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Dynamical properties of the herding voter model with and without noise
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Collective leadership and herding may arise in standard models of opinion dynamics as an interplay of a strong
separation of time scales within the population and its hierarchical organization. Using the voter model as a simple
opinion formation model, we show that, in the herding phase, a group of agents become effectively the leaders
of the dynamics while the rest of the population follow blindly their opinion. Interestingly, in some cases such
herding dynamics accelerates the time to consensus, which then becomes size independent or, on the contrary,
makes the consensus nearly impossible. These behaviors have important consequences when an external noise is
added to the system that makes consensus (absorbing) states to disappear. We analyze this model, which shows
an interesting phase diagram, with a purely diffusive phase, a herding (or two-states) phase, and mixed phases
where both behaviors are possible.
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I. INTRODUCTION

The study of the behavior of interacting populations,
whether human populations, groups of cells within organs,
or colonies of social insects, is a key element to understand,
predict, and control their function at the global scale. Despite
the stochastic nature of individual agents within the population,
the global dynamics of the system can, in many cases, be
analyzed using tools, models, and techniques from statistical
physics [1–4]. A good example is opinion dynamics, that is,
the study of the rules that govern transitions between different
opinion states as a response to social influence, the tendency
of people to behave like their peers, and the effects that such
rules have on the global opinion state of the population [5].
The simplest model with the simplest rules is the voter model,
which is the object of our present study.

The voter model is one of the most paradigmatic and
popular models of opinion dynamics [6,7]. It has been used
to model different phenomena in both the natural and social
sciences, from catalytic reaction models [8,9] to the evolution
of bilingualism [10] or US presidential elections [11]. The
original voter model is defined as follows. There is a set of N

interacting agents, each endowed with a binary state of opinion
(sell or buy, Democrat or Republican, Windows or Mac, etc).
At each time step of the simulation, an agent is randomly
chosen to interact with one of his or her social contacts, after
which the agent copies the opinion of her contact. The model
has two absorbing (frozen) states, which correspond to the
two consensus states, and one important property is then the
average consensus time, that is, the average time it takes the
dynamic to reach consensus starting from a given initial
configuration. In the voter model, the noise term associated
to the global behavior of the system typically decreases with
the system size, and, as a consequence, the average consensus
time is a growing function of the size of the system. The
specific size dependence is directly related to the pattern of
interactions among agents [12–14].
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One important question in opinion dynamics models is their
ability to generate spontaneously collective leadership, that is,
a group of agents that spontaneously would agree in their
opinion whereas the rest of the population would follow such
opinion blindly. This phenomenon is most probably related
to the strong fluctuations observed in stock markets during
speculative periods or severe crisis. While such a phenomenon
cannot arise in standard voter models, in Ref. [15], we
introduced a generalization, the herding voter model, which
is able to show emergence of collective leadership as a
response to strong heterogeneity in the activity patterns of
agents [16–18] and a structured influence matrix. Interestingly,
the emergence of collective leadership in the model is a
consequence of the dynamics alone, without the need of an
external field that would bias the opinion of agents [19].

In this paper, we study the dynamical properties of the
herding voter model with and without intrinsic noise. The
introduction of intrinsic noise in any variation of the voter
model has the effect of removing the frozen states and
making the steady state possible. As we shall see below, when
coupled to the herding voter model, it has quite interesting
and unexpected consequences. As for the herding voter model
without noise, we study analytically the average consensus
time, showing that, depending on the model parameters, it
may range from being size independent to have an exponential
dependence on the system size, turning then the absorbing
states unreachable.

The paper is organized as follows. In Sec. II we first review
the main results found in Ref. [15], and, starting from them, we
derive the properties of the consensus time of the herding voter
model without noise. In Sec. III we introduce the herding voter
model with noise. For this model, we study the phase diagram
in the parameter’s space as well as the dynamical properties of
the different phases found by our analysis.

II. THE HERDING VOTER MODEL

The herding voter model introduced in Ref. [15] takes
into account simultaneously heterogeneous populations where
agents are given intrinsic activity rates {λi}, accounting for the
rate at which agents interact with their peers, and arbitrary
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influences of agents on each other. This is modeled through
the probability Prob(j |i) that agent i copies the opinion of
agent j when i is activated at rate λi . In the herding voter
model, this probability is taken to be a function of the activity
rate of the copied agent of the form

Prob(j |i) = f (λj )∑N
i=1 f (λi)

, (1)

where f (λj ) is an arbitrary function. When f (λj ) is a
monotonic increasing function, active agents are chosen more
frequently and, in the herding phase, their opinions have a
strong influence on the entire population. To simplify the
analysis, hereafter we consider a structured population with
only two activity rates, λs � λf , corresponding to Ns slow
and Nf fast agents, respectively.

