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Traveling waves in a spring-block chain sliding down a slope
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Traveling waves are studied in a spring slider-block model. We explicitly construct front waves (kinks) for a
piecewise-linear spinodal friction force. Pulse waves are obtained as the matching of two traveling fronts with
identical speeds. Explicit formulas are obtained for the wavespeed and the wave form in the anticontinuum limit.
The link with localized waves in a Burridge-Knopoff model of an earthquake fault is briefly discussed.
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I. INTRODUCTION

Spatially discrete systems (lattice differential equations)
have a wide range of applications in natural sciences, engi-
neering, and social sciences. They frequently occur in physics
as mass-spring systems with nearest-neighbor coupling, and
they have been used extensively to describe the dynamics of
microscopic structures such as crystals or micromechanical
systems [1–3], or to model fragmentation phenomena [4].
Recent studies on soft structures have led to a renewed interest
in the dynamics of elastically coupled systems with a special
emphasis on transition waves [5].

In this work, we consider a spring-block system that slides
down a slope due to gravity (see Fig. 1). Each block is subjected
to a nonlinear friction force. This system differs from the
Burridge-Knopoff model [6] considered for the modeling of
earthquakes, which incorporates local potentials.

We consider here a friction force of spinodal type: the
steady-state kinetic friction coefficient has a nonmonotonic
profile versus sliding velocity such as the one depicted in Fig. 2.
Such friction laws have been reported to induce excitable
dynamics (see [7] and references therein) reminiscent of neural
excitability [8,9], i.e., a perturbation above a certain threshold
produces a large excursion in the phase space before returning
to an equilibrium state. In biology, it is well documented
that a large class of excitable media is able to support
nonlinear solitary waves [10]. It has been recently shown that
excitable mechanical systems also have the ability to induce
self-sustained solitary waves [11–13]. In contrast with classical
excitable media, these systems are elastic rather than diffusive.

The analysis of traveling patterns in discrete media often
relies on continuum approximations. In the slider-block model
presented here, we directly tackle the discrete nature of the
equations and use an idealized piecewise-linear friction force
to derive semianalytical expressions for propagating waves.
This “bilinearization” approach has been used in a variety of
contexts to study traveling waves in lattices; see, e.g., [14–23].

The paper is organized as follows. In Sec. II, we first derive
the governing equations for the chain of elastically coupled
blocks. Then in Sec. III we study the dynamical properties
of an isolated block and demonstrate that a bistable behavior
exists when a spinodal friction force is considered. In Sec. IV,
we perform numerical simulations of the coupled system and
show that the bistability property induces traveling patterns,
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as fronts and pulses. In Sec. V, we construct the traveling
fronts analytically using a piecewise-linear friction force. The
anticontinuum limit is presented in Sec. VI. The link between
front and pulse waves is studied in Sec. VII. We then conclude
by connecting the results to the Burridge-Knopoff model.

II. MODEL

Let us consider an isolated block of mass m and position
x(t) that slips down a slope under gravity and is subject
to a velocity-dependent friction force F ( dx

dt
). The dynamical

equations read

m
d2x

dt2
+ F

(
dx

dt

)
= G, (1)

where G is the tangential component of the gravity force. A
steady state of (1) exists when the block achieves a constant
velocity motion dx

dt
= V , where F (V ) = G. Let us consider

an infinite chain of identical blocks linearly coupled through
Hookean springs of stiffness k that slips at the constant speed V

over an inclined surface (see Fig. 1). The dynamical equations
in a frame moving at velocity V are given by

dyn

dt
= un,

m
dun

dt
= k�dyn − F (V + un) + G, n ∈ Z, (2)

where yn represents the displacement of the nth block from the
steady sliding state, and un is its velocity. The term �dyn =
yn+1 − 2yn + yn−1 is the discrete Laplacian.

The system may be interpreted as a variant of the Burridge-
Knopoff model [6] where the shear stress described by the
local potential is replaced by a constant tangential force
induced by gravity. The dynamics of system (2) is explored
for three normalized nonmonotonic friction laws Fε, Fc, and
F0, depicted in Figs. 2(a)–2(c) and given by

Fε(v) = [1 − α +
√

N (v)]
v√

ε + v2
,

Fc(v) = 3.2v3 − 7.2v2 + 4.8v, (3)

F0(v) = v/a − αH (v − a),

where N (v) = ε + 4 max(|v| − a,0)2 + α2 max(a − |v|,0)2,
and H is the Heaviside step function. For convenience,
the cubic friction force Fc is given for a = 1, where a is
the location of the local minimum, i.e., the transition point
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FIG. 1. Mechanical representation of the block-spring slider
model, where m is the mass, k is the spring constant, and V is
the sliding velocity. The steady state corresponds to F (V ) = G with
G = mg sin θ .

from the velocity-weakening (b < v < a) to the velocity-
strengthening (v > a) regime. The friction function Fε de-
scribes a regularized generalized Coulomb law as ε → 0. The
cubic friction force Fc describes a smooth spinodal friction
law similar to the one introduced in [11]. The piecewise-linear
function F0 reduces the velocity-weakening region to a jump
discontinuity. It captures some properties of spinodal friction
laws and is convenient for analytical computations.

