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Fluctuations in percolation of sparse complex networks
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We study the role of fluctuations in percolation of sparse complex networks. To this end we consider two
random correlated realizations of the initial damage of the nodes and we evaluate the fraction of nodes that are
expected to remain in the giant component of the network in both cases or just in one case. Our framework includes
a message-passing algorithm able to predict the fluctuations in a single network, and an analytic prediction of
the expected fluctuations in ensembles of sparse networks. This approach is applied to real ecological and
infrastructure networks and it is shown to characterize the expected fluctuations in their response to external
damage.
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I. INTRODUCTION

Percolation is one of the most interesting and fundamental
critical phenomena [1,2] defined on complex networks [3,4].
It characterizes the nonlinear response of a network to random
damage of its nodes (or links) by evaluating the size of the giant
component that results after the initial perturbation. In network
science percolation has received ever-lasting attention, and
currently methods and ideas developed in the framework of
percolation theory are widely used to study social, technologi-
cal, and biological networks. At the beginning of research into
this field, percolation theory on complex networks became
pivotal to characterizing the robustness of scale-free networks
[5–9]. More recently generalized percolation processes in-
cluding k-core percolation [10], bootstrap percolation [11],
and percolation of multilayer networks [12–23] have greatly
enriched our understanding of the interplay between the
structure of networks and their response to perturbations.

In locally tree-like networks, percolation can be studied
using message-passing algorithms [24,25]. These algorithms
are becoming increasingly popular in network theory and they
have been used to characterize the percolation of single [26]
and multilayer networks [15,27–31], to predict and monitor
epidemic spreading [32–37], to identify the driver nodes of
a network ensuring its controllability [38,39] and to solve a
number of other optimization problems on networks [40–42].

In this paper we aim at using a message-passing algorithm
valid in the locally tree-like approximation, to evaluate the
fluctuations that can be observed in the response of a network
to random damage. This problem is of wide interest for the
network science community and can be applied to a variety
of real biological, social, and technological networks to gain a
comprehensive understanding of their robustness properties.

In all percolation-like studies the goal is to characterize the
fraction of nodes in the giant component (or in the considered
generalization of the giant component) after initial damage is
inflicted to the nodes (or the links) of the network. However,
it is usually the case that the real entity of the initial damage
is not known. Instead often only the probability that a random
node or a random link of the network is initially damaged is
known. In this case it is standard to characterize the response
of the network to the external perturbation by considering the
expected fraction of nodes remaining in the giant component
(or in its generalization) after random initial damage. For

instance, very reliable predictions of this average response
of a single network to random damage of its nodes or links
can be obtained by message-passing techniques [26] as long as
the network is locally tree-like. Our aim here is to go beyond
this approach, proposing a framework able to characterize the
fluctuations observed in the response of a network to different
realizations of the initial damage considering also the case in
which these initial perturbations are correlated.

To start with a simple case, we address exclusively per-
colation of single sparse networks (i.e., the emergence of the
giant component). Given two random realizations of the initial
damage, where the second realization of the initial damage can
be correlated with the first realization of the initial damage, we
characterize the probability that a node is found in the giant
component in both realizations or just in one realization of
the initial damage. In this way we identify when the network
has the most unpredictable response to damage. This point is
signaled by a maximum in the fraction of nodes that are found
in the giant component for one realization of the damage but
are not found in the giant component for the other realization
of the damage. The proposed message-passing algorithm
is here tested over real networks including food webs and
infrastructure networks. Finally the critical behavior observed
in uncorrelated sparse network ensembles with given degree
distribution is here characterized by deriving the relevant
critical indices.

II. MESSAGE-PASSING ALGORITHM

A. Message-passing algorithm for single realizations
of the initial damage

Consider two different realizations of the initial damage
of the nodes indicated by q = 1,2. Each realization of the
initial damage q = 1,2 is fully characterized by the set of
variables {s(q)

i }i=1,2,...,N where s
(q)
i indicates whether a node

i is initially removed (s(q)
i = 0) or not (s(q)

i = 1) from the
network. In a locally tree-like network, a well-known message-
passing algorithm [24,25] is able to predict whether a node i

belongs (n(q)
i = 1) or not (n(q)

i = 0) to the giant component
after the initial damage indicated by {s(q)

i }i=1,2,...,N has been
inflicted to the network. Specifically the values of the indicator
functions n

