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Light propagation in binary kagome ribbons with evolving disorder
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By introducing evolving disorder in the binary kagome ribbons, we study the establishment of diffusive
spreading of flat band states characterized by diffractionless propagation in regular periodic ribbons. Our
numerical analysis relies on controlling strength and rate of change of disorder during light propagation while
tailoring binarism of the kagome ribbons in order to isolate the flat band with the gap from the rest of the ribbon’s
eigenvalue spectrum and study systematically its influence on diffusion. We show that the flat band plays a
dominant role in the establishment of the diffusion for a given strength and rate of change of disorder, whereas
the rest of the ribbon’s eigenvalue spectrum induces only quantitative differences in the light spreading regimes.
Due to the universality of studied phenomena, our findings may be of interest in various disordered physical
systems with flat spectral bands, ranging from photonics to ultracold matter systems and plasmonics.
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I. INTRODUCTION

Stationary (quenched) disorder plays a fundamental role
in wave dynamics, resulting in a complete halt of wave
transport due to consecutive destructive interferences of waves
scattered from randomly distributed scatterers. This universal
effect of wave localization is known as Anderson localization
(AL) [1]. So far, AL has been studied in solid state [2,3],
optical [4–10], acoustic [11], and matter wave systems [12,13].
Nonstationary (nonquenched or evolving) disorder instead
breaks the coherence necessary for achieving AL, yielding
normal or anomalous diffusive expansion of a wave packet
[14–17]. In order for AL to take place, wave interactions
also have to be absent from a disordered system since even
weak interactions can inhibit AL giving rise to a subdiffusive
spreading of the wave packet [18–20].

Among different wave systems, photonic lattices (PLs) have
emerged as the key experimental setup to study AL [4–8] and
other wave packet related effects [21–23]. In PLs, evolution
of the initially launched light waves can be observed along
the light propagation direction simply using a CCD camera
[23]. Moreover, owing to the fast-developing fabrication
techniques, such as femtosecond laser inscription [7,24] or
optical induction [25,26], it is possible to fabricate PLs with
a desired geometrical arrangement and refractive indices of
waveguides. High precision and controllability of available
fabrication techniques enabled demonstration of AL in two-
dimensional (2D) and one-dimensional (1D) PLs with random
refractive indices of waveguides which are “frozen” along
the light propagation direction [4–7]. Moreover, conditions
for the observation of AL can be disturbed in a controllable
manner which allows for experimental investigation of the
mechanism behind the destruction of AL. For example, the
nonlinear response of PLs can easily be induced by increasing
the intensity of the input light beam [27] which was used
in attempts to experimentally study the mutual effect of the
light wave interactions and the quenched disorder (QD) on
the light propagation [4,5]. Additionally, advanced fabrication
processes also enabled investigation of the light spreading
regimes under the influence of evolving disorder (ED) in
PLs with controllable disordered refractive index profiles of
waveguides in both transverse and light propagation directions.
It has been demonstrated that an initially launched narrow light

beam can expand at the faster than ballistic rate under certain
circumstances [28].