The dynamics of the state of the system can be described
using a set of N = Nf + Ns dichotomous stochastic processes
{ni(t)} taking the value 0 or 1 depending on the opinion state of
each agent at time t . The homogeneity within each segment of
the population allows us to coarse-grain the system by defining
the instantaneous average state of each subpopulation as

�f (t) ≡ 1

Nf

∑
i∈fast

ni(t); �s(t) ≡ 1

Ns

∑
i∈slow

ni(t), (2)

where i ∈ fast (i ∈ slow) means summation over all fast (slow)
agents. In the limit of large system sizes, �f (t) and �s(t) can be
considered as quasicontinuous stochastic processes evolving
in the range [0,1] that can be described by a Langevin equation.
In particular, for the dynamics of the fast group, we can write

d�f (t)

dt
= Af [��(t)] +

√
Df [��(t)]ξf (t), (3)

where ξf (t) is Gaussian white noise, and we have defined
��(t) ≡ (�f (t),�s(t)). Both the drift and diffusion terms ap-
pearing in this equation where computed exactly in Ref. [15]
and read

Af = αf s(�s − �f ), (4)

Df = αf s

Nf

(�s + �f [1 + 2βf s − 2�s − 2βf s�f ]), (5)

where we have defined

αf s = λf

1 + βf s

and βf s = Nf f (λf )

Nsf (λs)
. (6)

Similar equations can be derived for the slow group by
replacing the index f ↔ s in the preceding equations.

The main finding of Ref. [15] is the discovery of a phase
transition between a diffusive phase and a herding phase.
Specifically, the system is in the herding phase whenever the
following condition is met:

2
f (λf )

f (λs)
> Ns. (7)

In the diffusive phase, the group of fast agents evolves follow-
ing a diffusion equation with a drift and a nonhomogeneous
diffusion term. Drift and diffusion terms can be combined into
a single effective potential that, in the diffusive phase, has a
“U” shape. In the herding phase, the effective potential has a

bistable form, and, as a consequence, the group of fast agents
behaves as a two-states system such that their aggregated
opinion fluctuates close to zero during some random time,
then jumps quickly to one, remains there for another random
time, and jumps back to zero again and so on. During the
periods when fast agents have a stable opinion around zero
or one, the group of slow agents follow quasideterministically
the opinion of the fast group. The intuitive explanation of this
phenomenon is as follows. When the separation of time scales
is large (i.e., λf � λs) fast agents perceive slow ones as frozen
in a given state, and these will act as a drift for the evolution of
fast agents. When the condition Eq. (7) is satisfied, this drift
is small enough so that fast agents evolve almost freely until
they reach one of the consensus states (either zero or one). In
the absence of slow agents, the consensus state would be an
absorbing state. However, when slow agents have an average
opinion different from zero or one, they eventually take fast
agents out of the consensus state and make them jump to the
other consensus state.

A. Consensus time in the herding voter model

Despite the separation of time scales, fast agents can spend
a very long time near one of the consensus states. In this
case, slow agents approach almost deterministically the state
of fast agents with a characteristic time λ−1

s . If the time
needed by fast agents to switch globally their opinions is
comparable to λ−1

s slow agents can reach the opinion of
fast agents before the switching event takes place, making
the change of opinion of fast agents even more difficult and
increasing the probability that the entire system (fast and slow
agents) reach the consensus, and so frozen, state. Therefore,
the understanding of the global consensus time is necessarily
related to the understanding of the first passage time from one
of the boundaries to the other for fast agents when slow agents
have a given state �s .

