,
people with A can be dissuaded from it with probability β1

when exposed to agents without A. Also, an individual may
be turned away from the fad if they are exposed to it for
long enough. That is, if an individual with A is exposed to
many individuals with A, then the trend may seem less unique,
and the agent no longer adopts it, which is a sociologically
observed tendency [34]. If A is perceived as a fad, then people
will be less likely to adopt it [35]. We model this by assuming
that if A speaks with another A, then the fad is rejected with
probability β2 and the listener becomes B. It may also be
reasonable to assume the both individuals would reject the fad
simultaneously, which would occur with probability γ2, but,
for simplicity, we set γ2 = 0.

We wish to find the amount of time until nobody accepts
A, and everyone is in state B. To simplify the analysis, we
will consider the case in which α1 = β1 = β2 = 1, although
any configuration of parameters could be considered, provided
ω = 0. Let T (ρ) be the time to consensus. Using first step
analysis, we find that T satisfies

T (ρ) = p(ρ)T (ρ + �ρ) + r(ρ)T (ρ)

+ q(ρ)T (ρ − �ρ) + 1

N
, (48)
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where �ρ = 1/N and

p(ρ) = ρ(1 − ρ), (49)

q(ρ) = ρ(1 − ρ) + ρ2, (50)

r(ρ) = 1 − p(ρ) − q(ρ). (51)

We also have the boundary condition T (0) = 0. Expanding by
Taylor’s theorem to second order gives

−1 ∼ v(ρ)
dT

dρ
+ 1

2N
D(ρ)

d2T

dρ2
, (52)

where

v(ρ) = −ρ2, (53)

D(ρ) = 2ρ(1 − ρ) + ρ2. (54)

The system is dominated by the drift term when the system
is not near consensus. Therefore, ρ approaches consensus in
O(1) time. After this time has passed, we assume that these
two terms in Eq. (52) balance. Let ρ = δξ for some δ � 1 that
balances the drift and diffusion terms. The derivatives are then
transformed by

d

dρ
= 1

δ

d

dξ
. (55)

So, after dropping higher-order terms, Eq. (52) is given by

−1 ∼ −δξ 2 dT

dξ
+ ξ

Nδ

d2T

dξ 2
. (56)

For these terms to balance, we choose δ = 1/
√

N . Now, we
wish to solve

ξ
d2T

dξ 2
− ξ 2 dT

dξ
= −

√
N. (57)

We are given one boundary condition, T (0) = 0, yet we wish
to solve a second-order equation. Since the time for the system
to approach consensus is O(1) and that the consensus time is
monotonic, the derivative of consensus time with respect to ρ

is at most O(1). So, the derivative of T with respect to ξ tends
to zero. This is stated mathematically by

lim
ξ→∞

dT

dξ
= 0, (58)

which supplies the second boundary condition. Now, the
solution to Eq. (57) is

T (ξ ) =
√

N

∫ ξ

0

∫ ∞

u

1

s
e− 1

2 (s2−u2)dsdu. (59)

We are particularly interested in the case when A initially dom-
inates the system. Furthermore, since the integral converges
exponentially, we can take ξ → ∞ without significantly
changing the value. So, to find T (∞), we take

s =
√

2r sec θ, (60)

u =
√

2r tan θ. (61)

Making this change of variables, the integral can be simplified
to

T ∼
√

π3N

8
. (62)
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FIG. 4. Solutions for the consensus time given by Eq. (62) com-
pared with simulation data. The lines are the theoretical prediction
and the points are simulation data averaged over 1000 runs. Three
networks are considered: the complete graph (black, ◦) and two scale
free networks with ν = 1 (blue, 
) and ν = 2 (red, +).

This result is used extensively when analyzing heterogeneous
networks in Sec. V. Figure 4 shows the agreement between
Eq. (62) and simulation data for the complete graph as well as
scale-free networks.