Most of the experimental studies of AL in the quenched
disordered PLs and its degradation in the presence of the
nonlinearity or ED have been conducted in conventional
disordered 1D and 2D PLs. These PLs are conventional in
the sense that the disordered potential is superimposed on
the underlying periodic potential which renders dispersive
eigenvalue spectrum except for certain points in momentum
space where local derivatives are zero [29]. These realizations
of the quenched disordered systems correspond to the original
disordered model introduced by Anderson [1]. When exciting
a periodic PL with the corresponding dispersive eigenvalue
spectrum, using a narrow light beam, a set of linear extended
states with different propagation constants will be excited.
Excited states propagate incoherently along the PL, and the
initially narrow light beam spreads across the PL forming a
pattern of discrete diffraction [29]. In such PLs, QD suppresses
the diffraction of the narrow light beam through the mechanism
of AL. However, different underlying periodic arrangements
of waveguides in PLs, which dictate the eigenvalue spectra of
PLs, can significantly influence the light localization induced
by the superimposed QD. This leads to a new direction in
studying the disordered systems. A particularly interesting
situation arises when one or more bands in the eigenvalue
spectrum are completely flat. States corresponding to the flat
band (FB), so called flat band states (FBSs), represent a set
of degenerated linear compact localized states with zero tails
occupying only several PL sites. FBSs as well as any linear
combination of them propagate without diffraction along the
FB PLs, which have been confirmed experimentally in a num-
ber of FB PL models, such as the Lieb [30,31], kagome [32],
rhombic or diamond [33], and sawtooth PLs [34]. This feature
makes FB PLs good candidates for all-optical coherent image
transmission at low powers [35,36], for instance. Since FBSs
are localized already in the linear periodic FB PLs, the question
is which role QD plays in the FBSs’ propagation. So far, this
question has been addressed in several studies of the light
localization in various quenched disordered quasi-1D and 2D
PLs hosting one or more FBs [37–40]. It has been shown that
QD lifts the degeneracy of FBSs. As far as the localization of
the states originating from the FB in the disordered FB systems
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is concerned, it has been observed that it depends on the
position of the FBs with regard to the neighboring dispersive
bands of the FB PL’s eigenvalue spectrum [37,38]. The main
finding of the recent studies is the emergence of different
eigenvalue-dependent scaling laws for localization lengths
with disorder strength, dependent on a mutual position of the
flat and the dispersive spectral bands [37,38]. However, most
of these studies lack a more detailed analysis of the localization
dynamics of the states originating from the FB in FB PLs with
QD.

Beside extensive studies of the light localization in different
FB PL models with the QD, some efforts have also been made
towards understanding the effects of the mutual influence of
the nonlinearity and the QD on the light propagation in FB PLs
[39]. Motivated by the recent studies of the light localization
in FB PLs with the QD, we wanted to investigate whether the
presence of a FB and its position in the spectrum with regard
to dispersive bands also influences the light diffusion in FB
PLs with ED. Having this in mind, we study in detail FBSs’
propagation in linear uniform and binary kagome ribbons
(KRs) [41] with QD and ED. Uniform KRs represent quasi-1D
FB PLs, obtained by dimensional reductions of 2D kagome
PLs [42]. Binary KRs are formed by embedding additional
different periodicities in the uniform KRs [41], which enables
the formation of a gap around the FB, thus isolating it from
the rest of the eigenvalue spectra of the KRs.

This paper is organized as follows. We begin with Sec. II
by introducing the tight binding model used to describe the
light beam evolution in the uniform and binary KRs with QD
or ED. In Sec. III, the localization in the linear uniform and
binary KRs with QD is studied and compared with existing
studies of various FB PL models with QD. In Sec. IV we
comparatively investigate the behavior of FBS propagation in
KRs with QD and ED with the accent on ED. We perform an
extensive investigation of the FBS spreading dynamics in KRs
with the ED while controlling its change rate along the light
propagation direction and its strength. The main objectives
are to study the role of the FB in establishing the diffusive
spreading in KRs with ED by exciting it with a FBS and to
find a relation between FBS spreading in the presence of the
ED and FBS localization when disorder is quenched. Results
are compared with the narrow light beam propagation in the
conventional PLs with ED. Finally, Sec. V concludes the paper
with a summary of our results.

II. MODEL OF DISORDERED BINARY
KAGOME RIBBONS

In Ref. [41] we studied two types of discrete binary KRs:
the binary kagome ladder and the binary kagome strip. Here
we will consider only the binary kagome ladder which will be
referred to as the binary KR in the following. The schematic
of the binary KR with its characteristic six-site cell is shown
in Fig. 1(a). The thick solid lines denote the strong linear
coupling strength between neighboring sites V2, whereas the
dashed ones stand for weak coupling strength V1.

The light propagation in the discrete linear binary KRs
along the light propagation (evolving) direction z may be
described by the following set of dimensionless differential-
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FIG. 1. (a) Binary KR. A unit cell that contains six sites. The
FBS is a compact localized state which occupies four sites with the π

phase change between adjacent sites represented by + and − signs.
The eigenvalue’s spectra reduced to the first Brillouin zone in (b)
uniform and (c) binary KRs for V = 0.25. The bands in (c), formed
due to the splitting of the corresponding bands in the uniform case
(b), are depicted with the same color [41]. The gray areas around the
FB illustrate its smearing in the KRs with quenched disorder.