We are interested in the herding phase in the thermodynamic
limit Ns > Nf � 1. Following Eq. (7), we define the order
parameter

x ≡ 2f (λf )

Nsf (λs)
. (8)

In the large size limit, and with x constant, the Langevin
equation describing the opinion of the fast group can be
written as

d�f (t)

dt
= 2λf

xNf

[�s − �f ] +
√

2λf

Nf

�f (1 − �f )ξf (t), (9)

whereas for the slow group we have

d�s(t)

dt
= λs[�f − �s]. (10)

Let us now suppose that the state of slow agents is fixed at
some value �s . We are interested in the average time it takes
for fast agents to reach the boundary at �f = 1 − �� starting
from �f = ��. This is just the standard mean first passage
time for a stochastic process following the Langevin equation
(9) with a reflecting boundary at �f = �� and an absorbing
one at �f = 1 − ��. Notice that, due to the discrete nature
of the process, we take �� = O(N−1

f ). The solution can be
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written as [20]

Tf = Nf

λf

∫ 1−��

0

B
(
z, 2�s

x
, 2(1−�s )

x

)
z

2�s
x (1 − z)

2(1−�s )
x

dz, (11)

where B(z,a,b) is the incomplete Beta function. To get further
insights, we chose f (λ) = λσ and Nf = aN

β
s with β � 1.

With this particular choice, the mean first passage time for the
fast group becomes

λsTf = a

(
2

x

)1/σ

Nβ−1/σ
s

∫ 1−��

0

B
(
z, 2�s

x
, 2(1−�s )

x

)
z

2�s
x (1 − z)

2(1−�s )
x

dz.

(12)

The term λsTf is a dimensionless quantity which value
determines the behavior of the global consensus time.

When λsTf � 1 slow agents have enough time to decay
to the same state as the fast group and, therefore, the global
consensus time is Tcon ∼ λ−1

s , independent of the size of the
system. Instead, when λsTf � 1 the fast group oscillates very
rapidly between zero and one, and the slow group does not
have enough time to decay. In this case we can estimate the
global consensus time using an argument from extreme value
theory. In general, consensus will be achieved when one of
the crossing times is of the order of λ−1

s . On average, the
number of attempts before such event takes place at least once
is proportional to Tcon/Tf . If we assume that crossing times
are exponentially distributed with average Tf , then we can
write Tcon/Tf e−1/λsTf ∼ 1 and, thus the global consensus time
scales as

Tcon ∼ Tf e1/λsTf . (13)

When Tf decays with the system size, the exponential
dependence of Tcon on Tf will make global consensus virtually
impossible.

1. Case x � 2

If x � 2, the integral in Eq. (12) is bounded when �� = 0
and the behavior of λsTf is determined by the exponents σ and
β. For β > σ−1, λsTf diverges in the large system size limit,
whereas it goes to zero whenever β > σ−1. When β = σ−1,
λsTf becomes size independent and the mean crossing time
depends on the value of x and �s .

Figure 1 shows numerical simulations with σ = β = 1 and
different values of x and �s as compared to the numerical
integration of Eq. (12). The dependence of Tf on �s is strong,
in particular when �s ≈ 0. Indeed, in this case the drift term
acting over fast agents induced by slow agents becomes very
small, making the transition very difficult. Figure 2 shows the
size dependence of Tf for β = 1, �s = 0.5, x = 2.5, and two
values of σ in perfect agreement with the exact numerical
solution given by Eq. (12). Putting all the pieces together, we
conclude that the global consensus time scales as

Tcon ∼
⎧⎨
⎩

constant β � 1/σ

exp
{

N
1/σ−β
s

}
N

1/σ−β
s

β < 1/σ
. (14)

This behavior is well illustrated in the temporal evolution of
fast and slow groups shown in the bottom plots of Fig. 2.
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FIG. 1. Numerical simulations of the average crossing time for
the fast group from �f = 0 to �f = 1 when �s is kept artificially
fixed. (a) Results with a fixed value of x as a function of �s ; (b) results
for a fixed value of �s as a function of x. In both cases β = σ = 1
and Ns = 4000. Solid lines are obtained by numerical integration of
Eq. (12).

