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Exact solution of the isotropic majority-vote model on complete graphs
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The isotropic majority-vote (MV) model, which, apart from the one-dimensional case, is thought to be
nonequilibrium and violating the detailed balance condition. We show that this is not true when the model is
defined on a complete graph. In the stationary regime, the MV model on a fully connected graph fulfills the
detailed balance and is equivalent to the modified Ehrenfest urn model. Using the master equation approach, we
derive the exact expression for the probability distribution of finding the system in a given spin configuration.
We show that it only depends on the absolute value of magnetization. Our theoretical predictions are validated
by numerical simulations.
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I. INTRODUCTION

The isotropic majority-vote (MV) model for opinion dy-
namics is a well-known nonequilibrium spin model that has
been studied by many researchers (see, e.g., [1–12]). One of
the reasons why physicists became interested in the model is
its critical behavior. The model was originally introduced in
Ref. [1], where, for the two-dimensional (2D) square lattice,
it was shown to have a continuous phase transition with the
same static critical exponents as the 2D Ising model. This
result was an important confirmation of an earlier hypothesis
according to which nonequilibrium models with up-down
symmetry and spin-flip dynamics fall within the universality
class of the equilibrium Ising model [13,14]. Since then, there
have been many numerical studies aimed at final approval or
rejection of that hypothesis for different models. In particular,
a number of Monte Carlo simulations of the MV model on
regular lattices and random networks have been carried out,
providing contradictory conclusions (cf., e.g., [4] and [7])
and leaving unsolved the problem of its universality classes,
although recent, very accurate numerical studies confirm
this hypothesis at least for a wide class of Archimedean
lattices [12]. Nevertheless, it is still controversial whether the
upper critical dimension of the MV model on d-dimensional
hypercubic lattices is 4 (as in the Ising model) or 6 (as
suggested in [4]). Moreover, mean-field critical exponents for
the MV model have not yet been exactly determined, although
their numerical values seem to agree with the results known
for the Ising model.

In this paper we present an exact solution of the isotropic
majority-vote model on the complete graph of N nodes.
We provide the probability distribution P (�) of finding the
system in a certain microstate � = (σ1,σ2, . . . ,σN ), where
σi = ±1 denotes the spin variable associated with the site
i and N is the total number of sites. We show that the prob-
ability depends only on the absolute value of magnetization:
P (�) ∝ √

(1 − q)/q
|M(�)|

, where M(�) = ∑N
i=1 σi and q is

the standard noise parameter of the majority-vote model [see
Eq. (3) for its formal definition]. Given the result, we also
show that the MV model on the complete graph fulfills the
detailed-balance condition: just as the one-dimensional MV
model [15] and unlike the model on the two-dimensional
square lattice [1].

II. A BRIEF STATE OF THE ART ON THE
MAJORITY-VOTE MODEL

The isotropic majority-vote model is a spin model in which
to each site i a spin variable σi = ±1 is assigned. In the rest of
this paper, the global configuration of the system is defined as

� = (σ1,σ2, . . . ,σi, . . . σN ), (1)

where N is the total number of sites. The dynamics of the
model is such that, at any time step, only one site has its spin
modified. Let us assume that the considered spin is σi . The
transition rate from a configuration � to another configuration

�i = (σ1,σ2, . . . , − σi, . . . σN ), (2)

which only differs from � by the sign of the ith spin variable,
is given by

wi(�) = 1
2 [1 − (1 − 2q)σiSi], (3)

where Si takes one of three values

Si = S(mi) =

⎧⎪⎨
⎪⎩

+1 for mi > 0

0 for mi = 0

−1 for mi < 0

(4)

depending on the local magnetization

mi =
∑
〈i,j〉

σj (5)

of the nearest neighborhood of σi .
The role of the noise parameter q can be easily deduced

from Eq. (3). In the case, when, in the initial configuration
�, the sign of the variable σi is consistent with the sign of
its neighborhood, i.e., σiSi = +1, the transition rate, which
is proportional to the probability that σi changes the sign to
the opposite, is equal to wi(�) = q. Otherwise, when σiSi =
−1 one has wi(�) = 1 − q. Thus, the transition rate from a
spin configuration � to �i is 1 − q if the flipping follows
the majority rule among the nearest neighbors of i and q if
it does not. The case when Si = 0 corresponds to wi(�) =
1
2 , which means that the chosen site takes either sign with
equal probability. From the above discussion it is clear that
the parameter q in the MV model can be interpreted as an
effective temperature. However, the meaning of q is much
richer. In particular, when 0 � q < 1