difference equations in the tight binding approximation:

i ∂zap = εa
pap + V1(bp−1 + bp) + V1cp + V1dp−1,

i ∂zbp = εb
pbp + V1(ap+1 + ap) + V2cp + V2dp,

i ∂zcp = εc
pcp + V1ap + V2bp + V1ep + V2fp,

i ∂zdp = εd
pdp + V1ap+1 + V2bp + V1ep+1 + V2fp,

i ∂zep = εe
pep + V1cp + V1dp−1 + V1(fp−1 + fp),

i ∂zfp = εf
p fp + V2cp + V2dp + V1(ep+1 + ep), (1)

where ap(z), bp(z), cp(z), dp(z), ep(z), and fp(z) represent
amplitudes of the light beam at the individual site of the six-site
unit cell in the binary KRs [Fig. 1(a)]. Indices p = 1, . . . ,N

stand for unit cell index, whereas N is the total number of unit
cells in the ribbons. Terms εx

p (x = a,b,c,d,e,f ) represent the
on-site lattice potential.

We consider the on-site QD and ED, which are modeled by
assigning uniformly distributed random numbers from a given
range of [−W/2,W/2] to the terms εx

p. Parameter W is the
disorder strength. In the case of QD, values of εx

p are fixed
along the light propagation direction, whereas in the case of
ED they are changed in regular intervals. In general, εx

p can be
presented in a form

εx
p =

j=nz∑
j=0

εx
pj {θ (z + j �z) − θ [z + (j + 1)�z]}, (2)

where �z is the interval after which values of εx
p are changed

in the propagation direction (step of change in the disorder
realizations), nz = L/�z is the total number of disorder
realizations along evolution direction z, L is the propagation
length, and θ is the Heaviside function. For each j, εx

pj is a
different set of uniform random numbers from the interval
[−W/2,W/2]. In this way, we keep the disorder strength
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W fixed during its evolution along z. When decreasing step
�z, disorder changes faster in the light propagation direction.
Therefore, the rate of change in disorder is proportional
to 1/�z. This realization of the ED corresponds to the
experimental realization in Ref. [28] and the model used in
Ref. [43] and can be interpreted as stacking different KRs
with QD of length �z in the light propagation direction z. In
such circumstances, QD can be interpreted as a limiting case
of ED for �z = L.

Eigenvalues and eigenstate profiles can be found assuming
the solution for the electric field of the light beam in the
standard form

{ap(z),bp(z),cp(z),dp(z),ep(z),fp(z)}
= {A,B,C,D,E,F } exp(−iβz) exp(ikp), (3)

where k stands for the transverse Bloch wave vector of the
binary KRs, β is the propagation constant of the observed
state, and {A,B,C,D,E,F } is the steady state (z independent)
profile of the considered wave field. In the case of regular
periodic KRs, one can set εx

p = 0 without loss of generality.
When the coupling constants are equal (V1 = V2 = v), the KRs
are noted as uniform in Ref. [41]. The eigenvalue spectrum of
the periodic uniform KR consists of three linear bands, given
by the following expressions:

β1 = 2v[1 + cos(k/2)],

β2 = 2v cos(k/2), (4)

β3 = −2v.

The lowest band is flat, and it touches higher dispersive bands
at the center of the Brillouin zone [Fig. 1(b)]. Degenerated
four-site compact localized states corresponding to FB (FBSs)
can be represented as

{ap,bp,cp,dp,ep,fp}
= {0,1, − 1, − 1,0,1}δp,p0 exp(−iβ3z), (5)

when they occupy sites coupled by V2 [Fig. 1(a)] or

{ap,bp,cp,dp−1,ep,fp}
= {1,0, − 1, − 1,1,0}δp,p0 exp(−iβ3z), (6)

when they occupy sites coupled by V1. Here, δ stands for the
Kronecker δ function equal to 1 for certain cell index p0.

Introducing binarism (V1 �= V2), additional gaps within the
eigenvalue spectrum open for V1 < 1 and V2 = 1 [Fig. 1(c)].
The largest one forms around FB, isolating it from the rest of
the spectrum. Width wg of the widest gap is proportional to the
ratio of coupling constants V = V1/V2 as wg(V ) � 2(1 − V ).
The ratio V will be referred to as the coupling ratio in the
following. Decreasing the value of V below V = 1, introduced
binarism increases, and the gap around FB widens. In the case
of the periodic binary KRs, FBSs can only occupy sites coupled
by stronger coupling constants V2 (see Ref. [41]). Let us note
that in the presence of disorder terms the uniform and binary
lattices will be used only to indicate to which lattice structure
the disordered potential is added.