III. BISTABLE SINGLE BLOCK DYNAMICS

For a single block, (2) reads

dy

dt
= u, m

du

dt
= −F (V + u) + F (V ). (4)

The y-nullcline is defined by u = 0, whereas the u-nullcline
is obtained by solving F (V + u) = F (V ) so that the vertical
axis u = 0 always defines in the (u,y) plane the set of
fixed points for an isolated block. It is easy to check that
the two associated eigenvalues are given by λ1 = −F ′(V )

m
,

λ2 = 0 so that the equilibrium straight line is stable (but not
asymptotically stable). In (4), the dynamics of the velocity u

does not depend on the position y so that system (4) behaves
like a one-dimensional dynamical system whose bifurcation
diagram is shown in Fig. 3 for the three friction laws (3), where
V is taken as the bifurcation parameter. For V ∈ (a,Vmax),
where Vmax is the velocity value such that F (Vmax) equals
the local maximum in F and Vmax > a, there exist three
fixed points U1 < U2 < U3 = 0 whose stability is governed
by the eigenvalue μi = −F ′(V +Ui )

m
, i ∈ {1,2,3}, respectively. A

saddle-node bifurcation occurs at V = Vmax and a transcritical
bifurcation takes place at V = a. For V ∈ (a,Vmax), the two
fixed points U1 and U3 are stable whereas U2 is unstable and
behaves like an excitation threshold. For an initial condition

Fε(v)

v

1

1 − α

a

Fc(v)

v

1
1 − α

b a

F0(v)

v

1
1 − α

a

(a) (b) (c)

FIG. 2. Nonmonotonic friction laws. (a) Coulomb-like friction
force Fε , where ε = 10−4. (b) The cubic friction force Fc(v), where
b = 0.5, a = 1, and α = 0.2. (c) The piecewise-linear friction force
F0(v).
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FIG. 3. Bifurcation diagrams of the single block model. Station-
ary state u as a function of the stationary sliding velocity V for (a) the
regularized generalized Coulomb friction force Fε (a = 1, α = 0.2,
ε = 10−4), (b) the cubic friction force Fc, and (c) the piecewise-linear
friction force F0 (a = 1, α = 0.2). Solid lines represent stable states
(denoted U1 and U3) and dotted lines are for unstable states (U2).

below U2 the trajectory of the system tends toward U3 = 0,
whereas for a sufficiently strong perturbation the system
reaches asymptotically the state U1, illustrating the excitable
dynamics of an isolated block. Depending on the initial state,
the system can switch from a neighborhood of U3 to U1 and
vice versa. For the cubic friction force Fc(v), the threshold is
given by

U2 = − 3
2V + 9

8 + 1
8�(V ), (5)

where �(V ) = (−48V 2 + 72V − 15)
1/2

[one has �(V ) ∈ R
for V ∈ [1/4,5/4]]. We have

U1 = − 3
2V + 9

8 − 1
8�(V )

and Vmax = 5/4. For the friction force F0(v), the threshold is
simply defined as

U2 = a − V, (6)

the stable fixed point u1 is given by

U1 = −αa, (7)

and we have Vmax = a(1 + α). For the regularized generalized
Coulomb law Fε, as ε → 0 the threshold converges to

U2 = (a − V )

[
1 + 2

α

]
and the stable fixed point u1 to

U1 = −V,

and we have Vmax = a(1 + α
2 ). In the following, we are

interested in the excitability regime where the velocity of the
single block has two stable steady states, and we fix a V value
in the interval delimited by the two bifurcation points, i.e.,
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V ∈]a,Vmax[. As we will show in the sequel, the bistability
property is a key feature for the existence of traveling fronts
in the block-spring chain.

IV. TRAVELING WAVES

Let us consider the block-spring slider model with the regu-
larized generalized Coulomb law Fε. We choose parameters so
that each block exhibits a bistable behavior. The parameters of
the friction law are those of Fig. 3(a). We initialize the network
by applying a perturbation of sufficiently large amplitude to
the steady state U3 = 0, and [yn(0)] is chosen to be constant.
A localized perturbation is applied on the first block at the
left edge of the network; see Fig. 4 for more details. We
consider a finite chain of blocks with free boundary conditions.
For the numerical simulations, we use the adaptive Lsoda
solver and, unless stated otherwise, we take m = 0.15. We
observe the existence of traveling fronts as shown in Fig. 4(a).
In addition, two types of pulse solutions are observed: (i)
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FIG. 4. Numerical simulations of Eq. (8) with the regularized
Coulomb friction force Fε with the same parameters as in Fig. 3.
We display spatiotemporal plots of the velocity variable un of (a) a
traveling front (k = 0.5 and V = 1.01), (b) a broadening pulse (k = 1
and V = 1.025), and (c) a steadily propagating pulse solution (k = 1
and V = 1.046). An initial perturbation u0(0) = −10 is applied on the
first block of the chain. Computations are performed for m = 0.15.