(q)
i are determined by a set of messages n

(q)
i→j that are
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exchanged between connected nodes i and j . These messages
take values zero or one (i.e., n(q)

i→j = 0,1) and indicate whether

(n(q)
i→j = 1) or not (n(q)

i→j = 0) node i connects node j to other
nodes in the giant component. These messages are determined
by the following recursive set of equations:

n
(q)
i→j = s

(q)
i

⎛
⎝1 −

∏
�∈N(i)\j

(
1 − n

(q)
�→i

)⎞⎠, (1)

where N (i) indicates the set of neighbors of node i. In other
words node i connects node j to nodes in the giant component
(n(q)

i→j = 1) if and only if it is not initially damaged, i.e., s(q)
i =

1, and it has at least a neighbor node � different from node
j that at its turn connects node i to other nodes in the giant
component. The messages n

(q)
i→j determine the value of the

indicator functions n
(q)
i . Each indicator function is set equal

to one, i.e., n
(q)
i = 1, if and only if node i is not initially

damaged, i.e., s
(q)
i = 1, and it has at least a neighbor node �

that connects it to other nodes in the giant component, i.e.,
n

(q)
�→i = 1. Therefore we have that the indicator functions n

(q)
i

are determined by

n
(q)
i = s

(q)
i

⎛
⎝1 −

∏
�∈N(i)

(
1 − n

(q)
�→i

)⎞⎠. (2)

B. Message-passing algorithm to evaluate fluctuations

It is often the case that the exact realization of the initial
random damage is not known, and only the probability that
the initial damage occurs on any given node of the network is
available. It order to treat this scenario, the probability that
a node is in the giant component is usually studied [26].
When two independent realizations of the initial damage are
applied to a given network the response shows fluctuations.
These fluctuations can become highly nontrivial in the case
in which the two realizations of the initial damage are
correlated. To characterize the fluctuations in the general case
of node-dependent and correlated damage, we consider two
realizations (q = 1,2) of the initial random damage. Each
node i is damaged just in one or in both realizations of the
damage with a node-dependent probability. It follows that in
a pair q = 1,2 of realizations of the initial damage, the initial
damage configuration {s(1)

i ,s
(2)
i }i=1,2,...,N has the probability

P̂
({

s
(1)
i ,s

(2)
i

})
=

N∏
i=1

[(
p

[11]
i

)s
(1)
i s

(2)
i

(
p

[00]
i

)(1−s
(1)
i

)(
1−s

(2)
i

)

×(
p

[10]
i

)s
(1)
i

(
1−s

(2)
i

)(
p

[01]
i

)(1−s
(1)
i

)
s

(2)
i

]
, (3)

where p
[11]
i ,p

[01]
i ,p

[10]
i and p

[00]
i indicate respectively the

probability that node i is not initially damaged for both q = 1
and q = 2; the probability that it is initially damaged for q = 1
and not for q = 2; the probability that it is not initially damaged
for q = 1 and is initially damaged for q = 2; or the probability
that it is initially damaged for both q = 1 and q = 2. Note
that for every node i = 1,2, . . . ,N these probabilities are

normalized, and we have

p
[11]
i + p

[01]
i + p

[10]
i + p

[00]
i = 1. (4)

Here and in the following we will indicate with p
(q)
i the

probability that a node i is not initially damaged in the
realization q, these probabilities are given by

p
(1)
i = p

[10]
i + p

[11]
i ,

p
(2)
i = p

[01]
i + p

[11]
i . (5)

When we consider two configurations of the initial damage
drawn from the distribution P ({s(1)

i ,s
(2)
i }) given by Eq. (3) the

probability σ
(q)
i that a node i is in the giant component of the

network in the qth realization of the initial damage is given by

σ
(q)
i = 〈

n
(q)
i

〉
, (6)

where 〈. . .〉 indicates the average over the probability distribu-
tion P̂ ({s(1)

i ,s
(2)
i }). In order to go beyond this description here

we study the probability that node i is in the giant component
for both realizations of the initial random damage (σ̂ [11]

i ), the
probability that node i is in the giant component only for the
first realization of the random damage (σ̂ [10]

i ), the probability
that it is in the giant component only for the second realization
of the random damage (σ̂ [01]

i ), and finally the probability that
it is not in the giant component for both realizations of the
random damage (σ̂ [00]