2. Case 1 < x < 2

In this case, the integral in Eq. (12) may diverge if �s <

1 − x/2. Indeed, in this case, the behavior of the integrand near
the upper limit makes the integral to scale as ��1−2(1−�s )/x and
the crossing time scales as

Tf ∼
{

N
β−1/σ
s �s > 1 − x/2

N
2β(1−�s )/x−1/σ
s �s < 1 − x/2

. (15)

These results, however, do not change the general picture
drawn in the previous case. When β > 1/σ , Tf diverges and,
thus Tcon is constant. In the opposite case of β < 1/σ , if we
start with a value of �s > 1 − x/2βσ , then Tf approaches zero
and Tcon will grow exponentially fast. Finally, when β < 1/σ

and �s < 1 − x/2βσ , then Tf diverges and Tcons is constant.
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FIG. 2. (a) Average crossing time for the fast group from �f = 0
to �f = 1 for two values of σ as a function of the size of the slow
group. In these simulations x = 2.5, β = 1, and �s is kept artificially
fixed at �s = 0.5. Solid lines are obtained by numerical integration
of Eq. (12). (b, c) Temporal evolution of the fast and slow groups for
the two values of σ considered before, starting from �f = �s = 0.5
as initial conditions and Ns = 4000.
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III. THE HERDING VOTER MODEL WITH NOISE

The noisy voter model has been introduced several times in
different contexts during the last 30 years [21–26]. It is a simple
extension of the voter model where agents can change opinion
spontaneously without any influence from their peers. Quite
interestingly, this simple mechanism changes the dynamical
properties of the voter model in a dramatic way. Indeed, such
intrinsic noise has the effect of removing the absorbing states
from the system so that, depending on the level of the intrinsic
noise, the system changes from behaving in a diffusive-like
fashion, like the standard voter model, or oscillating between
zero and one, like in a two-states system. Quite interestingly,
a similar two-states system is observed in the herding phase
of the herding voter model but only for the fast group. In
that case, however, such behavior is produced by the same
dynamics of the herding voter model and not by any intrinsic
noise decoupled from the dynamics. In this section, we merge
both models and investigate the possible consequences for the
global dynamics of the system.

To model the intrinsic noise, we assume that, within each
agent i, two independent Poisson processes take place. The
first one is the standard activation process of the voter model
at rate λi , which is followed by the choice of a peer to copy
his or her opinion. The second takes place at rate εi , and it
is followed by a change of the current opinion of the agent.
Following Refs. [15,27,28], we can write a stochastic evolution
equation for the state vector {ni(t)} as

ni(t + dt) = ni(t)[1 − ξi(t) − φi(t)]

+φi(t)[1 − ni(t)] + ηi(t)ξi(t), (16)

where ξi(t) and φi(t) are random dichotomous variables that
take values:

ξi(t) =
{

1 with probability λi dt

0 with probability 1 − λi dt
(17)

and

φi(t) =
{

1 with probability εi dt

0 with probability 1 − εi dt
. (18)

The stochastic process ξi(t) controls whether node i is activated
during the time interval (t,t + dt), whereas φi(t) determines
whether the agent changes her opinion spontaneously.1 In the
former case, the opinion of the agent is modified as

ηi(t) =
⎧⎨
⎩

1 with probability
∑N

j=1
f (λj )∑N
i=1 f (λi )

nj (t)

0 with probability 1 − ∑N
j=1

f (λj )∑N
i=1 f (λi )

nj (t)
. (19)

The first term in the right-hand side of Eq. (16) accounts for the
case of no activity during the time interval (t,t + dt), in which
case the state of the agent remains the same. The second term
accounts for a spontaneous change of opinion, and, finally, the
last term accounts for an activation of agent i and the posterior
adoption of the opinion of one of his or her peers.

1Notice that both events cannot take places simultaneously on the
same time interval (t,t + dt), and, thus, there is no need to introduce
higher order terms.

In the case of a structured population with fast and slow
agents, a similar analysis as the one performed in Ref. [15]
allows us to write the drift and diffusion term of fast agents as

Af = εf (1 − 2�f ) + αf s(�s − �f ), (20)

Df = 1

Nf

{εf + αf s(�s + �f [1 + 2βf s − 2�s − 2βf s�f ])}.

(21)

The equations for the slow group can be derived by switching
the indices s ↔ f in the previous equations.