pulse waves with expanding width and (ii) pulse waves with
constant shape as plotted in Figs. 4(b) and 4(c), respectively.
Propagating fronts [similar to the one shown in Fig. 4(a)]
are the dominant pattern when the threshold is close to the
resting state, i.e., for V close to a (|U2| � 1). The speed of
the propagating front increases with the coupling value k, but,
at the same time, the parameter range where front waves exist
shrinks (without vanishing). As the stationary sliding velocity
increases, a front to pulse transition occurs where the excitation
spreads over the network and leads to pulses with expanding
width [see Fig. 4(b)]. The rate of expansion of the enlarging
pulse decreases as the sliding velocity increases, leading to the
existence of a pulse with constant width as shown in Fig. 4(c).
For V → Vmax, the threshold approaches the fixed point U1 and
a perturbation fails to produce a traveling pattern. Qualitatively
similar results are obtained for the cubic friction force Fc and
for the piecewise-linear friction force F0.
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FIG. 5. Plots of the velocity waveforms un(t) of the block-spring
model in the traveling wave coordinate ξ = n − ct . The wave profiles
in (a), (b) are obtained with the regularized generalized Coulomb law
Fε and correspond to the traveling waves shown in Figs. 4(a) and 4(c),
respectively. Plots (c) and (d) represent the wave profiles obtained
with the cubic friction force, Fc. Plots (e) and (f) represent the
wave profiles obtained with the piecewise-linear friction law F0. The
wave speed is (a) c = 1.95, (b) c = 2.21, (c) c = 3.06, (d) c = 3.16,
(e) c = 3.16, and (f) c = 1.45. For the piecewise-linear law, we
use a = 1 and α = 0.2. Other parameters are those of Fig. 4 for
(a), (b), and we take (c) V = 1.025, k = 1; (d) V = 1.18, k = 2;
(e) V = 1.025, k = 1; and (f) V = 1.1, k = 1.
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FIG. 6. Plots of the velocity waveforms un(t) of the block-spring
model in the traveling wave coordinate ξ = n − ct . The wave profiles
are obtained using the piecewise-linear friction law F0 (where α =
0.2 and a = 1). The stiffness of the spring is fixed to k = 1. We
consider two different values of the mass parameter: (a), (b) m = 0.01
(overdamped regime) and (c), (d) m = 100 (underdamped regime).
The stationary sliding velocity is V = 1.025 for the two traveling
fronts shown in (a), (c) and V = 1.1 for the two traveling pulses shown
in (b), (d).

The profiles of the traveling waves observed in Figs. 4(a)
and 4(c) are shown in Figs. 5(a) and 5(b), respectively, and
they are compared with those obtained with the cubic law
[Figs. 5(c) and 5(d)] and the piecewise-linear law [Figs. 5(e)
and 5(f)]. The traveling patterns for the three friction forces
have similar shapes and mainly contrast in their amplitude,
which is determined by the distance between the two stable
fixed points. A nonmonotonic wave profile is observed for the
traveling fronts with the existence of a dip behind the front
[see Figs. 5(c) and 5(e), whereas the dip is too small to be
seen in Fig. 5(a)]. The existence of this dip can be justified
in the limit of small coupling (see Sec. VI and Appendix B).
Interestingly, similar profiles were obtained for traveling fronts
in a chain of bistable oscillators [24]. To investigate the
influence of inertia on propagation, we show in Fig. 6 the
stationary profiles of traveling fronts and traveling pulses for
two different values of the mass parameter. It can be seen that
fronts and pulses both exist in the over- and underdamped
regimes. The main difference between the two regimes occurs
during a transitory time, where the underdamped regime leads
to transient oscillations at the rear of the fronts (data not
shown). The width of the stationary pulse is determined by
the spatial extent of the initial perturbation [compare Fig. 5(f),
where a single block is excited, with Fig. 7(a), where a broader
excitation is used]. The enlarging pulse observed in Figs. 4(b)
and 7(b) may be seen as the superposition of two traveling
fronts with two different propagation speeds. The initial front
is qualitatively similar to the waveform shown in Fig. 5(a)
and is followed by a traveling front that propagates in the
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FIG. 7. Plots of velocity waveforms un(t) for the block-spring
model. (a) Broad stationary pulse formed after the perturbation
of a set of blocks (15 blocks). Parameters are those of Fig. 5(f).
(b) Expanding pulse corresponding to a snapshot of the traveling
pattern shown in Fig. 4(b) at two different locations (n = 25,50). The
initial front propagates at a speed c = 2.45 and the rear front at c = 2
(the moving frame coordinate is ξ = n − 2t).

same direction but with a lower speed and that connects the
two stable states in reverse order. The localized pulse waves
shown in Figs. 5(b), 5(d) and 5(f) are thus expected to appear
when the two traveling fronts have the same speed. These
observations are analytically explained in the next section for
the piecewise-linear law F0.