B. Metastable consensus time

The other interesting case is when ω > 0, in which there is
a stable fixed point of the drift equation in the feasible region
0 � ρ � 1. Even though the deterministic part of the system
is attracted to ρ2 with high probability, it is not the absorbing
state of the system. Consensus of B is stable with probability 1,
yet ρ2 is stable only with probability close to 1. Therefore, ρ2

is the mean of a metastable distribution that exists apart from
consensus. In terms of the Markov chain model, consensus
corresponds to the eigenvalue 1 of the transition matrix and
the metastable distribution is an eigenvector with eigenvalue
that is transcendentally close to 1.

We have two goals of this section. The first is to find the
metastable distribution for a particular metastable urn process
and the second is to find the corresponding consensus time.
As in the above case, we restrict our study to a particular
parameter configuration to serve as a canonical example of the
solution. Once the balls have been selected from the urns, the
model that we consider is given by the following rules:

(1) If the balls came from different urns, then place
both in A.

(2) If the balls came from the same urn, then place
both in B.

It is evident from these rules that consensus of B is an
absorbing state. If all balls are in urn B, then the balls are
always drawn from the same urn and replaced in B with
probability 1. This model has the parameter configuration
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α1 = 2, γ2 = 1, and all others equal to 0. By Eq. (46), we
have that ω = 1 and, therefore, ρ2 = 1/2. Since ω > 0, the
bifurcation diagram in Fig. 3 indicates that ρ2 = 1/2 is stable
and constitutes a metastable state.

Let λ be the eigenvalue that corresponds to the metastable
distribution, φi . Since λ is exponentially close to 1, 1 − λ is a
transcendentally small term. Since φi constitutes components
of a eigenvector, we can choose how scale it. Conditioned on
the information that the system is not in consensus, then φi =
Pr{nA = i}. So, for φi to constitute a probability distribution,
we need the sum of the components to be 1. So, we let ci be
the components of the unscaled eigenvector corresponding to
λ and scale it so

φi = ci∑N
i=1 ci

. (63)

With this, we obtain a recursion relation for ci from the
eigenvalue problem for ci and λ:

0 = p
(1)
i−1ci−1 − (

p
(1)
i + q

(2)
i

)
ci + q

(2)
i+2ci+2. (64)

We also require that ci = 0 when i < 0 and i > N . Also, we set
cN = 1 to begin the recursion. We know that cN �= 0 because
if cN = 0, it would imply that the system can never achieve
this state, which is not true. So, we take Eq. (64) and solve for
ci−1 to find

ci−1 =
(
p

(1)
i + q

(2)
i

)
ci − q

(2)
i+2ci+2

p
(1)
i−1

. (65)

Given cN = 1 and ci = 0 for i > N , we can use Eq. (65) to
find ci for 1 � i � N − 1. This yields a distribution that is
asymptotically a Gaussian and is shown in Fig. 5.

Now that we found the metastable distribution, our second
goal was to find the consensus time. The strategy is to use
Eq. (40), which gives the consensus time in terms of the
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FIG. 5. Solution for the metastable distribution generated by
Eq. (65) for N = 30. The distribution is asymptotically a Gaussian
function because the diffusivity is smooth. Near ρ2 = 1/2, which is
the mean, the diffusivity can be approximated by a constant. This
yields a Gaussian to leading order.
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FIG. 6. Simulation data (◦) of the consensus time averaged over
500 runs is plotted against the exact solution shown in blue, given
by Eq. (68). The horizontal axis is on a linear scale in N and the
vertical axis is on a logarithmic scale. The apparent linear relationship
indicates the exponential nature of the consensus time in this case.

eigenvalues and eigenvectors. When using Eq. (40), we take
d1 = 1 and all other dk = 0 for [v1]i = φi and λ1 being the
eigenvalue for φi . That is, Eq. (40) reduces to

E[τ ] = 2φ2

N2(N − 1)(1 − λ)2
. (66)

Since we found the dominant eigenvector in the system,
all we need is the corresponding eigenvalue. We find it by
considering the column-sum of the transition matrix T. Since
all of the columns sum to 1, we multiply both sides of
Tv = λv by 1T on the left to obtain 1T v = λ1T v. Unless
λ = 1, we must have that the sum of the components of v
is zero. This is important because