In KRs with QD, the states originating from the FB are no
longer degenerated and have corresponding eigenvalues in the
range of width W around the FB [Figs. 1(b) and 1(c)]. For

simplicity, the states originating from the FB in the disordered
KRs will be called disordered FBSs as in Refs. [37,38].
Depending on the coupling ratio V , the FB can touch the
higher dispersive zone (uniform KRs, V = 1) or be isolated
from it (binary KRs, V < 1). In the first case, even weak
disorder causes mixing of FBSs with dispersive states. It has
been shown that in such cases the corresponding disordered
FBSs have a sparse structure with a finite number of peaks
and an increasing distance between them as disorder weakens
[37]. If V < 1, the width of the gap around the FB effectively
decreases with disorder. Therefore, we expect to observe two
different situations: If the disorder is weak enough, the smeared
FB stays isolated from the dispersive band, whereas the strong
disorder closes the gap around the FB and causes mixing of
the FB with the dispersive band, similar to the case of uniform
KRs with QD. It has been shown that in the case of weak
disorder, for the FB positioned in the gap, the disordered FBSs
behave similarly to defect states and are evanescent on a length
set by the gap width [38].

In order to characterize the light propagation in the
disordered KRs and compare it with the existing studies
of a disordered FB and conventional PLs, we use standard
measures: the participation ratio [44,45] to measure the
number of strongly excited sites,

P = 1∑N
p=1(|ap|4 + |bp|4 + |cp|4 + |dp|4 + |ep|4 + |fp|4)

,

(7)

the second moment, which gives information about the width
of the light field distribution or information about the distance
between tails of the light field distribution [39],

m2 =
N∑

p=1

[
[X(z) − p]2(|ap|2 + |ep|2)

+
(

X(z) − p − 1

4

)2

|cp|2

+
(

X(z) − p − 1

2

)2

(|bp|2 + |fp|2)

+
(

X(z) − p − 3

4

)2

|dp|2
]
, (8)

where X(z) is the first moment (center of mass) calculated as

X(z) =
N∑

p=1

[
p(|ap|2 + |ep|2) +

(
p + 1

4

)
|cp|2

+
(

p + 1

2

)
(|bp|2 + |fp|2) +

(
p + 3

4

)
|dp|2

]
, (9)

and the localization length ξ . The localization length is
related to the exponential decay of the localized light beam’s
amplitude with the distance from the light beam’s centrum as
exp (−1/ξ ). It gives the impression of the volume occupied
by the light beam since the amplitude of the localized beam
practically decays to zero after the distance equal to one
localization length. The localization length is calculated for
different values of parameters V and W applying the standard
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transfer matrix method to map equations derived from system
(1) [46,47]. The procedure for the determination of ξ can
be summarized in several steps. Here we are interested in
the properties of the FBSs. Thus, the system of Eqs. (1) is
transformed into the map equations at the energy manifold
E = EFB. The light beam propagation therefore is described
by a map trajectory, i.e., flow at the energy manifold. In order
to calculate the localization length, one first needs to calculate
Liapunov exponents which represent the rates of divergence of
map trajectory from the EFB manifold [48]. The localization
length is proportional to the inverse of the least positive
Liapunov exponent. A detailed theoretical explanation of the
relation between the Liapunov exponents and the localization
length as well as numerical procedures for calculation of
Liapunov exponents can be found in Ref. [48].

III. LOCALIZATION OF FLAT BAND STATES IN KAGOME
RIBBONS WITH QUENCHED DISORDER

Here, features of localized states originating from the FB
in the KRs with QD are studied. In order to characterize
the disordered FBSs for different values of parameters V
and W, we start by numerically diagonalizing the system
of Eqs. (1) with the disordered terms εx

p for the KRs with
a finite number of unit cells N after assuming the solution
for the electric field of the light beam in the form given by
expression (3). Figures 2(a) and 2(b) show the saturable values
of the participation numbers and the second moments, whereas
Fig. 2(c) displays the localization lengths of the disordered
FBSs for different values of coupling ratio V and disorder
strength W . The presented results are averaged after repeating
calculations for 200 realizations of the uniform and binary
KRs with QD.