To check the robustness and the attractivity of the traveling
patterns previously observed, we simulate a network where a

0 200 400
blocks

40

20

0

ti
m

e

−1.5

−1.25

−1

−0.75

−0.5

−0.25

0

0 100 200
blocks

40

20

0

ti
m

e

−1.5

−1.25

−1

−0.75

−0.5

−0.25

0

(a)

(b)

FIG. 8. Numerical simulations of Eq. (2) with the regularized
Coulomb friction force Fε for random initial conditions. We display
two typical spatiotemporal plots of the velocity variable un for
(a) V = 1.02 and (b) V = 1.03. A group of 20 blocks in the middle of
the chain are perturbed from their equilibrium values. Perturbation is
done using random initial conditions where un(0) is uniformly chosen
in the intervals (a) [−1.23,0.77] and (b) [−1.34,0.66].
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group of blocks are randomly perturbed. More precisely, we
consider a chain of n = 200 blocks where 20 blocks in the
middle of the chain have initial conditions that are uniformly
distributed in a fixed interval. Simulations are done for
different interval magnitudes and different stationary sliding
velocities V . Numerical results suggest that the generation of
kink-antikink pairs is frequent, as shown in Fig. 8. In addition,
some initial conditions lead to more complex traveling patterns
including pulse trains [see Fig. 8(b)]. An exhaustive numerical
investigation will be necessary to refine this statement, but
that is beyond the scope of this paper.

V. CONSTRUCTION OF TRAVELING FRONTS
FOR THE PIECEWISE-LINEAR FRICTION FORCE

Model (2) can be rewritten in terms of velocity as

m
d2un

dt2
= k�dun − dun

dt
F ′(V + un). (8)

A traveling front solution of (8) takes the form

un(t) = ϕ(n − c t), (9)

where

ϕ(∞) = U3 = 0 and ϕ(−∞) = U1 (10)

with U1 �= 0 a stable equilibrium. The function ϕ describes the
waveform, and c is the wave speed that has to be determined.
Substitution of (9) into (8) gives the advance-delay differential
equation

c2mϕ′′(ξ ) = k[ϕ(ξ + 1) + ϕ(ξ − 1) − 2ϕ(ξ )]

+ c
d

dξ
F0[V + ϕ(ξ )], (11)

where ξ = n − ct ∈ R is the traveling-wave coordinate. Front
solutions connect two different stable steady states as n →
±∞. In contrast, traveling pulses tend toward the same stable
equilibrium as n → ±∞.

We consider here the piecewise-linear force F0, and
we assume that each block is in a bistable regime, i.e., we
have V ∈ (a,a(1 + α)) and U1 = −αa as in (7). We assume
that the traveling front solution crosses the threshold (6) for
only one value of ξ . Translation invariance of traveling waves
allows us to fix this value to ξ = 0, and we seek a solution
such that

ϕ(ξ ) < a − V for ξ < 0,

ϕ(0) = a − V,

ϕ(ξ ) > a − V for ξ > 0.

(12)

Using (12) to simplify the nonlinear term F0(V + ϕ), system
(11) takes the form

c2mϕ′′(ξ ) = k[ϕ(ξ + 1) + ϕ(ξ − 1) − 2ϕ(ξ )]

+ c

a
ϕ′(ξ ) − αcδ(ξ ), (13)

where δ(ξ ) is the Dirac delta function.
Equation (13) is a linear nonautonomous differential equa-

tion, so that one may attempt to use the Fourier transform to
derive an analytic solution. However, a certain amount of care
is needed to correctly handle the Fourier transform of ϕ due to
the nonzero boundary condition at −∞. We look for ϕ(ξ ) in

the form

ϕ(ξ ) = αa[ψ(ξ ) + H (ξ ) − 1],

ψ(ξ ) ∈ L2(R), lim
ξ→±∞

ψ(ξ ) = 0, (14)

where ψ(ξ ) has to be determined. Equation (13) is reexpressed
in terms of ψ(ξ ), and a Fourier transform is applied to
determine ψ(ξ ), and subsequently ϕ(ξ ).