The standard noisy voter model undergoes a phase transi-
tion between a diffusive phase and a two-states phase at the
critical value

εc = λ

N
, (22)

so that the system is in the two-states phase when ε < εc.
Following this, we then define a control parameter y as

y ≡ λf

εf Nf

(23)

and take the limit of large system sizes by keeping x and y

constant. This leads to the following Langevin equation for the
fast group:

d�f (t)

dt
= λf

yNf

[1 − 2�f ] + 2λf

xNf

[�s − �f ]

+
√

2λf

Nf

�f (1 − �f )ξf (t), (24)

whereas for the slow group we have

d�s(t)

dt
= εs[1 − 2�s] + λs[�f − �s]. (25)

Notice that Eq. (24) defines in a natural way the characteristic
time

tc ≡ Nf

λf

= aλ−1
s

(
2

x

)1/σ

Nβ−1/σ
s , (26)

so that by defining the dimensionless time τ ≡ t/tc, the
dynamic equations for both groups read

d�f (τ )

dτ
= 1

y
[1 − 2�f ] + 2

x
[�s − �f ]

+√
2�f (1 − �f )ξf (τ ) (27)

and
d�s(τ )

dτ
= 1

y
[1 − 2�s] + tcλs[�f − �s], (28)

where we have assumed that the intrinsic noise is the same
in both groups, that is, εf = εs . When tcλs � y−1 � 1, the
opinion of the slow group decays very fast to the opinion of
the fast group so that we can approximate �s ≈ �f , and the
dynamics of the fast group becomes identical to the one for the
standard noisy voter model. This is an extreme case of herding
behavior, where the slow group behaves exactly as the fast
group, whereas the fast group has an independent dynamics.
Figure 3 shows numerical simulations corresponding to this
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FIG. 3. (a, b) Evolution of the fast (blue) and slow (red) groups in
the limit λstc � 1. In these simulations, we set λstc = 10

√
5, x = 1,

and y = 1.5 (left column) and y = 0.5 (right column). (c, d) The
steady state probability density for both groups.

case for two different values of y, below and above the
transition. As it can be clearly seen, in both cases the dynamics
of the slow group is very similar to the one of the fast group,
even though in one case the dynamics is diffusive-like, whereas
in the other it is two-states like.

A. The effective potential

In the case of tcλs < 1, the decay of �s is slow and we can
perform an adiabatic approximation by considering that �s

takes a fixed value in the Langevin equation of the fast group
during the (not very large) observation time. Let us then fix
�s and analyze the steady state of the fast group by using the
effective potential [20]

Veff(�f ) = ln Df − 2
∫

Af

Df

d�f . (29)

Using the expressions for the drift and diffusion terms in
Eq. (27) with �s fixed, we obtain

Veff(�f ) = C(x,y,�s) ln �f + C(x,y,1 − �s) ln (1 − �f )

(30)

with

C(x,y,�s) ≡
[

1 −
(

1

y
+ 2�s

x

)]
. (31)

As we can observe from Eq. (30), the effective potential has
logarithmic divergences at both �f = 0 and �f = 1. However,
the sign of the prefactors depends on the values of x,y, and �s .
When y < 1, both prefactors are negative for any value of x and
�s . In this case, the effective potential has always a “U” shape
and the dynamics of the fast group is diffusive-like. Of course,
the actual value of �s is not constant. Nevertheless, given its
slow rate of variation, we can think about the dynamics of the
fast group as evolving in a slowly changing potential but that,
nevertheless, does not change its qualitative properties.

0 1 2 3 4 5 6
x

0

1

2

3

4

5

y

two-states phase

diffusive phase

mixed two-states phase

mixed diffusive phase

FIG. 4. Sketch of the different dynamical phases of the model in
the parameters’ space (x,y) as explained in the main text. The red
squares line indicates the region within the mixed diffusive phase
where a two-states-like dynamics for the fast group takes place.

When y > x/(x − 2), both prefactors are positive for any
value of �s . Since the boundaries �f = 0,1 are reflecting
boundaries due to the presence of the intrinsic noise, the
effective potential becomes a double-well potential with
minima at the boundaries. As a consequence, the fast group
will stay for a random time in one of the consensus states until
it manages to jump to the other consensus state. The dynamics
will then become effectively a two-states dynamics. Notice
that, as in the previous case, even if �s slowly change, the
qualitative shape of the effective potential remains the same.
Between these two limit cases, we find two mixed phases.
In the domain x/(x − 1) < y < x/(x − 2), the signs of the
prefactors can be both positive, in which case the potential has
a double-well shape, or one positive and the other negative,
depending on the value of �s . We call this phase a mixed
two-states phase. In the domain 1 < y < x/(x − 1), the signs
of the prefactors can be both negative, in which case, the
potential has a “U” shape,- or one positive and the other
negative, depending on the value of �s . We call this phase
a mixed diffusion phase. All these phases are shown in Fig. 4.