∑N
i=1 φi = 1 in order to be

a probability distribution conditioned that the system has not
reached consensus. This implies that φ0 = −1 in order for the
sum of the components from i = 0 . . . N is zero. If we take
i = 0 in the eigenvalue problem, then we find that

λφ0 = φ0 + q
(2)
2 φ2. (67)

For φ0 = −1, we have that 1 − λ = q
(2)
2 φ2. Substituting this

into Eq. (66) gives

E[τ ] = N − 1

2φ2
, (68)

where φ2 is easily found by (65) and (63). Figure 6 compares
simulation data against the results in Eq. (68).

V. HETEROGENEOUS DEGREE NETWORK MODELS

In the above analysis, we considered social models ex-
clusively on the complete graph. It has been observed that
the ordering dynamics of the Naming Game—a similar

012311-8



SOLUTION TO URN MODELS OF PAIRWISE . . . PHYSICAL REVIEW E 96, 012311 (2017)

TABLE II. Parameters of the network model.

Input

AA AB BA BB Output

– α12 α11 γ1 AA

β22 – r0 α21 AB

β21 r1 – α22 BA

γ2 β11 β12 – BB

social model—do not significantly change when comparing
real-world networks against complete graphs [36,37]. This
yields credibility to complete graph analysis for some sparse
real-world networks. However, the use of a fully connected
graph may not be an accurate approximation of the dynamics
on sparse networks, which are also more socially realistic. For
the voter model, which is a case of the above general social
framework, the system orders differently based on network
structure [18–20,38].

The structure of the two-urn models yields a natural
extension to incomplete graphs. Each node has one of two
states: A or B. For the general network model, we choose a
node randomly and then choose a random neighbor. The nodes
then update their spins with probabilities that depend on the
order that the nodes were selected and their spins. We now have
12 parameters that characterize each model, each of which
are transition probabilities. Table II shows the probability of
accepting a particular update as a function of the spins and
their order. So, if the first node has state B and the second
node has state A, then the probability that they both become
A is α11. For parameters that have two subscripts (e.g., α11),
the second digit refers to which node is updated. The first
digit is for consistency with the complete graph (two-urn)
notation.

These models have a very wide range of applications. For
instance, the voter model has α11 = β11 = 1 and all others
zero, while the invasion process has α12 = β12 = 1, and all
others equal to zero [19]. Generalized versions of the Moran
model have parameters β21 = μ1, α21 = μ2, β11 = 1 − μ2,
and α11 = 1 − μ1 [39]. We can also cast movement of
individuals, or particles, between sites by interpreting state
A as occupied and B as unoccupied. Of particular interest
in the literature is the coalescing random walk, in which
particles move from site to site and cluster together when
moving into an occupied site [21,38,40]. This is accomplished
in our framework by r1 = 1,β21 = 1 and all other parameters
set to zero. The annihilating random walk is similar to the
coalescing random walk but is characterized by the fact that
the two particles are removed if one moves into an occupied
site [40,41]. This is given by r1 = 1,γ2 = 1 and all other
parameters set to zero. Furthermore, we can consider directed
networks which determines the flow of information throughout
the network. These represent a mere fraction of the possible
applications of this general network model.

Clearly, not all parameter configurations on all networks
can be solved as swiftly and concisely as the above two-urn
models. Even a generalized treatment of each case is beyond
the scope of this article. However, we explore some of the
previous examples imposed on a popular class of networks

that we call uncorrelated degree heterogeneous graphs. These
are random networks that are generated with a given, fixed
degree sequence. The network is then chosen uniformly from
the set of all graphs with that degree sequence [19,42–45]. In
the following subsections, we solve two models of consensus
formation, which are both closely related to their complete
graph counterpart.