i ). These probabilities are given by

σ̂
[11]
i = 〈

n
(1)
i n

(2)
i

〉
,

σ̂
[10]
i = 〈

n
(1)
i

(
1 − n

(2)
i

)〉 = σ
(1)
i − σ̂

[11]
i ,

σ̂
[01]
i = 〈(

1 − n
(1)
i

)
n

(2)
i

〉 = σ
(2)
i − σ̂

[11]
i ,

σ̂
[00]
i = 〈(

1 − n
(1)
i

)(
1 − n

(2)
i

)〉
= 1 − σ

(1)
i − σ

(2)
i + σ̂

[11]
i , (7)

where 〈. . .〉 indicates the average over the probability distri-
bution P̂ ({s(1)

i ,s
(2)
i }). From Eqs. (7) it is evident that given

σ
(1)
i , σ

(2)
i , and σ̂

[11]
i all the remaining probabilities can be

calculated. In order to evaluate σ
(q)
i and σ̂

[11]
i we need to find

the average messages σ
(q)
i→j = 〈n(q)

i→j 〉 and σ̂
[11]
i→j = 〈n(1)

i→j n
(2)
i→j 〉

over the distributions P ({s(q)
i }). The equations determining the

indicator functions σ
(1)
i , σ

(2)
i , and σ̂

[11]
i and the corresponding

messages are given, in a locally tree-like network, on one side
by the well-known message-passing equations [26]

σ̂
(q)
i→j = p

(q)
i

⎡
⎣1 −

∏
�∈N(i)\j

(
1 − σ

(q)
�→i

)⎤⎦,

σ̂
(q)
i = p

(q)
i

⎡
⎣1 −

∏
�∈N(i)

(
1 − σ

(q)
�→i

)⎤⎦, (8)

for q = 1,2 and on the other side by the additional set of
equations, introduced here to account for fluctuations,

σ̂
[11]
i→j = p

[11]
i

⎡
⎣1 −

∏
�∈N(i)\j

(
1 − σ

(1)
�→i

)
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−
∏

�∈N(i)\j

(
1 − σ

(2)
�→i

)

+
∏

�∈N(i)\j

(
1 − σ

(1)
�→i − σ

(2)
�→i + σ̂

[11]
�→i

)⎤⎦,

σ̂
[11]
i = p

[11]
i

⎡
⎣1 −

∏
�∈N(i)

(
1 − σ

(1)
�→i

)

−
∏

�∈N(i)

(
1 − σ

(2)
�→i

)

+
∏

�∈N(i)

(
1 − σ

(1)
�→i − σ

(2)
�→i + σ̂

[11]
�→i

)⎤⎦. (9)

Note that now both messages and indicator functions take real
values between zero and one.

In the case of uncorrelated initial damage when for every
node i we have

p
[11]
i = p

(1)
i p

(2)
i , (10)

the Eqs. (9) have always the trivial solution

σ
[11]
i = σ

(1)
i σ

(2)
i ,

σ
[11]
i→j = σ

(1)
i→j σ

(2)
i→j . (11)

Additionally in the case in which p
(1)
i = p

(2)
i for every node i

the Eqs. (8) simplify since we have

σ
(1)
i = σ

(2)
i ,

σ
(1)
i→j = σ

(2)
i→j . (12)

To characterize the global response of the network to the initial
damage it is convenient to consider the expected fraction Ŝ[11]

of nodes that are in the giant component in both realizations
of the initial damage, and the expected fraction Ŝ[10] (Ŝ[01]) of
nodes that are in the giant component just in the first (second)
realization of the initial damage. These are clearly given by

Ŝ[r,r ′] = 1

N

N∑
i=1

σ̂
[rr ′]
i , (13)

where here and in the following [rr ′] can take values [11],[10],
or [01].

We note here that strictly speaking Ŝ[10] characterizes the
fluctuations in the response to initial damage only if the two
realizations of the initial damage are statistically equivalent,
i.e., for p

(1)
i = p

(2)
i , while for p

(1)
i �= p

(2)
i the use of the term

fluctuations is less appropriate.