2 the majority rule mimics
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a kind of ferromagnetic coupling in the system, while 1
2 < q �

1 corresponds to antiferromagnetic coupling. Finally, when
q = 1

2 the model behaves like a typical paramagnet.
The time evolution of the majority-vote model is governed

by the master equation

d

dt
P (�,t) =

∑
i

[wi(�i)P (�i,t) − wi(�)P (�,t)], (6)

where P (�,t) is the time-dependent microstate distribution,
i.e., the probability of occurrence of configuration � at time t ,
and wi(�) is the transition rate from � to �i , which is given
by Eq. (3). In the stationary regime, when

d

dt
P (�,t) = 0, (7)

i.e., P (�,t) ≡ P (�), Eq. (6) simplifies to the balance equation∑
i

[wi(�i)P (�i) − wi(�)P (�)] = 0, (8)

which, in general and differently than it is in the Ising model,
cannot be further simplified to the detailed balance condition

wi(�i)P (�i) − wi(�)P (�) �= 0. (9)

With regard to the majority-vote model, the only known
exception to Eq. (9) is the one-dimensional chain of spins,
which is equivalent to the 1D Glauber model, whose dynamics
may be interpreted as a dynamics for the 1D Ising model
(see [15], Chap. 11). In other words, in the stationary regime,
the one-dimensional MV model is equivalent to the 1D
Ising model. Therefore, its stationary distribution P (�) is
the Boltzmann-Gibbs distribution. In higher dimensions, one
believes that the MV model does not show microscopic
reversibility that underlies the detailed balance, although,
in a similar way to what happens in the microscopically
reversible Ising model, the MV model exhibits continuous
phase transitions. (The lack of microscopic reversibility in
the square-lattice MV model is simply shown in Ref. [15],
Chap. 12.6.) For example, in the stationary regime, for small
values of the parameter q, the square-lattice MV model
presents a ferromagnetic phase characterized by the presence
of a majority of spins with the same sign. Above the
critical value qc = 0.075 ± 0.01 [1] of the noise parameter,
the model presents a paramagnetic state with an equal, on
average, number of spins with distinct signs. Furthermore, it
is known that the square-lattice MV model falls into the same
universality class as the 2D Ising model. Recent numerical
simulations indicate that these findings may also be true in

higher dimensions, for d � 3 [7]. On the other hand, one still
lacks strict theoretical results concerning, in particular, the
mean-field critical behavior of the model.

In the next section, starting with the balance equation (8),
we find recurrence relations for the probability P (�) of
finding the MV model on a complete graph in a given
spin configuration �. Then we derive exact formulas for
P (�) and P (M), with the latter being the probability that
the system has a magnetization equal to M . We also show
that the MV model on complete graphs fulfills the detailed
balance condition. Our theoretical predictions are confirmed
by numerical simulations.

III. MAJORITY-VOTE MODEL ON THE
COMPLETE GRAPH

A. Probability of a configuration in the stationary regime

Let us note that, in the case of a complete graph, the local
magnetization (5) of each node is

mi =
∑
j �=i

σj = M − σi, (10)

where

M =
∑

j

σj (11)

is the total magnetization of the system in a spin configuration
�. Later in the text, if not explicitly stated otherwise, quantities
such as magnetization M , the number of positive spins N+,
and the spin variable σi always refer to the configuration �.
Accordingly, if we want to emphasize that these variables
refer to another configuration, e.g., �i , we write them in the
following way: M(�i), N+(�i), and σi(�i).