Integrating (13) gives

c2mϕ′ = k ∧′ ∗ ϕ + c

a
ϕ + αc(1 − H ), (15)

where ∧(ξ ) = max (1 − |ξ |,0) is the tent function, and where
we used for any f ∈ L1

loc(R)

(∧′ ∗ f )(ξ ) =
∫ ξ+1

ξ

f (s)ds −
∫ ξ

ξ−1
f (s)ds. (16)

Note that (15) together with (10) remains equivalent to the
original problem (13)–(10). Injecting (14) into (15) gives

c2mψ ′ − c

a
ψ − k ∧′ ∗ ψ = k ∧ − c2mδ, (17)

where we used the property ∧′ ∗ (H − 1) = ∧. Taking the
Fourier transform as ψ̂(λ) = ∫

R e−2πiλξψ(ξ )dξ in (17), we
obtain[

2iπλc2m− c

a
−k2iπλ sinc2(λ)

]
ψ̂(λ) = k sinc2(λ)−c2m,

(18)

where we used ∧̂(λ) = sinc2(λ) with sinc(λ) = sin(πλ)/πλ.
Let us introduce

K̂(λ) =
(

2iπλ[c2m − k sinc2(λ)] − c

a

)−1

,

where one has K̂(λ),(ξ ) ∈ L2(R) (K denotes the inverse
Fourier transform of K̂). From dK̂

dλ
∈ L1(R) and using

−2iπξK = F−1( dK̂
dλ

) ∈ L∞(R), one has limξ→±∞ K(ξ ) = 0
(F−1 denotes the inverse Fourier transform). From (18), we
obtain

ψ = kK ∗ ∧ − c2mK. (19)

Since ∧ ∈ L1(R) we have K ∗ ∧ ∈ L2(R), and because K,∧ ∈
L2(R) then K ∗ ∧ ∈ C0(R) decays to zero when ξ → ±∞.
Consequently, ψ(ξ ) given by (19) satisfies the properties
assumed in (14), and it defines a unique solution in L2(R).
Therefore, (14) is a solution of (13) with boundary conditions
(10). Regularity properties of ϕ(ξ ) can be inferred from the
following identity obtained from (14) and (17):

c2m

αa
ϕ′ = c

a
ψ + k ∧′ ∗ψ + k ∧ . (20)

This implies ϕ′ ∈ L1
loc(R) [since ∧′ ∗ ψ ∈ L2(R)] and thus

one has ϕ ∈ C0(R). We also get from (15) that ϕ′ ∈ C0(R+) ∩
C0(R−), hence ϕ ∈ C1(R+) ∩ C1(R−), and thus (15) gives
ϕ′ ∈ C1(R+) ∩ C1(R−). We get finally

ϕ ∈ C2(R+) ∩ C2(R−) ∩ C0(R).

From the analytical expression of ϕ, we can derive an
equation to determine the wave speed of the front. Using (14),
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FIG. 9. (a) Traveling front solution ϕ(ξ ) computed from the
explicit formula (14) where k = 0.3, V = 1.025, a = 1, and α =
0.2 (full line). The trajectory is indistinguishable from the one
obtained from the numerical simulation of the chain. The asymptotic
approximation (29) obtained for k � 1 is also shown (dashed gray
line). We obtain c = 1.55 from the threshold condition (12) (the
dashed line defines the threshold u2 = a − V ). (b) Wave speed curves
in the (c,k) plane obtained from (22) for V = 1.025, 1.05, 1.075, and
1.1 (from right to left, respectively).

we get

ϕ(ξ ) + ϕ(−ξ )

2
= αa

2
[ψ(ξ ) + ψ(−ξ ) − 1], (21)

where ψ is defined by (19) [note that we used H (−ξ ) = 1 −
H (ξ ) to eliminate the Heaviside function]. Using the threshold
condition ϕ(0) = a − V from (12) together with (21) and (19),
we obtain that the wave speed satisfies

αa[ψ(0+) + ψ(0−) − 1] + 2(V − a) = 0. (22)

This scalar equation allows us to compute c numerically using
a Newton-type method. Computation of K is done using
a Gauss-Konrod quadrature formula in a truncated interval
[−106,106] (an alternate approach would be to use the residue
theorem with a numerical computation of the poles of K [25]).
We restrict to c > 0 (the case c < 0 can be deduced by
symmetry; see Sec. VII). A plot of the resulting analytical
profile (14) is shown in Fig. 9(a) and compared with the
numerical simulation of (8). A perfect matching is realized
between the two trajectories. The typical dependence of the
wave speed on the stationary sliding velocity V and on the
coupling k is shown in Fig. 9(b).

VI. ANTICONTINUUM LIMIT

In this section, the small coupling limit is explored. We
consider the case c > 0 (see Sec. VII for the case c < 0).