C. Numerical results on single networks

To validate our theoretical description of fluctuations in
the percolation properties of single networks, we have com-
pared the results obtained by applying the message-passing
algorithm described by Eqs. (8)–(9) to simulations of random
damage on single networks [43]. We have considered on one

FIG. 1. Fraction of nodes Ŝ[11] and Ŝ[10] which are respectively in the giant component in two random realizations of the initial damage
and just in one realization of the initial damage plotted as a function of the probability that a node is not initially damaged in any realization
of the initial damage p

(1)
i = p

(2)
i = p. Here only the case in which the two realizations of the initial damage are uncorrelated p

[11]
i = p2 for

i = 1,2, . . . ,N is considered. The reported simulation results are compared with the message-passing predictions (MP) on the same single
network for four networks: (a) a random Poisson network with average degree 〈k〉 = 2 and total number of nodes N = 104; (b) the U.S. airport
network [46]; (c) the Little Rock Lake Food-Web Network [44,45]; (d) the Ythan Estuary Food-Web Network [45]. The simulation results are
obtained by averaging over 5000 pairs of random realization of the initial damage.
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side networks generated from ensembles of Poisson random
networks, and on the other side three real network datasets:
two food-webs (Little Rock Lake Food-Web network [44,45]
and Ythan Estuary Food-Web Network [45]) and the airport
network between the top 500 U.S. airports [46]. In Fig. 1 the
results of the predictions obtained with the message-passing
algorithm are compared with simulations of 5000 pairs of
random realizations of the initial damage for p

(1)
i = p

(2)
i = p

and p
[11]
i = p2. These results reveal an interesting pattern

of the probability Ŝ[10] that displays a clear maximum as a
function of p. Therefore there is a value of p in which the
networks are more unpredictable since the fraction of nodes
Ŝ[10] in the giant component for one realization of the initial
damage but not for the other has a maximum. In Fig. 2 we
display the fraction of nodes S[10] found in the giant component
only in one realization of the initial damage in the case of
positively correlated, negatively correlated, and uncorrelated
realizations of the initial damage. Two realizations of the initial
damage are positively correlated if

p
[11]
i > p

(1)
i p

(2)
i , (14)

for every i = 1,2 . . . ,N . This relation implies that the con-
ditional probability that any given node is not damaged in
the second realization of the initial damage, given that it is not
damaged in the first realization, is higher than its unconditional
probability. Similarly two realizations of the initial damage are
negatively correlated when

p
[11]
i < p

(1)
i p

(2)
i , (15)

for every i = 1,2 . . . ,N , implying that the conditional prob-
ability that any given node is not damaged in the second
realization of the initial damage, given that it is not damaged
in the first realization, is smaller than its unconditional
probability.

Specifically here we have considered damage determined
by the following node-independent probabilities:

p
(1)
i = p

(2)
i = p,

p
[11]
i = pa. (16)

Here a � 1 is a parameter tuning the nature of the correlations
such that for a ∈ [1,2) the two realizations of the damage are
positively correlated, for a > 2 they are negatively correlated,
and for a = 2 they are uncorrelated. Note that while for
a � 2 the range of variability of p is [0,1], for a > 2 the
normalization condition given by Eq. (4) limits the largest
possible value of p to a number smaller than one. The results
of Fig. 2 show that the correlations between two realizations
of the initial damage affect the functional relation between the
probability Ŝ[10] and p. Notably as a function of the parameter
a the maximum of Ŝ[10] changes position indicating a different
value of p in which the system is maximally unpredictable.

Finally from both Figs. 1 and 2 it is apparent that the
message-passing algorithm provides a very good prediction of
fluctuations observed in the percolation properties of complex
networks. The small deviations observed for some datasets
should be attributed to deviations from the locally tree-like
assumption.

III. FLUCTUATIONS IN RANDOM
NETWORK ENSEMBLES

A. General equations

On a random uncorrelated network with degree distribution
P (k), it is possible not only to predict the expected fraction
of nodes S(q) in a given random realization of the initial
damage, but also to predict the expected fluctuations by
evaluating the expected number of nodes Ŝ[rr ′] that are in
the giant component in two random realizations of the initial
damage (for [rr ′] = [11]) or just in one of the two realizations
(for [rr ′] = [10] and [rr ′] = [01]). This can be achieved by
performing the average of the messages and the indicator
functions described in the previous paragraph over a random
uncorrelated network ensemble with given degree distribution
P (k) (indicated as . . .). To simplify the scenario we consider
here and in the following a pair of realizations of the initial
damage where every node i = 1,2, . . . ,N is damaged with the
same probability, i.e., p(q)

i = p(q) and p
[11]
i = p[11]. Therefore,

on locally tree-like uncorrelated network ensembles, we obtain

that S(q) = σ
(q)
i , Ŝ[11] = σ̂

[11]
i , Ŝ[10] = σ̂

[10]
i , and Ŝ[01] = σ̂

[01]
i

depend on the values of the average messages S ′
(q) = σ̂

(q)
i→j ,

Ŝ ′
[11] = σ̂

[11]
i→j as indicated by the following equations (see

derivation in the Appendix A):