In the case of the uniform KRs with QD, saturable values
of the participation numbers clearly show that the disordered
FBSs occupy more waveguides than the FBSs in the regular
uniform KRs, even for very low disorder strengths W [red
circles in Fig. 2(a)]. Saturable values of m2 indicate that the
disordered FBSs are not zero tailed [red circles in Fig. 2(b)]
as opposed to the FBSs in the regular uniform KRs. It can be
noted that both saturable P and m2 do not change significantly
with weak disorder (W < 0.1). However, the localization
length increases when weakening disorder as ξ (W ) � W−1/2

[red circles in Fig. 2(c)]. Therefore, the disordered FBSs in
the weakly disordered uniform KRs are sparse states with a
finite, almost constant, number of peaks and nonzero tails.

Since these states spread over longer lengths when disorder
weakens, it yields that distance between their peaks increases.
Our results are in agreement with the previous studies of
the localization of the disordered FBSs in PLs which host
intersecting flat and dispersive bands. Moreover, the scaling
law of the localization length with disorder is exactly the same
as predicted in the studies of spectrally similar disordered
FB PLs [37]. Disordered FBSs in such PLs have different
features from Anderson localized states in the conventional
PLs, which are single-peaked exponentially localized states
with the localization length changing more rapidly with the
disorder W as ξ (W ) � W−2 [39]. For the disorder strength
above W = 0.1, all analyzed measures of the localization
of the disordered FBSs decrease when increasing disorder,
indicating that the localized disordered FBSs start to resemble
the standard Anderson localized states.

Saturable values of P and m2 for all studied disordered
binary KRs for W < 1 [pink, green, and blue triangles in
Figs. 2(a) and 2(b)] show that the disordered FBSs in the
binary KRs occupy almost the same number of waveguides as
the FBSs in the regular binary KRs but acquire nonzero tails
which grow when increasing disorder. For a given disorder
strength, tails are longer for higher V . The localization length
for W < 1 keeps a constant finite value set by the width of
the gap which isolates the FB from the higher dispersive zone
[pink, green, and blue triangles in Fig. 2(c)]. Our results are in
agreement with the predictions presented in Refs. [38,39].

For very high disorder (W > 1), the gaps around the
FB close, and the influence of binarism becomes “erased.”
Therefore, values of all analyzed localization measures tend
to be similar in the disordered uniform and binary KRs for
W > 1 (Fig. 2).

In order to investigate the dynamics of the localization of
the disordered FBSs, we study the propagation of an initially
excited single FBS through the disordered KRs. We solve
numerically the system of Eqs. (1) with periodic boundary
conditions applying the Runge-Kutta method of the sixth order
[49] and assuming initial conditions that correspond to the
single four-site FBS excitation [expression (5)]. Using the
solutions of the system (1), we calculate P and m2 along
z. Averaged results for P (z) and m2(z) along the disordered
uniform and binary KRs with the coupling ratio V = 0.25
are shown in Fig. 3. Results are averaged after performing
calculations for 100 realizations of the disordered KRs. The
coupling ratio V = 0.25 is chosen to secure that the gap around
the FB stays open for all studied values of disorder strength W .
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FIG. 2. Saturable values of (a) the participation number and (b) the second moment of the disordered FBSs in the uniform and binary KRs
for different disorder strengths W . (c) The dependence of the localization length of the disordered FBSs in the uniform and binary KRs on
disorder strength W . All figures are given on the log-log scale.
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FIG. 3. (a) The participation number and (b) the second moment

of the FBS during propagation in the uniform and binary KRs with
QD. The second moments are presented on the log-log scale.

Lengths of all KRs with QD are fixed at L = 1000 for easier
comparison with results for the FBS propagation in the KRs
with ED, which are presented in the next section.