Given Eq. (10), transition rates in the balance equation (8)
can be written as

wi(�) = 1
2 [1 − (1 − 2q)σiS(M − σi)], (12)

wi(�i) = 1
2 [1 + (1 − 2q)σiS(M − σi)], (13)

where the function S(mi) is that defined in Eq. (4) and
mi(�) = mi(�i) = M − σi . These rates only depend on the
magnetization M and on the sign of the spin variable σi .
Therefore, in a compete graph, since all the spins with the same
sign are equivalent, the balance equation [cf. with Eq. (8)]

P (�)
∑

i

wi(�) =
∑

i

P (�i)wi(�i) (14)

gets the following form:

N+[1 − (1 − 2q)S(M − 1)]P (�) + N−[1 + (1 − 2q)S(M + 1)]P (�) = N+[1 + (1 − 2q)S(M − 1)]P (�−)

+N−[1 − (1 − 2q)S(M + 1)]P (�+), (15)

where �− and �+ stand for the configurations �i such that σi(�−) = −σi(�) = −1 and σi(�+) = −σi(�) = +1, respectively.
To proceed with the analysis of Eq. (15), one must assume that the system size N is even or odd. At the beginning, we assume

that N is even. Therefore, the magnetization

M = 2N+ − N (16)

is also even (positive or negative) or zero and the balance equation (15) splits into three cases depending on the sign of M . Thus,
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we have

N+(1 − q)P (�) + N−qP (�) = N+qP (�−) + N−(1 − q)P (�+) for M � −2, (17)

N+(1 − q)P (�) + N−(1 − q)P (�) = N+qP (�−) + N−qP (�+) for M = 0, (18)

N+qP (�) + N−(1 − q)P (�) = N+(1 − q)P (�−) + N−qP (�+) for M � +2. (19)

These equations can be significantly simplified if one assumes that the probability of a configuration P (�) only depends on
the number of positive spins N+(�), i.e.,

P (�) ≡ f (N+(�)) = f (N+), (20)

and correspondingly

P (�+) ≡ f (N+(�+)) = f (N+ + 1),

P (�−) ≡ f (N+(�−)) = f (N+ − 1).
(21)

The assumptions provided by Eqs. (20) and (21) are reasonable due to the symmetry of the system, in which all the spins with
the same sign are equivalent. Also, they naturally arise from the balance equations (17)–(19), in which transition rates between
different configurations only depend on N+. According to these assumptions, one gets the following recurrence relations for the
dummy function f (N+):

N+(1 − q)f (N+) + N−qf (N+) = N+qf (N+ − 1) + N−(1 − q)f (N+ + 1) for N+ <
N

2
, (22)

N+(1 − q)f (N+) + N−(1 − q)f (N+) = N+qf (N+ − 1) + N−qf (N+ + 1) for N+ = N

2
, (23)

N+qf (N+) + N−(1 − q)f (N+) = N+(1 − q)f (N+ − 1) + N−qf (N+ + 1) for N+ >
N

2
. (24)

At first glance the above relations seem quite complicated,
but in fact they have a fairly simple structure. In particular,
it is easy to see that Eq. (22), which is valid for N+ =
0,1,2, . . . ,N

2 − 1, can be written in the form

N+F (N+ − 1) = N−F (N+), (25)

where

F (N+) = (1 − q)f (N+ + 1) − qf (N+). (26)

When examining Eq. (25) for N+ = 0 one gets F (0) = 0.
Then, using F (0) = 0 in the same equation for N+ = 1, one
gets F (1) = 0. In a similar way, one can show that for each
value of N+ < N

2 , one has F (N+) = 0, i.e.,

f (N+) = 1 − q

q
f (N+ + 1) for N+ = 0,1, . . . ,

N

2
− 1.