S ′
(q) = p(q)

[
1 − G1

(
1 − S ′

(q)

)]
,

S(q) = p(q)
[
1 − G0

(
1 − S ′

(q)

)]
,

Ŝ ′
[11] = p[11]

[
1 − G1

(
1 − S ′

(1)

) − G1
(
1 − S ′

(2)

)
+G1

(
1 − S ′

(1) − S ′
(2) + Ŝ ′

11

)]
,

Ŝ[11] = p[11]
[
1 − G0

(
1 − S ′

(1)

) − G0
(
1 − S ′

(2)

)
+G0

(
1 − S ′

(1) − S ′
(2) + Ŝ ′

11

)]
,

Ŝ[10] = S(1) − Ŝ[11],

Ŝ[01] = S(2) − Ŝ[11], (17)

with G1(z) and G0(z) indicating the generating functions

G0(z) = ∑
k P (k)zk, G1(z) = ∑

k
k

〈k〉P (k)zk−1. (18)

In Fig. 3 we show the probabilities Ŝ[10] and Ŝ[11] as a function
of p(1) and p(2) for a Poisson network with average degree
〈k〉 = 2 and p[11] = p(1)p(2) as predicted by Eqs. (17). These
plots reveal the entire full diagram characterizing the response
of the network to external damage.

B. Two realizations of the initial damage with p(1) = p(2) = p

In the interesting case in which the two random realizations
of the initial damage have the same probability, i.e., p(1) =
p(2) = p, Eqs. (17) do simplify significantly as we have S ′

(1) =
S ′

(2) = S ′ and S(1) = S(2) = S. Therefore they reduce to

S ′ = p
[
1 − G1

(
1 − S ′)],

S = p
[
1 − G0

(
1 − S ′)],

Ŝ ′
[11] = p[11]

[
1 − 2G1

(
1 − S ′) + G1

(
1 − 2S ′ + Ŝ ′

[11]

)]
,
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FIG. 2. Fraction of nodes Ŝ[10] which are in the giant component in just one realization of the initial damage plotted as a function of the
probability that a node i is not initially damaged in any realization of the initial damage p

(1)
i = p

(2)
i = p. The data are shown for p

[11]
i = pa

and a = 1.25,1.50,1.75 (positively correlated case), a = 2.00 (uncorrelated case). and a = 2.25,2.50,2.75 (negatively correlated case). The
reported simulation results (symbols) are compared with the message-passing predictions (solid lines) on the same single network for four
networks: (a) a random Poisson network with average degree 〈k〉 = 3 and total number of nodes N = 2 × 103; (b) the U.S. airport network
[46]; (c) the Little Rock Lake Food-Web Network [44,45]; (d) the Ythan Estuary Food-Web Network [45]. The simulation results are obtained
by averaging over 5000 pairs of random realization of the initial damage.

Ŝ[11] = p[11]
[
1 − 2G0

(
1 − S ′). + G0

(
1 − 2S ′ + Ŝ ′

[11]

)]
,

Ŝ[10] = Ŝ[01] = S − Ŝ[11]. (19)

In this case we observe that both Ŝ[11] and Ŝ[10] have a second-
order phase transition at p = pc = 〈k〉

〈k(k−1)〉 where here 〈. . .〉
indicates the average over the degree distribution P (k) of the
network. Let us now characterize the critical behavior of both
probabilities on complex networks. These results extend the
analysis of the critical indices for percolation of scale-free
networks [1]. For well-behaved distributions with converging
first, second, and third moment of the degree distribution, as

p → p+
c we observe the critical behavior

S ∝ (p − pc)β,

Ŝ[rr ′] ∝ (p − pc)β̂[rr′ ] , (20)

with

β̂[11] = β + 1, β̂[10] = β, (21)

for p[11] < p (which includes the uncorrelated case p[11] =
p2), and

β̂[11] = β, β̂[10] = β, (22)

for p[11] = p.