To find ordering dynamics, we begin by following the
procedure prescribed in Refs. [19,46] to coarse-grain the
system and look for solutions in the mean field of the network.
This is done by considering the number of nodes with state A

that have degree k and averaging over all adjacency matrices
with a given degree sequence that are also uncorrelated and
heterogeneous. For the voter model, Refs. [19,46] indicates
that the system reduces to a one-dimensional diffusion process.
However, in the general case of the two-urn models on
heterogeneous networks that we consider, the process does
not reduce to a simple diffusion process. Despite this, we
present a perturbation technique to solve for expected times
to consensus, which can be applied whenever consensus is an
absorbing state in the Markov chain. We proceed by identifying
the coarse-grained system as an urn model, similarly to the
two-urn models of except there are more than two urns as in
Sec. II. In the new urn model framework, each degree value
in the network corresponds to a pair of urns, call them Ak

and Bk . This framework allows us to relate the network model
to nonlinear two-urn models, for which we directly apply the
solutions given in Sec. IV.

A. Consensus model: Listener first

Here we explore a model of consensus formation on uncor-
related heterogeneous networks. We interpret the situation in
the following way. During a single update, the first node that
is chosen is called the listener. This individual chooses one of
its neighbors to be the second node, called the speaker. Then,
we assume that only the listener is allowed to update its state.
We also assume that consensus of the B state is an absorbing
macrostate. That is, if every node is in state B, the every node
will remain in state B with probability 1.

Now we express these ideas as a parameter configuration
in the above framework. Since only the first node is allowed
to change its state in an update, we set α12 = γ1 = β22 = r0 =
r1 = α22 = γ2 = β12 = 0. By assumption, consensus of B is
an absorbing state, so we additionally take α21 = 0. This leaves
us with parameters α11,β21,β11. We then drop the second digit
in the subscripts since it is implied that only the first node
is allowed to change. This corresponds to a three-parameter
system: α1, β2, β1.

We wish to express the transition probabilities of the
system in terms of known quantities. First, we must establish
the notation used in the following discussion. Let A be the
adjacency matrix of the network and let Nk be the number of
nodes with degree k. Also let ki be the degree of node i and
let k be a vector with components ki . Let ηi = 1 if node i has
state A and ηi = 0 if node i has state B and is the microstate
at time t . The vector η takes components ηi . Similarly, let
nk be the number of nodes of degree k of state A and let n
take components nk . Also, let ρk = nk/Nk and ρ = ∑

k nk/N .
These are all related functions of the microstate. Let Dk be the
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set of all nodes with degree k. Let μp be the pth moment
of the degree distribution of the network, which is given
by

μp =
∑

k

Nk

N
kp. (69)

Also, we define zp to be the expected value of η with
probability measure proportional to k

p

i . We could also define zp

as the normalized instantaneous average value of the p-degree
of A nodes. This is written explicitly by

zp = kp · η

Nμp

. (70)

Here, kp is the component-wise power of k. That is, the ith
component of kp is k

p

i . Finally, we can express the transition
probabilities of the network model:

Pr{�nk = 1} =
∑
i∈Dk

∑
j

α1Aij

Nki

(1 − ηi)ηj , (71)

Pr{�nk = −1} =
∑
i∈Dk

∑
j

Aij

Nki

[β1ηi(1 − ηj ) + β2ηiηj ].

(72)

In order to find the consensus time, we replace Aij with
mean adjacency matrix of the uncorrelated degree heteroge-
neous networks [19]. Note that we are interested in analyzing
the dynamics over an ensemble of random networks in mean
field, and the connection of the network is independent of the
urn-process. We also show numerically in Fig. 7 that averaging
trajectories over an ensemble of networks agrees with this
mean-field assumption. Since the edges of the network are
uncorrelated, the probability that nodes i and j have an edge
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FIG. 7. The listener-only consensus model is simulated for a
network with N = 3000 with N10 = N25 = N50 = 1000. The model
was simulated with α1 = β1 = β2 = 1. The initial condition is ρ10 =
1, ρ25 = 0.5, and ρ50 = 0. Also plotted is the exact solution for z1

given by Eq. (79). This shows that each ρk converges to z1 as the
system evolves.