(27)
Hence, for the subsequent values of N+ one gets

f

(
N

2
− 1

)
= f

(
N

2

)(
1 − q

q

)
, (28)

f

(
N

2
− 2

)
= f

(
N

2

)(
1 − q

q

)2

, (29)

...

and finally, for N+ = N
2 + M

2 , where M < 0 [see Eq. (16)],
the dummy function f (N+) is given by

f (N+) = f

(
N

2

)(
1 − q

q

)−M/2

. (30)

In a similar way, from Eq. (24) one can show that [cf. Eq. (27)]

f (N+) = 1 − q

q
f (N+ − 1) for N+ = N

2
+ 1, . . . ,N

(31)

and hence for N+ = N
2 + M

2 , where M > 0, one gets [cf. with
Eq. (30)]

f (N+) = f

(
N

2

)(
1 − q

q

)M/2

. (32)

Summarizing, from Eqs. (30) and (32) it directly follows
that, in the stationary regime of the majority-vote model on a
complete graph with an even number of nodes, the probability
of occurrence of a configuration � is given by [see Eq. (20)]

P (�) = P0(q)

√
1 − q

q

|M(�)|

, (33)

where

P0(q) = f

(
N

2

)
(34)

is the probability of a microstate with zero magnetization,
which can be calculated from the normalization condition

∑
�

P (�) =
N∑

N+=0

(
N

N+

)
f (N+)

= P0(q)
N∑

N+=0

(
N

N+

)√
1 − q

q

|2N+−N |

= 1. (35)
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Let us also note that, in Eq. (35), the expression under
the second sum stands for the probability of the system to
have exactly N+ positive spins or to have magnetization
M = 2N+ − N , i.e.,

P (M) = P0(q)

(
N

N+M
2

)√
1 − q

q

|M|

. (36)

Finally, proceeding in a similar way as shown in
Eqs. (17)–(36), one can also find exact expressions for P (�)
and P (M) in systems with an odd number of nodes N and
consequently, with an odd magnetization M . The mentioned
expressions have the forms

P (�) = P+1(q)

√
1 − q

q

|M(�)|−1

(37)

and

P (M) = P+1(q)

(
N

N+M
2

)√
1 − q

q

|M|−1

, (38)

where P+1(q) is the probability of a microstate with magneti-
zation M = +1 and it can be shown that P+1(q) = P−1(q).

At this point, it is important to note that Eq. (36), describing
the probability of the studied system to have exactly N+
positive spins, is the same as Eq. (9.9) in [15]. The mentioned
Eq. (9.9) characterizes the stationary state of the generalized
Ehrenfest urn model and suggest that the two models are
equivalent and can be mapped onto each other. In the Ehrenfest
model, one has N particles that can occupy two states: A and
B (+1 and −1, respectively). At successive time intervals one
chooses a particle at random and checks in which state it is. If
it is in a state with a larger number of particles, it changes its
state with probability p. Otherwise, the particle’s state changes
with probability 1 − p. Indeed, a thorough investigation of
Eq. (3) for the complete graph confirms the equivalence for
q ≡ 1 − p, where q is the MV parameter. This observation is
interesting in itself because it is not obvious at first glance.

B. Comparison between theoretical predictions and numerical
simulation results

The above theoretical predictions can be verified by
numerical simulations. In particular, in Fig. 1, theoretical and
numerical probability distributions of magnetization P (M) for
different values of the noise parameter q are shown to perfectly
agree with each other. In this figure, for q < 1

2 , one can see
that P (M) is symmetric and bimodal. The behavior indicates
that below the critical value of the noise parameter qc = 1

2 , the
considered MV model is in a ferromagnetic phase. [The value
of qc = 1

2 has also been recently obtained from mean-field
analysis as the limiting case of the critical noise in classical
random graphs; see Eq. (12) in [9].] The ferromagnetic
ordering for q < qc is characterized by a nonzero absolute
value of the average magnetization per spin (see Fig. 2).

For q > 1
2 , the distribution P (M) is unimodal with the most

likely value of the magnetization equal to zero (see Fig. 1). In
this range of the noise parameter, i.e., above the critical value
of qc = 1

2 , the probability that magnetization of the system is
equal to zero P (M = 0) is a monotonically increasing function

FIG. 1. Probability P (M) that the magnetization of the majority-
vote model on a complete graph of size N = 30 is equal to M . The
scattered points represent the results of numerical simulations aver-
aged over 104 × N independent realizations of the model. Different
symbols correspond to different values of the noise parameter q, given
in the legend. The solid curves stand for the theoretical prediction
according to Eq. (36).

of q (see Fig. 3). This probability reaches its maximum value of
unity for q = 1, when the system is an ideal antiferromagnet.
[See the discussion of the parameter q below Eq. (5) in Sec. II.]