FIG. 3. Probabilities (a) Ŝ[10] and (b) Ŝ[11] plotted as a function of p(1) and p(2) for a Poisson network with average degree 〈k〉 = 2 for the
case of two uncorrelated realizations of the initial damage, i.e., p[11] = p(1)p(2).
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Given the fact that for these distributions β takes its mean-
field value β = 1 we obtain β̂[11] = 2, β̂[10] = 1 for p[11] < p

and β̂[11] = 1, β̂[10] = 1 for p[11] = p. In the relevant case of
a network with power-law degree distribution P (k) = Ck−γ

and γ > 2 the critical exponents can change and depend on the
value of γ (see Appendix B for details of the derivation). For
γ > 4 we recover the previously discussed scenario as first,
second, and third moments of the degree distribution converge.
For γ ∈ (3,4) we observe the scaling of Eq. (20) with critical
exponents satisfying Eq. (21) or Eq. (22) with pc = 〈k〉

〈k(k−1)〉 ,

and β = 1
γ−3 . For γ ∈ (2,3) we observe the scaling of Eq. (20)

with pc = 0, and

β̂[11] = β + (a − 1), β̂[10] = β, (23)

for p[11] = pa and β = 1
3−γ

. For γ = 4 we observe logarith-
mic corrections to the critical behavior

S ∝ (p − pc)β[− ln (p − pc)]−1,

Ŝ[rr ′] ∝ (p − pc)β̂[rr′ ] [− ln (p − pc)]−1,

(24)

with β̂[11] and β̂[10] given by Eqs. (21) and (22) with β = 1 and
pc = 〈k〉

〈k(k−1)〉 . Finally for γ = 3 we obtain

S ∝ pβe
− c

p ,

Ŝ[rr ′] ∝ pβ̂[rr′ ]e
− c

p ,

(25)

with c = 〈k〉/C > 0 and the critical exponents β̂[11] and β̂[10]

given by Eqs. (23) with β = 1.

IV. CONCLUSIONS

In conclusion we have presented a characterization of
the fluctuations expected in the percolation properties of
complex networks. By considering two random realizations
of the initial damage, in general correlated, we are able to
characterize how different nodes might be more stable than
other nodes. Assuming that nodes are damaged randomly
with the same probability f = 1 − p in both realizations of
the initial damage, for every single locally tree-like network
we have shown how to predict for which value of p the
fluctuations are more significant for both uncorrelated and
correlated realizations of the initial damage. Finally we have
studied the percolation on uncorrelated network ensembles
characterizing their expected fluctuations. This framework
based on a message-passing algorithm can be applied to single
locally tree-like real networks, and here we have discussed
its application to food webs and infrastructure networks. We
believe that this approach can be fruitfully extended to link
percolation and to other generalized percolation transitions
such as k-core percolation and percolation of multilayer
networks to reveal the role of fluctuations in the response
of a network to external damage, also in these generalized
scenarios.

Note added. Recently we became aware of Ref. [47] which
tackles a similar problem taking a different perspective.

APPENDIX A: DERIVATION OF EQS. (17)

Let us derive here Eqs. (17) for Ŝ ′
[11] and Ŝ ′

[11] starting
from the message-passing equations (9). A similar approach
can be used to derive the equations for S ′

(q) and S(q). We
consider a random realization of the network G drawn from
an uncorrelated network ensemble with given degree sequence
{k1,k2, . . . ,kN }, associated with the degree distribution

P (k) = 1

N

N∑
i=1

δ(k,ki), (A1)

where δ(x,y) is the Kronecker delta. Therefore the network G

is chosen with probability

P (G) = 1

Z

N∏
i=1

δ

⎛
⎝ki,

N∑
j=1

Aij

⎞
⎠, (A2)

where A is its adjacency matrix.
Our aim is to write the equations for the average message

Ŝ ′
[11] and the average probability Ŝ[11] that a node is in the giant

component in both realizations of the percolation problem, i.e.,

Ŝ ′
[11] = σ̂

[11]
i→j ,

Ŝ[11] = σ̂
[11]
i , (A3)

where here we indicated with . . . the average over the probabil-
ity P (G). Specifically, for any link-dependent function fi→j

the average . . . indicates

fi→j =
∑
G

P (G)
∑
〈i,j〉

fi→j

〈k〉N , (A4)

where 〈i,j 〉 are nearest neighbors. For node-dependent func-
tions fi , instead . . . indicates the average

fi =
∑
G

P (G)
N∑

i=1

fi

N
. (A5)

Using the above definitions together with Eqs. (9) and the
assumption that the network is locally tree-like, we obtain for
Ŝ ′

[11]

Ŝ ′
[11] = σ̂

[11]
i→j

= p[11] 1

〈k〉N
∑

<i,j>

⎡
⎣1 −

∏
�∈N(i)\j

(
1 − σ

(1)
�→i

)

−
∏

�∈N(i)\j

(
1 − σ

(2)
�→i

)