From (17) and (19) with k → 0, we have the leading-order
equation

c2mK ′ − c

a
K − k ∧′ ∗K = δ, (23)

where we look for a solution of the form

K = K0 + kK1 + O(k2). (24)

Inserting (24) in (23), and equating orders of leading terms in
k, we obtain

c2m(K ′
0 − νK0) = δ, (25)

c2m(K ′
1 − νK1) = ∧′ ∗ K0, (26)

where ν−1 = cam. Observe that (25) has the unique bounded
solution

K0(ξ ) = − 1

c2m
eνξH (−ξ ), (27)

where K0 ∈ L1(R), hence the solution of (26) reads

K1 = K0 ∗ ∧′ ∗ K0 = ∧ ∗ K0 ∗ K ′
0

= 1

c2m
∧ ∗K0 + ν ∧ ∗K0 ∗ K0, (28)

where we used K ′
0 = 1

c2m
δ + νK0. Using (19) with (27) and

(28), the approximation for ϕ up to O(k2) reads

ϕ(ξ ) = αa(eνξ − 1)H (−ξ )

+αak[−c2mK1(ξ ) + (K0 ∗ ∧)(ξ )] + O(k2), (29)

where we used the identity H (−ξ ) = 1 − H (ξ ).
Expression (29) allows us to obtain an approximation of

the wave speed c for small k. From ϕ(0) = a − V and (29),
we get

a − V = αak[−c2mK1(0) + (K0 ∗ ∧)(0)] + O(k2)

= −αkc(∧ ∗ K0 ∗ K0)(0) + O(k2)

:= S(c)k + O(k2). (30)

We obtain after some calculations (see Appendix A)

S(c) = 2αma3 − αa2

c
[(2amc + 1)e−1/amc + 1]. (31)

To approximate c, we drop the O(k2) terms in (30). The
wave speed can be estimated from the solution of

ν − 2 + (ν + 2)e−ν = V − a

αma3k
, (32)

where ν−1 = acm. It can be shown that the left-hand side of
(32) defines a bijective function on R that passes through the
origin so that (32) admits a unique solution. Let us fix the
values of V and a, and look for solutions c ≈ 0 when k ≈ 0.
Observing the exponential decay e−ν → 0 as c → 0, we have,
from (31) and (30), the leading-order approximation

ν = 2 + V − a

αma3k
(33)
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FIG. 10. (a) Speed curves of the traveling front solution in the
(c,k) plane for V = 1.0025, 1.005, 1.0075, and 1.01 (from right to
left, respectively). Curves (c,k) computed with (34) (dashed gray
line) accurately describe the exact curves (c,k) computed with (22)
(black continuous line) in the limit c → 0. (b) A zoom of the dashed
square region in panel (a). Parameter values are α = 0.2 and a = 1.

for k,c → 0. Therefore, we obtain the following approxima-
tion for the wave speed:

c ∼ 1

2am + V −a
αa2k

, (34)

where the leading-order approximation reads c ∼ αa2k
V −a

.
Formula (34) was derived under the assumption that c is

small for k small, and one can easily check that c given by
(34) satisfies c → 0 as k → 0. To evaluate the accuracy of
the asymptotic approximation (34), we compare in Fig. 10
the (c,k) curves obtained from (22) with those computed
from (34) for different sliding velocities V . The asymptotic
approximation (29) of the waveform is compared with the
exact solution [see Fig. 9(a)]. A good matching between
the two wave profiles is found. Monotonicity analysis of the
approximated waveform (29) shows that the velocity profile
is nonmonotonic, i.e., a dip always exists behind the front
(see Appendix B).

VII. REVERSE TRAVELING FRONTS AND PULSES

In the previous section, we constructed traveling fronts con-
necting the two stable equilibria U1 = −αa (when n → −∞)
and 0 (when n → +∞). In this analysis, we have restricted
our attention to traveling fronts with positive velocity c(V )
(for now we consider the dependency of front velocity in V

and discard the other parameters). Using symmetry arguments,

we show in the sequel the existence of traveling fronts with
negative velocity satisfying the same boundary conditions. We
also deduce the existence of traveling fronts with positive
velocity satisfying reverse boundary conditions (un → −αa

when n → +∞ and un → 0 when n → +∞).
Let us start with some symmetry considerations. Consider

the advance-delay equation (11) with boundary conditions

ϕ(−∞) = U1, ϕ(+∞) = U3. (35)

This problem admits the invariance

ϕ(ξ ) → ϕ(−ξ ), c → −c, (U1,U3) → (U3,U1). (36)

Moreover, the piecewise-linear friction force F0 is antisym-
metric about v = a, i.e., we have

F0(a + h) + F0(a − h) = 2 − α for all h ∈ R.