is proportional to their respective degrees. The expected value
of the components of the adjacency matrix, therefore, is

E[Aij ] = kikj

Nμ1
. (73)

On substitution of Aij → E[Aij ] and simplification, we
express the coarse-grained transition probabilities below in
terms of the products ρk and z1,

p(ρk,z1) = α1
Nk

N
(1 − ρk)z1, (74)

q(ρk,z1) = β1
Nk

N
ρk(1 − z1) + β2

Nk

N
ρkz1. (75)

What is significant here is that a single variable z1(t)—the
normalized average degree of the A nodes at time t—plays
the role of mean-field macrostate (over all degrees k) and
allows the coarse-grained transition probabilities to be ex-
pressed component-wise in k as binary (quadratic) interactions
between the kth macrostate and z1. This also allows us cast the
system as an urn model in which each degree k corresponds
to a pair of urns (Ak and Bk). Here nk would correspond to
the number of balls in urn Ak . The movement of balls among
these urns is coupled only by z1.

We use the transition probabilities to generate an ordinary
differential equation (ODE) for the time evolution of the
expected value of ρk . Taking ˙̄ρk ∼ E[�ρk/(1/N)], we acquire
the following ODE system:

˙̄ρk = [α1(1 − ρ̄k) − β2ρ̄k]z1 − β1ρ̄k(1 − z1). (76)

Note that this system is coupled together only by the variable
z1. We will first show that ρk → z1 as the system evolves. This
is found by expressing the equation for ˙̄ρk − ż1. To do so, we
need ż1. Multiplying Eq. (76) by Nk

Nμ1
and summing over k

gives

ż1 = [α1(1 − z1) − β2z1]z1 − β1z1(1 − z1). (77)

Note that Eq. (77) can be solved, with solution

z1(t) = ω(1 + ω)−1

1 + (
ω

(1+ω)z1(0) − 1
)
e−(α1−β1)t

, (78)

where ω is given in Eq, (46). Note that when ω > 0, z1 → 0 as
t → ∞. When ω < 0, we have z1 → ω(1 + ω)−1 instead. This
solution holds only if ω �= 0. The point ω = 0 is a bifurcation
point, in which the solution is

z1(t) = [β2t + z1(0)−1]−1. (79)

Once we show that each ρk → z1, we will have explicit
solutions of each ρk . Now ˙̄ρk − ż1 can be expressed as

˙̄ρk − ż1 = −(ρ̄k − z1)[(α1 + β2)z1 + β1(1 − z1)]. (80)

Note that the expression in the bracket of Eq (80) is always
positive and bounded away from 0. Therefore, Eq. (80) shows
an exponential convergence of ρ̄k to z1 for each k. This
principle is depicted in Fig. 7.

Now that we understand how the system orders, we now
calculate the consensus time, T (ρ), where ρ takes components
ρk . The procedure is to relate the problem to a complete graph
and then use previously established techniques. For simplicity,
we take α1 = β1 = β2 = 1. Note that Eq. (77) converges to
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a stable center manifold near z1 = 0. Because of this, the
noise terms will be significant near z1 ∼ 0. Therefore, we
incorporate these terms in our analysis of the consensus time.
We first establish the backwards equation for T :

− 1

N
=

∑
k

{q(ρk,z1)T (ρk − 1/Nk) + [−q(ρk,z1)

−p(ρk,z1)]T (ρk) + p(ρk,z1)T (ρk + 1/Nk)}. (81)

We expand T to two terms and express the backwards equation
as

−1 =
∑

k

(
vk

∂T

∂ρk

+ Dk

2Nk

∂2T

∂ρ2
k

)
, (82)

where

vk = (1 − ρk)z1 − ρk(1 − z1) − ρkz1, (83)

Dk = (1 − ρk)z1 + ρk(1 − z1) + ρkz1. (84)

Now we use the fact that each ρk converges to z1 exponentially
for each k. That is, we take each ρk = z1 and substitute into
the backward equation for T . The change of variables affects
the derivatives, giving