As expected, both P (z) and m2(z) show that diffractionless
propagation of the initially excited FBS is destroyed when
QD is introduced in the uniform and binary KRs. In the
case of the uniform KRs with medium (W = 0.5) and strong
(W = 1) QDs, we observe that P (z) and m2(z) saturate to
values that correspond to the saturable values in Figs. 2(a) and
2(b) after a certain distance in the z direction, indicating that
the localization occurred. The distances in z, after which the
initially excited FBS becomes localized due to QD, shortening
when increasing the disorder strength and may be referred to
as the transient regime. For weak disorder (W = 0.1) we do
not observe saturation of P and m2 during propagation for
L = 1000 [the solid lines in Figs. 3(a) and 3(b)] since the
propagation length L is shorter than the localization length.
Therefore, the mode dynamics is transient in that case.

Contrary to the case of the uniform KRs with QD, in the
case of disordered binary KRs we do not observe long transient
regimes which depend on the disorder strength. The number
of strongly excited ribbon sites stays almost constant along
z and around the value that corresponds to the number of

initially excited four sites by FBS excitation [the dashed lines
in Fig. 3(a)]. The dashed lines in Fig. 3(b) show that m2 of the
excited FBS slightly increases during propagation for all W ,
which is in accordance with Fig. 2(b).

The localization length dependence on W presented in
Fig. 2(c) can be a relevant measure for the observed dynamics
of the FBS in the KRs with QD. In the case of the uniform
KRs with QD, ξ decays when increasing disorder [red circles
in Fig. 2(c)]. Therefore, the FBS has to settle to a localized
state by spreading over a shorter distance when increasing
disorder. This means shorter transient regimes. In the case of
the disordered binary KRs, ξ of the localized state to which the
excited FBS settles is independent of the disorder strength and
much shorter than ξ obtained in the case of the uniform KRs
with QD [compare red circles and blue triangles in Fig. 2(c)].

IV. PROPAGATION OF FLAT BAND STATES IN KAGOME
RIBBONS WITH EVOLVING DISORDER

In the following, we investigate the spreading of the initially
excited single compact localized state—FBS [expression (5)]
in KRs with ED. In order to classify diffusive spreading of
the FBS for different coupling ratios, strengths, and evolution
steps of ED, we express the second moment in a form [50]

m2(z) � zα. (10)

Diffusion types can be classified based on the growth rate α of
the second moment [51]. Normal diffusion is characterized by
α = 1, whereas the following nomenclature is used throughout
the literature for anomalous diffusion α �= 1: subdiffusion
for α < 1 and superdiffusion for α > 1. For the special
case of α = 2, notation ballistic spreading is used instead of
superdiffusion, whereas for α > 2 superdiffusive spreading is
noted as faster than ballistic spreading [50,51].

FIG. 4. The second moment and the participation number along the uniform KRs with ED for different evolution steps �z and disorder
strengths (a) and (d) W = 1, (b) and (e) W = 0.5, and (c) and (f) W = 0.1. The insets in (a)–(c) show values of m2 as a function of �z at
different points along the light propagation direction: z = 100 (blue circles), z = 500 (green squares), and z = 1000 (red diamonds). The inset
in (d) illustrates the light field profile at three different points along the propagation directions z = 100 (gray line), z = 500 (light blue line),
and z = 1000 (magenta line) during diffusive spreading of the initially launched single FBS in the strongly disordered uniform KRs with
W = 1 for �z = 1.5. The inset in (f) shows the distribution of the light field amplitudes at the output of the KRs with W = 0.1 for �z = 1.5.
The second moments are presented on the log-log scale. The dashed straight lines with slopes 3,2, and 1, respectively, are guiding lines for the
estimation of the growing rates of the m2 curves.
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In Fig. 4 the averaged results for m2(z) and P (z) along the
uniform KRs with ED for W = 1 [Figs. 4(a) and 4(d)], W =
0.5 [Figs. 4(b) and 4(e)], and W = 0.1 [Figs. 4(c) and 4(f)] are
shown. For each W , we investigate FBS propagation using the
same steps �z = {0.1,0.5,1,1.5,2,3}. In order to ensure the
compactness of the results and the long time limit conditions
for studying the regimes of diffusive spreading, the chosen
values for �z are much longer than the numerical integration
step and much shorter than the system length �z � L.