As a consequence, one can readily check that (11) and (35) are
invariant by the one-parameter family of transformations

ϕ → −λ − ϕ, V → 2 a + λ − V,

(U1,U3) → (−λ − U1, − λ − U3), (37)

where λ ∈ R is arbitrary.
Now let us use the above invariances in order to obtain

reverse traveling fronts. We define ζ̃ = −α a − ϕ so that ζ̃

and ϕ connect stable equilibria in reverse order at infinity.
Applying invariance (37) for U3 = 0 and λ = α a = −U1,
it follows that ϕ is a solution of (11) if and only if ζ̃

is a solution of the same equation with modified sliding
velocity Ṽ = a (2 + α) − V . From the results of Sec. V, this
problem admits for all Ṽ ∈ (a,a(1 + α)) a front solution ζ̃

satisfying the boundary conditions ζ̃ (−∞) = −αa, ζ̃ (+∞) =
0, with velocity c(Ṽ ) > 0. From invariance (36), this equation
possesses another front solution ζ (ξ ) = ζ̃ (−ξ ) with velocity
−c(Ṽ ) < 0, which satisfies the boundary conditions ζ (+∞) =
−αa, ζ (−∞) = 0. It follows that for all V ∈ (a,a(1 + α)),
Eq. (11) with sliding velocity V admits the front solution
ϕ̃ = −α a − ζ , satisfying the boundary conditions (10) and
having a negative velocity −c[a (2 + α) − V ]. Consequently,
the search of front solutions of (10) and (11) can be reduced to
the case c > 0 examined in Sec. V, since all fronts with c < 0
can be deduced by symmetry.

Furthermore, ϕ(ξ ) = ϕ̃(−ξ ) = −α a − ζ̃ (ξ ) defines an-
other solution of (11) with sliding velocity V . This front has
a positive velocity c(Ṽ ) = c[a (2 + α) − V ] and satisfies the
reverse boundary conditions

ϕ(−∞) = 0, ϕ(+∞) = −αa. (38)

The coexistence of this reverse front and the front satisfying
(10) and (11) with the different velocity c(V ) can be used to
understand the broadening of pulses reported in Sec. IV, as
well as the existence of steadily propagating pulses observed
for particular sliding velocities. Indeed, we can see from
Fig. 10(b) that the function V �→ c(V ) is decreasing [this
is also clear from the leading-order approximation (34)].
Consequently, gluing the above two fronts to form a pulse
decaying to 0 at infinity, the trailing front (at the rear of
the propagating pulse) will be slower if V < Ṽ , resulting
in a broadening of the pulse. This regime occurs for V ∈
(a,a(1 + α

2 )). In the critical case V = a(1 + α
2 ), we have
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V = Ṽ and the two fronts have identical velocities, thereby
maintaining a steadily propagating pulse [this case is shown
in Fig. 5(f)]. Conversely, for V ∈ (a(1 + α

2 ),a(1 + α)), the
trailing front is faster and no pulse wave can propagate.
Starting from an initial bump condition, an annihilation occurs
when the trailing front reaches the leading front. In conclu-
sion, the condition for the existence of broadening pulses
reads

V < V ∗ where V ∗ = a

(
α

2
+ 1

)
. (39)

For V > V ∗, the pulse fails to propagate, whereas for V = V ∗
a stable pulse is observed, with a width determined by the
initial perturbation. In the small coupling limit, this pulse has
a wave speed c ∼ 2ak according to approximation (34).

VIII. DISCUSSION

We studied localized traveling waves in a nonlinear lattice
describing a block-spring chain sliding down a slope and
experiencing friction. Wave propagation was illustrated for
different spinodal friction laws. For a particular range of
stationary sliding velocities, the medium is made of blocks
exhibiting bistabilities, and it supports nonlinear transition
waves (wave fronts). Interesting connections can be made
with recent results on waves in bistable lattices [5,26]. For
an idealized piecewise-linear friction force, we constructed
analytically traveling fronts and analyzed their wave speeds. In
contrast with the discrete Nagumo equation, propagating fronts
exist at small coupling values, i.e., propagation failure does
not occur at weak-coupling strengths. As already observed in
a different context [27], the traveling pulses are shaped by
the concatenation of two traveling front solutions, and pulse
propagation failure occurs when the back wave is faster than
the front wave. We determined analytically the parameter range
where pulses of constant width occur, i.e., the leading front and
the trailing front have the same velocity. It is worth noting that
this analysis does not rely on a time-scale separation and differs
from the asymptotic construction of pulses done in Ref. [28].
In particular, the pulse width is not determined by the equality
of the velocity of the two fronts but depends on the initial
excitation.