+
∏

�∈N(i)\j

(
1 − σ

(1)
�→i − σ

(2)
�→i + σ̂

[11]
�→i

)⎤⎦

= p[11] 1

〈k〉
∑

k

kP (k)
[
1 − (

1 − S ′
(1)

)k−1

− (
1 − S ′

(2)

)k−1

+ (
1 − S ′

(1) − S ′
(2) + Ŝ ′

11

)k−1
]
. (A6)
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This equation can be also written as

Ŝ ′
[11] = p[11][1 − G1

(
1 − S ′

(1)

) − G1
(
1 − S ′

(2)

)
+G1

(
1 − S ′

(1) − S ′
(2) + Ŝ ′

11

)]
, (A7)

where the generating function G1(x) is defined in Eq. (18),
recovering Eq. (17) for Ŝ ′

[11]. Similarly, using Eqs. (9) and the
locally tree-like assumption we can calculate Ŝ[11] getting

Ŝ[11] = σ̂
[11]
i

= p[11] 1

N

N∑
i=1

⎡
⎣1 −

∏
�∈N(i)

(
1 − σ

(1)
�→i

)

−
∏

�∈N(i)

(
1 − σ

(2)
�→i

)

+
∏

�∈N(i)

(
1 − σ

(1)
�→i − σ

(2)
�→i + σ̂

[11]
�→i

)⎤⎦

= p[11]
∑

k

P (k)
[
1 − (

1 − S ′
(1)

)k − (
1 − S ′

(2)

)k

+ (
1 − S ′

(1) − S ′
(2) + Ŝ ′

11

)k
]
. (A8)

This equation can be written in terms of the generating function
G0(x) defined in Eq. (18) as

Ŝ[11] = p[11]
[
1 − G0

(
1 − S ′

(1)

) − G0
(
1 − S ′

(2)

)
+G0

(
1 − S ′

(1) − S ′
(2) + Ŝ ′

11

)]
, (A9)

recovering Eq. (17) for Ŝ[11].

APPENDIX B: DERIVATION OF THE CRITICAL INDICES

In this appendix we give the details of the derivation of the
critical indices.

Well-behaved degree distributions

In this paragraph we derive the critical indices in the case of
well-behaved degree distributions P (k) having first, second,
and third convergent moments. Starting from Eqs. (19) and
expanding close to the trivial solution S = S ′ = Ŝ[r,r ′] = 0
we get

S ′ = p
〈k(k − 1)〉

〈k〉 S ′ − p
1

2

〈k(k − 1)(k − 2)〉
〈k〉 (S ′)2 + · · · ,

S = p〈k〉S ′ + · · · ,

Ŝ ′
[11] = p[11] 〈k(k − 1)〉

〈k〉 Ŝ ′
[11]

+p[11] 1

2

〈k(k − 1)(k − 2)〉
〈k〉

×
[
−2(S ′)2 + (−2S ′ + Ŝ ′

[11]

)2
]

+ · · · ,

Ŝ[11] = p[11]〈k〉Ŝ ′
[11] + · · · .

Considering the first relevant terms of the expansion, we find
for S and S ′

S ′ ∝
(

p
〈k(k − 1)〉

〈k〉 − 1

)
,

S ∝
(

p
〈k(k − 1)〉

〈k〉 − 1

)
, (B1)

as long as S 	 1 and S ′ 	 1. When investigating the scaling
for Ŝ ′

[11],Ŝ[11] we need to distinguish between the cases p[11] <

p and p[11] = p. In the case p[11] < p we have for Ŝ[11] 	 1
and Ŝ ′

[11] 	 1

Ŝ ′
[11] ∝

(
p

〈k(k − 1)〉
〈k〉 − 1

)2

,

Ŝ[11] ∝
(

p
〈k(k − 1)〉

〈k〉 − 1

)2

. (B2)

In the case p[11] = p we have instead for Ŝ[11] 	 1 and Ŝ ′
11 	 1

Ŝ ′
[11] ∝

(
p

〈k(k − 1)〉
〈k〉 − 1

)
,

Ŝ[11] ∝
(

p
〈k(k − 1)〉

〈k〉 − 1

)
. (B3)

Therefore S, S[10] = S − S[11], and S[11], close to the transition
point (p → p+

c ), follow the scaling

S ∝ (p − pc)β,

Ŝ[rr ′] ∝ (p − pc)β̂[rr′ ] , (B4)

with pc = 〈k〉
〈k(k−1)〉 , β = 1, and

β̂[11] = β + 1, β̂[10] = β. (B5)

in the case p[11] < p, and

β̂[11] = β, β̂[10] = β. (B6)

in the case p[11] = p.