∂

∂ρk

→ kNk

Nμ1

∂

∂z1
. (85)

Now the backward equation is

−1 =
∑

k

[
v(z1)

kNk

Nμ1

dT

dz1
+ k2Nk

2N2μ2
1

D(z1)
d2T

dz2
1

]
. (86)

Here

v(z1) = −z2
1, (87)

D(z1) = 2z1(1 − z1) + z2
1. (88)

This simplifies to

−1 = v(z1)
dT

dz1
+ μ2

2Nμ2
1

D(z1)
d2T

dz2
1

. (89)

Note that Eq. (89) has exactly the same form as Eq. (52).
The primary difference is the appearance of μ2/μ

2
1. To solve

this, we follow the same procedure as the complete graph

model and simply replace N with N
μ2

1
μ2

. This gives that the
consensus time is

T ∼
√

π3

8

Nμ2
1

μ2
. (90)

There are a few things to note about this solution. First, the
form of the solution can be separated into the complete graph
solution in Eq. (62) multiplied by the topological parameter√

μ2
1/μ2. This may indicate that similar network models can be

decomposed into a separable solution. That is, the consensus
time for some models might be decomposed into the com-
plete graph solution multiplied by an appropriate topological
parameter. Second, the fact that μ2

1/μ2 � 1 indicates that
sparse network topology only decreases the time to consensus.
This implies that the complete graph solution is an upper
bound for the consensus time for these models. Figure 4

depicts this solution for the complete graph and two scale-free
networks.

B. Consensus model: Speaker first

We now consider a different model from the above listener-
first model. Instead of assigning the first node to be the listener,
we designate the first node to be the speaker. Then the speaker
chooses to convey its message to a randomly chosen neighbor
(the listener). We assume that only the listener updates their
state based on this interaction. We also assume that consensus
is an absorbing state, as in the listener-first case.

These assumptions produce a model with parameters
α12, β12, β22. All other parameters equal zero, and, for
convenience, we drop the second subscript. We briefly outline
the analysis, as it follows the same paradigm as the listener-
first model. The transition probabilities for the model are
given by

Pr{�nk = 1} =
∑

i

∑
j∈Dk

α1Aij

Nki

ηi(1 − ηj ), (91)

Pr{�nk = −1} =
∑

i

∑
j∈Dk

Aij

Nki

[β1(1 − ηi)ηj + β2ηiηj ].

(92)

We substitute Aij → E[Aij ] and simplify the transition prob-
abilities to obtain

pk(ρk,ρ) = α1
k

μ1

Nk

N
ρ(1 − ρk), (93)

qk(ρk,ρ) = β1k

μ1

Nk

N
(1 − ρ)ρk + β2k

μ1

Nk

N
ρρk. (94)

We now generate the mean-field ODE system for ρ̄k and obtain

˙̄ρk = k

μ1
[α1ρ(1 − ρk) − β1(1 − ρ)ρk − β2ρρk]. (95)

To simplify the analysis, we take α1 = β1 = β2 = 1. Note
that the rate of change is proportional to k. We now multiply
Eq. (95) by Nk

kNμ−1
and sum over k. Since α1 = β1 = 1, this

yields

ż−1 = − 1

μ1μ−1
ρ2. (96)

Since z−1 is monotonically decreasing, the system will glob-
ally converge to ρk = 0. This indicates that the convergence
is very slow if the system is near consensus. This is due to
the fact that the parameters are chosen at a phase transition,
similarly to the complete graph. The slow convergence is also
indicative of a stable center manifold. Linearizing the system
for ˙̄ρk around ρk = 0 gives

˙̄ρk = k

μ1
(ρ − ρ̄k). (97)
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This system has a Jacobian matrix given by

∂ ˙̄ρk

∂ρ̄l

= kNl

Nμ1
l �= k

∂ ˙̄ρk

∂ρ̄k

= k

μ1

(
Nk

N
− 1

)
.