C. Detailed balance condition

Knowing the exact expression for the probability distribu-
tion P (�), one can show that the MV model on a complete

FIG. 2. Absolute value of the average magnetization per spin
|〈σ 〉| vs the noise parameter q in the MV model on complete graphs
of various sizes N . The scattered points represent the results of
numerical simulations for different values of N (see the legend).
The solid curves result from the theoretical prediction |〈σ 〉| = 〈|M|〉

N
,

where 〈|M|〉 = ∑
M |M|P (M), with P (M) given by Eq. (36).
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FIG. 3. Probability that magnetization of the system is equal
to zero P (M = 0) vs the noise parameter q for different system
sizes N . As in the previous figures, the scattered points represent
numerical simulation results, while the solid curves are the theoretical
predictions according to Eq. (36), i.e., P (M = 0) = (

N

N/2

)
P0(q).

graph fulfills the detailed balance condition [cf. Eq. (9)]

P (�)

P (�i)
= wi(�i)

wi(�)
. (39)

Below, as in Sec. III A, we consider in detail only the case of
an even system size N . The case of an odd N may be analyzed
in a similar way. Thus, from Eq. (33) one gets that

P (�)

P (�i)
=

√
1 − q

q

�|M|

, (40)

where

�|M| = |M(�)| − |M(�i)|. (41)

It is easy to see that, since

|M(�i)| = |M(�) − 2σi | =
{|M| + 2 for σiM � 0

|M| − 2 for σiM � 2,

(42)

then the difference of the absolute values of magnetization in
successive spin configurations is given by

�|M| =
{−2 for σiM � 0

+2 for σiM � 2.
(43)

Therefore, the left-hand side of the detailed balance condition
(40) becomes

P (�)

P (�i)
=

{
q/(1 − q) for σiM � 0

(1 − q)/q for σiM � 2.
(44)

In a similar way, one can show that the right-hand side of
Eq. (39), which is a quotient of the rate transitions wi(�) and
wi(�i), also depends only on σiM . To see this, let us note that,
in Eqs. (12) and (13), the product σiS(M − σi) may have only
two values:

σiS(M − σi) = S(σi(M − σi))

= S(σiM − 1)

=
{−1 for σiM � 0

+1 for σiM � 2.
(45)

Accordingly, the right-hand side of Eq. (39) can be written as

wi(�i)

wi(�)
=

{
q/(1 − q) for σiM � 0

(1 − q)/q for σiM � 2.
(46)

The correspondence between Eqs. (44) and (46) allows one
to state that the detailed balance condition holds true in the
majority-vote model on complete graphs. This means that the
considered system is ergodic and, in the stationary regime,
there exists its equilibrium representation in the sense of the
canonical ensemble,

P (�) ∝ e−H(�), (47)

with the Hamiltonian given by [cf. Eqs. (33) and (37)]

H(�) = ln
√

q

1 − q
|M(�)|. (48)

IV. SUMMARY

The presented work is theoretical in nature. We have
studied the isotropic majority-vote model, which, apart from
the one-dimensional case, is thought to be nonequilibrium.
We found that if this model is defined on a complete graph,
then, in the stationary regime, it is equivalent to the modified
Ehrenfest urn model and has an equilibrium representation
in the sense of the canonical ensemble. We showed that
the probability distribution P (�) of finding the system in
a certain microstate � = (σ1,σ2, . . . ,σN ), where σi = ±1,
depends only on the absolute value of magnetization: P (�) ∝√

(1 − q)/q
|M(�)|

, where M(�) = ∑N
i=1 σi and q is the noise

parameter of the model. The result was obtained from the
master equation for the microstate distribution P (�) and it
agrees with the equivalent result for the Ehrenfest model
that was previously obtained from the rate equation for the
magnetization distribution P (M). Our theoretical predictions
perfectly agree with the results of numerical simulations
performed for systems of various sizes, N � 2. Analytical
results, which were described in this work, are the first step to
determine exact values of the mean-field critical exponents of
the MV model.
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