Figure 5 shows numerical simulations of the diffusive
and two-states phases, respectively. As expected, in the
diffusive phase, both groups fluctuate symmetrically around
1/2, although the fast group does it with higher fluctuations. In
the two-states phase, the fast group oscillates between the two
consensus states, as also expected. At the same time, the slow
group tries to catch up following the current state of the fast
group, until it reaches a steady value, which corresponds to
the stationary solution of Eq. (28) when �f = 0 or 1:

�±
s = 1

2

[
1 ± ytcλs

2 + ytcλs

]
. (32)

These values are indicated by the dashed vertical lines in the
corresponding histograms.

The behavior of the system within the mixed two-states
phase is qualitatively similar to the one in the two-states phase.
The main difference arises for high values of the term ytcλs , so
that �±

s ≈ (1 ± 1)/2. In this case, if we start the dynamics with
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FIG. 5. (a, c) Evolution of the fast (blue) and slow (red) groups in
the diffusive phase with x = 1, y = 0.5, and σ = β = 1, a = 0.25,
and Ns = 4000. Panel (c) shows steady state distributions for both
groups. (b, d) The same as in the left column but for the two-states
phase with x = 3 and y = 15. The vertical dashed lines indicate the
asymptotic value of �s when the fast group is trapped for a long time
in the consensus states �f = 0,1, �±

s .

�s = 0.5, the effective potential has initially a double-well
shape, and the fast group will fall in one of the consensus
states. The slow group will then start approaching its “steady”
configuration �±

s , and, eventually, the effective potential will
change its qualitative shape to become a slope, trapping the
fast group in the current consensus state with more intensity.
Eventually the fast group will manage to scape from this state,
modifying the shape of the effective potential, and get trapped
in the other consensus state, so behaving again as a two-states
system. However, this process will take more time as compared
to the two-states phase, where the potential does not change its
qualitative shape. In turn, this implies that the slow group will
spend more time near �±

s , and, thus, the steady fluctuations of
the slow group will be higher.

Finally, the behavior of the system in the mixed diffusive
phase can be different depending on the value of x and y.
For a fixed value of x and low values of y, the fluctuations
of both groups are small, the effective potential will never
change its qualitative shape, and the system has a diffusive-like
behavior. However, for higher values of y fluctuations are
important enough to take �s to the point where the effective
potential changes from having a “U” shape to a slope shape.
When this event takes place, the fast group is pushed to
the corresponding consensus state and remains there until
fluctuations takes it to the other consensus state. The system
thus behaves effectively as a two-states system. Figure 6 shows
numerical simulations of the mixed diffusive phase showing
these phenomena, whereas Fig. 4 shows the empirical line in
the plane (x,y) where such behavior occurs.

IV. CONCLUSIONS

As we have seen, the addition of small variations to the
classical voter model increases the range of possible dynamical
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FIG. 6. (a, c) Evolution of the fast (blue) and slow (red) groups
in the mixed diffusive phase with x = 1, y = 2, and σ = β = 1,
a = 0.25, and Ns = 4000. Panel (c) shows steady state distributions
for both groups. (b, d) The same as in the left column but for x = 1
and y = 8.

behaviors dramatically. Heterogeneity in the activity rates of
agents, coupled with a preference choice for active agents,
induces the emergence of collective leadership in a fraction
of the population while the rest simply follow the opinion
of the leading group. This has important consequences for
the global consensus time, which now range from being a
constant value independent of the system size to an exponential
function of the system size, in stark contrast to the standard
voter model. On the other hand, the addition of intrinsic
noise to the previous model makes its dynamics even richer,
with the emergence of four well-resolved dynamical phases
with distinct behavior separations. Speculatively, it might be
possible to attribute these phases to observable modes of social
behavior in large groups, e.g., sudden jumps of the average
opinion to one of the consensus states can be interpreted
as informational cascades, where a plurality of agents at the
same time change their attitudes in one direction. Addition of
spontaneous opinion changes makes the group more tolerant
to polarized opinion oscillations: requiring more “fast” agents
to effect the opinion of the “slow” part of the group and move
the entire group to one of the polar extremes. We hope that,
despite the simplicity of the model, our results will increase
our understanding of the opinion dynamics of large groups of
interacting agents in fields such as economy or sociology.
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