For strong disorder (W = 1), both m2(z) and P (z) grow
along z when disorder changes [Figs. 4(a) and 4(d)], as
opposed to the case of QD when m2(z) and P (z) saturate
[red solid lines in Figs. 3(a) and 3(b)]. Values of m2(z) and
P (z) reached at the output of the uniform KRs with ED for all
�z are significantly higher than the saturable values of m2(z)
and P (z) in the uniform KRs with QD. Moreover, it can be
seen that the second moments at the output of PLs with ED
m2(z = L) monotonically decrease when increasing �z [red
diamonds in the inset in Fig. 4(a)]. Extracted values of the
growth rates of m2(z) gradually decrease along z for every �z.
For the propagation lengths L = 1000 set in our simulations,
the growth rate settles to α = 1.4 for a short evolution step
(�z = 0.1), indicating that FBS spreading can be classified as
superdiffusion. For longer steps (�z > 0.1), growth rates settle
to α = 1.1, showing that the diffusive spreading of the initially
launched FBS becomes more similar to normal diffusion in
these cases. The light beam profiles keep Gaussian shapes for
every �z during propagation, which is illustrated in the inset
of Fig. 4(d) for randomly chosen �z = 1.5 at three different
points along z. It should be noted that the initial FBS excitation
is compact, but during propagation in the presence of strong
ED it acquires tails and eventually takes Gaussian shape.

In the case of weak ED (W = 0.1), m2(z) grows with
almost constant growth rates along z [Fig. 4(c)], which are
estimated to be in the range of α = [2.8,3] for different �z.

Behaviors of m2(z) indicate faster than ballistic spreading
according to the classification in Ref. [50]. From values of
m2(z) at several points along z given in the inset of Fig. 4(c),
it can be observed that, for the same propagation length, the
second moment reaches the highest value for a certain �z.

In the uniform KRs with weak ED, numbers of occupied
sites do not increase significantly for any �z from the
initial value of P = 4, which corresponds to FBS excitation
[Fig. 4(f)]. It can be concluded that only the tails of the light
beam spread fast whereas most of the light energy stays around
initially excited sites. Typical distribution of the light field
amplitudes observed at the output of the uniform KRs with
weak ED is given in the inset of Fig. 4(f) for randomly chosen
�z = 1.5. Values of P (z = L) at the output of uniform KRs
with ED are lower than P (z = L) reached in the case of QD
with the same strength. Since each chosen step �z � ξ [see
the blue solid lines in Figs. 3(a) and 3(b)], weak ED slows down
the spreading of FBS excitation before it “fills” the localization
volume and establishes a different regime of spreading.

In the case of intermediate ED strength (W = 0.5)
[Figs. 4(b) and 4(e)], the propagation of the FBS can be
similar to the case of weak or to the case of strong disorder
depending on �z. For longer steps (�z > 0.1), the FBS
spreads superdiffusively with the growth rates of m2(z) settled
at α = 1.5, similar to the case of the strong ED with �z = 0.1.
For short steps (�z = 0.1), the growth rate of m2(z) is α = 2.5.
In this case, the FBS spreading resembles the spreading of the
FBS in the uniform KRs with the weak ED (W = 0.1) for
which the growth rates of m2(z) indicate faster than ballistic
spreading. However, the behavior of P (z) indicates a small
increase in the number of ribbon sites occupied by tails of
light beams along z.

Next, we focus on the the binary KRs with the low coupling
ratio of V = 0.25 in order to keep the gap around the smeared
FB open for all studied values of the disorder strength. We

FIG. 5. The second moment and the participation number along binary KRs with ED for different evolution steps �z and disorder strengths
(a) and (d) W = 1, (b) and (e) W = 0.5, and (c) and (f) W = 0.1. The coupling ratio of binary KRs is V = 0.25. The insets in (a)–(c) show
values of m2 as a function of �z at different points along the light propagation direction: z = 100 (blue circles), z = 500 (green squares), and
z = 1000 (red diamonds). The inset in (d) illustrates the light field profile at three different points along propagation directions z = 100 (gray
line), z = 500 (light blue line), and z = 1000 (magenta line) for the case of diffusive spreading of the initially launched single FBS for W = 1
and �z = 1.5. The inset in (f) shows the distribution of the light field amplitudes at the output of KRs with W = 0.1 for �z = 1.5. The second
moments are presented on the log-log scale. The dashed straight lines with slopes 3, 2, and 1, respectively, are guiding lines for the estimation
of the growing rates of the m2 curves.
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investigate the propagation of FBS excitation for the same
steps of disorder change and disorder strengths as in the case
of the uniform KRs with ED. In Fig. 5 averaged m2(z) and P (z)
along the binary KRs with the ED for W = 1 [Figs. 5(a) and
5(d)], W = 0.5 [Figs. 5(b) and 5(e)], and W = 0.1 [Figs. 5(c)
and 5(f)] are shown.