Power-law degree distributions

In this paragraph we derive the critical indices in the case
of a power-law degree distribution P (k) = Ck−γ where γ > 2
and C is the normalization constant.

Case γ > 4

In the case in which γ > 4 the degree distribution P (k) has
converging first, second, and third moments. Therefore this
case can be recast in the case of well-behaved distributions
discussed above.

Case γ = 4

Expanding Eqs. (19) close to the trivial solution S = S ′ =
Ŝ[r,r ′] = 0 we obtain for γ = 4,

S ′ = p
〈k(k − 1)〉

〈k〉 S ′ + pD(S ′)2 ln S ′ + · · · ,

S = p〈k〉S ′ + · · · ,
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Ŝ ′
[11] = p[11] 〈k(k − 1)〉

〈k〉 Ŝ ′
[11] + · · · ,

+p[11]D[2(S ′)2 ln S ′ − (2S ′ − Ŝ ′
[11])

2

ln(2S ′ − Ŝ ′
[11])] + · · · ,

Ŝ[11] = p[11]〈k〉Ŝ ′
[11] + · · · , (B7)

where D > 0 is a constant. Proceeding as in the preceding case
we recover, close to the transition point, the scaling behavior

S ∝ (p − pc)β[− ln (p − pc)]−1,

Ŝ[rr ′] ∝ (p − pc)β̂[rr′ ] [− ln (p − pc)]−1, (B8)

with

β = 1,

pc = 〈k〉
〈k(k − 1)〉 , (B9)

and β̂[11], β̂[10] given by Eqs. (B5) and (B6).

Case γ ∈ (3,4)

In the case γ ∈ (3,4), starting from Eqs. (19) and expanding
close to the trivial solution S = S ′ = Ŝ[r,r ′] = 0 we get

S ′ = p
〈k(k − 1)〉

〈k〉 S ′ − pD(S ′)γ−2 + · · · ,

S = p〈k〉S ′ + · · · ,

Ŝ ′
[11] = p[11] 〈k(k − 1)〉

〈k〉 Ŝ ′
[11] + · · · ,

+p[11]D[−2(S ′)γ−2 + (2S ′ − Ŝ ′
[11])

γ−2] + · · · ,

Ŝ[11] = p[11]〈k〉Ŝ ′
[11] + · · · , (B10)

where D > 0 indicates a constant. Close to the transition
point, we recover the scaling behavior Eq. (B4) and the critical
indices determined by Eqs. (B5) and (B6) with

β = 1

γ − 3
,

pc = 〈k〉
〈k(k − 1)〉 . (B11)

Case γ = 3

Expanding Eqs. (19) close to the trivial solution S = S ′ =
Ŝ[r,r ′] = 0 for γ = 3 we obtain

S ′ = −p
C

〈k〉 (S ′) ln(S ′) + · · · ,

S = p〈k〉S ′ + · · · ,

S ′
[11] = p[11] C

〈k〉
[
2(S ′) ln(S ′)

− (2S ′ − S ′
[11]) ln

(
2S ′ − S ′

[11]

)] + · · · ,

S[11] = p[11]〈k〉S ′
[11] + · · · . (B12)

These expressions yield the scaling

S ∝ pβe
− c

p ,
Ŝ[rr ′] ∝ pβ̂[rr′ ]e

− c
p , (B13)

with c = 〈k〉/C > 0, β = 1, and critical indices

β[10] = β,

β[11] = β + (a − 1), (B14)

for p[11] = pa with a � 1.

Case γ ∈ (2,3)

Expanding Eqs. (19) close to the trivial solution S = S ′ =
Ŝ[r,r ′] = 0 we obtain

S ′ = pD(S ′)γ−2 + · · · ,

S = p〈k〉S ′ + · · · ,

S ′
[11] = p[11]D

[
2(S ′)γ−2 − (2S ′ − S ′

[11])
γ−2

] + · · · ,

S[11] = p[11]〈k〉S ′
[11] + · · · , (B15)

where D > 0 indicates a constant. This expression yields the
scaling behavior defined in Eq. (B4) with

β = 1

3 − γ
,

pc = 0, (B16)

and critical indices

β[10] = β,

β[11] = β + (a − 1), (B17)

for p[11] = pa with a � 1.
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