The present study is also of interest for the understanding
of the dynamics of the Burridge-Knopoff model, where the
time evolution of the system is given by

γ ÿn = kc�dyn − F (V + ẏn) − yn. (40)

Let us define yn(t) = −F (V ) + γ zn(t/γ ) and k = γ kc. As-
suming γ � 1, the Burridge-Knopoff model (40) can then be
approximated in the fast time scale by

z̈n = k�dzn − F (V + żn) + F (V ), (41)

which coincides with (2). Equation (41) is obtained from (40)
neglecting the γ zn term, i.e., model (2) does not incorporate
a “dynamic recovery” and only describes the initial excitation
of the Burridge-Knopoff system. Therefore, for small γ

values, one may expect that the front waves of (2) provide
useful information on the dynamics of pulse propagation
in the Burridge-Knopoff model (40). More precisely, fronts
approximate the transition region from the ground state to the

−80 −60 −40 −20 0 20
−1
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−0.6

−0.4

−0.2

0

0.2

ξ

FIG. 11. Comparison of a front solution un(t) of (2) with velocity
c = cf ≈ 0.79 (solid line) with a pulse (velocity c = cBK ≈ 15.70)
supported by the Burridge-Knopoff model (dotted line). The velocity
waveforms are plotted in the traveling-wave coordinate ξ = n − ct .
Computations are performed for the cubic friction law Fc and the
following parameters: γ = 0.05, kc = 10, and V = 1.025. The pulse
velocity cBK is well approximated by the (rescaled) front velocity
cf /γ ≈ 15.85.

excited state. This is shown in Fig. 11, where the fast time
scale of the Burridge-Knopoff model is accurately reproduced
by model (2). In addition, numerical experiments suggest that
the wave speed of the solitary wave of the Burridge-Knopoff
model is well approximated by the (rescaled) velocity of
kinks of (2); see the caption of Fig. 11. In the case of
the piecewise-linear friction law F0, the computation of the
front velocity is much simpler than for the solitary wave
of the Burridge-Knopoff model. A detailed study of solitary
waves in the excitable Burridge-Knopoff model is presented in
Ref. [7].

Interesting numerical problems left open in this study
concern the continuation of the stationary front and pulse
solutions and the analysis of their linear stability. For the
piecewise-linear friction law, front stability will be analytically
addressed in a future work (in that case, the discontinuity of
the friction force introduces some difficulties).
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APPENDIX A: COMPUTATION OF S(c)

We compute here the explicit expression of S(c) =
−αc(∧ ∗ K0 ∗ K0)(0). We reexpress K0 as K0(ξ ) = −G(ξ )

c2m
,

where G(ξ ) = eνH (−ξ ), hence we have

S(c) = − α

c3m2
(∧ ∗ G ∗ G)(0). (A1)

We have

(G ∗ G)(−s) =
∫ 0

−s

G(τ )G(−s − τ )dτ = se−νsH (s)
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with s > 0, therefore

(∧ ∗ G ∗ G)(0) =
∫
R

∧(τ )(G ∗ G)(−τ )dτ

=
∫ 1

0
(1 − τ )(τe−ντ )dτ

= ν + e−νν − 2 + 2e−ν

ν3

= e−ν

ν3
(2 + ν) + −2 + ν

ν3

with ν = (cam)−1. We further calculate
e−ν

ν3
(2 + ν) + −2 + ν

ν3
= −ν−2[2ν−1 − (2ν−1 + 1)e−ν − 1].

(A2)
Inserting (A2) into (A1) gives

S(c) = αν−2

c3m2
[2ν−1 − 1 − (2ν−1 + 1)e−ν], (A3)

and (31) follows.

APPENDIX B: PROFILE OF THE APPROXIMATED FRONT

From (28) and (29) one has the following asymptotic
approximation of the waveform:

ϕ(ξ ) = αa(eνξ − 1)H (−ξ ) − αck ∧ ∗K0 ∗ K0(ξ ) + O(k2).

We note ϕ1 = ∧ ∗ K0 ∗ K0 and we calculate ϕ1 = 0 for ξ � 1
and

ϕ1(ξ ) = 1

m2c4ν3
([2 + ν(1 − ξ )]eν(ξ−1)

+ [2 − ν(1 + ξ )]eν(ξ+1) + (2νξ − 4)eνξ )

for ξ � −1. For ξ � 0, we obtain the following approxima-
tion:

ϕ1(ξ ) ∼ −2[cosh(ν) − 1]

m2c4ν2
ξeνξ .

Therefore, the traveling front takes the leading form

ϕ(ξ ) ∼ −αa + 2α[cosh(ν) − 1]k

m2c3ν2
ξeνξ

as ξ � 0. Using c ∼ αa2k
V −a

we have

ϕ(ξ ) ∼ −αa + 2(V − a)[cosh(ν) − 1]ξeνξ , (B1)

which is a decreasing function of ξ for ξ � 0. The leading
approximation of the wavefront is zero for ξ � 1 and has
a decreasing profile for ξ sufficiently small, therefore the
wavefront is nonmonotonic and presents (at least) one dip after
the front. Notice that the function occurring on the right-hand
side of (B1) has a minimum at ξ = −1/ν that may be used to
approximate the dip location.
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