(98)

It is a simple exercise to show that 1 is an eigenvector of
the above Jacobian, whose eigenvalue is 0. In addition, all
other eigenvalues have a negative real part by the Gershgorin
circle theorem [47]. This indicates that the system tends to the
center manifold near consensus, and the system then converges
slowly to consensus. Furthermore, the eigenvector 1 indicates
that each ρk tends to the same value. Making this substitution
into Eq. (96) gives

ż−1 = − 1

μ1μ−1
z2
−1, (99)

which has the solution

z−1 =
(

C + t

μ1μ−1

)−1

(100)

for some constant C. Now we determine the consensus time
by writing the backwards equation for T . The equation takes
the form given in Eq. (82); however, vk and Dk are given by

vk = k

μ1
[ρ(1 − ρk) − (1 − ρ)ρk − ρρk], (101)

Dk = k

μ1
[ρ(1 − ρk) + (1 − ρ)ρk + ρρk]. (102)

We now apply the idea that each ρk tends to a common value
given by the slow variable z−1. We make the change of vari-
ables ρk = z−1. The partial derivatives are now transformed
by

∂

∂ρk

→ k−1Nk

Nμ−1
. (103)

Substituting these into Eq. (82) yields the ODE for the
consensus time given by

−μ1μ−1 = v(z−1)
dT

dz−1
+ 1

2N
D(z−1)

d2T

dz2
−1

, (104)

where

v(z−1) = −z2
−1, (105)

D(z−1) = 2z−1(1 − z−1) + z2
−1. (106)

The reduced equation for T is remarkably similar to Eq. (52).
Thus, we have translated the corresponding problem to a two-
urn case with a single topological parameter μ1μ−1. Following
the same steps as the complete graph case, we have shown that
the consensus time for the speaker first model is

T ∼ μ1μ−1

√
π3N

8
. (107)

It is simple to show that for every degree sequence, μ1μ−1 � 1.
This implies that this sparse graph structure will only slow
down the rate of convergence, which is in contrast to the

listener-first case which showed a decrease in consensus
time. Since the listener-first model converges more quickly, it
appears that imposing one’s state on others is less effective in
achieving consensus than listening to the messages of others.
Also, the solution once again exhibits a separable form, in
which a single topological parameter is multiplied by the
complete graph solution.

VI. DISCUSSION

The two-urn models, and their extension to general network
topology, are a rich class of models with a wide variety
of behaviors. They are an extension of the Ehrenfest model
of molecular diffusion, in which only one ball is chosen to
change urn. By drawing two balls instead of one and allowing
the redistribution to be stochastic, we introduce a class of
models that have a wide range of applications from social
dynamics to population genetics. Remarkably, for this class of
models, we found that linearity of the ODE for mean density
of urn A was necessary and sufficient for solvability by our
generating function method. The seemingly unrelated notions
of linearity of a differential equation and the diagonalization
of a large transition matrix in a discrete Markov chain are, in
fact, equivalent for these models. This method is a significant
contribution to the field, since exact diagonalization of the
Markov transition matrix for all N gives exact solutions to the
probability distribution for all future times, consensus times,
local times, etc. Furthermore, the eigenvectors describe the
shape of the distribution as it tends toward stationary, and the
eigenvalues describe the rate of convergence.

The work presented here on the two-urn models opens a
wide range of questions for further study. In particular, we
can contrive other random-walk models with more general
polynomial transition probabilities, instead of restricting to the
quadratics that correspond to specific urn-ball models. These
in turn yield higher-order partial differential equations for a
generating function G that in turn necessarily require new
conditions for solvability. We have not shown that the two-
urn models are the maximal set of models for high-degree
transition probability distributions.

Another avenue that can be considered is to introduce
multiple urns, yet retain a two ball interaction mechanism. This
approach has been considered for the multistate voter model
on the complete graph, which is a model with M urns [48]. A
related model that has been analyzed by this procedure is the
Naming Game with K opinions, which has 2K − 1 urns [17].
The work suggests that there is a great opportunity for studying
highly complex models in these terms.
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