Interestingly, for given W and �z we observe the same
regimes of FBS propagation in the uniform and the binary
KRs with ED. Quantitative differences in the growth rates of
m2(z) for the same W and �z in the uniform and in the binary
KRs are negligible. However, m2(z) and P (z) reach higher
values in the uniform KRs than in the binary KRs with ED
for the same propagation length of L = 1000. Exceptions are
the values for P (z) in the case of weak ED, which are almost
the same for the FBS propagating in the uniform and in the
binary KRs. Since our realization of ED relies on changing
the disordered on-site potential abruptly after steps �z, we
interpreted it as stacking KRs of length �z, each with different
QD potentials, in the light propagation direction. Therefore,
figuratively speaking, light which propagated in one KR with
QD as a superposition of its eigenstates, reaches the next KR
with different realization of QD which further modulates a
light beam supporting the propagation of different eigenstates
with respect to the previous KR, and so on.

Here, we briefly comment on the possibility to associate the
observed FBSs spreading properties in the disordered binary
KRs with a dephasing efficiency of the ED following the
approach in Ref. [50]. The FBSs are eigenstates of the regular
KRs. In our paper and in literature [37,38], it is shown that the
implementation of the on-site quenched disorder differently
affects the FBSs’ propagation with respect to the degree of
isolation of the corresponding FB from the rest of the system’s
eigenvalue spectrum. The controlling parameter here is the
coupling ratio V . The isolation of the FB is associated with
the changes in a behavior of the FBSs in the KR with QD. This
can be related to the finding that in the binary KR (V �= 1) for
the fixed value of V , the localization length ξ is independent
of the W value and much shorter than the localization length
in the case of uniform KRs with QD, Fig. 2(c).

To interpret the FBSs’ propagation properties in the KR
with on-site ED, we assume that the ED induces hopping
between different eigenstates of the KR’s parts with QD [50].
The coupling then is driven by the frequency components of
the ED spectrum that are resonant with the energy differences
between the eigenstates. The influence of the ED on the
propagation of the FBSs can be associated with the overlap
between two spectra: the eigenstates density spectrum of the
KRs and the corresponding spectrum of the ED [50]. The
eigenstates’ density spectra of the KRs with V = 1 (uniform)
and V = 0.25 (binary) in the presence of the QD with
W = 0.1, 0.5, and 1 are schematically presented in Fig. 6(a).

The distributions of the eigenstates’ densities around the
FB in the uniform KR with on-site QD are characterized by
higher amplitudes at the FB position than those in the binary
KR with QD. On the other hand, the eigenstates’ distribution
in the binary KRs is characterized by the occurrence of gaps
which are wider in the lattices with a smaller value of V .
Therefore, the overlap with the ED spectrum in the area around
the FB is more pronounced in the uniform case. Roughly, the
latter can be sketched as the higher probability for resonant

FIG. 6. (a) The eigenstates density spectrum [ρ(β) vs β] of the
KRs with QD. The solid lines denote the uniform KR case (V = 1),
whereas the dashed lines denote the binary KR (V = 0.25). The blue,
red, and green lines correspond to the fixed values of the disorder
strength: W = 0.1, 0.5, and 1, respectively. The corresponding
values of ξ are shown in the figure. (b) The m2(z = 1000) vs �z

for uniform (solid lines with solid symbols) and binary (dashed lines
with open symbols) lattices with respect to W = 0.1, 0.5, and 1.

excitation of the eigenstates from this area in uniform than
in the binary KRs with ED. The interplay of the mentioned
effects, the efficiency of the dephasing by the ED, and the
localization of states induced by the QD might be associated
with observed behavior of the second moment m2 of the FBSs
[50], Fig. 6(b). The m2(z = 1000) vs �z curves in the uniform
lattice are above the ones in the binary KRs for each selected
value of W . This can be related with the value of ξ and more
efficient dephasing in the KR with V = 1 than with V �= 1.
The shapes of the m2 vs �z curves in the uniform and binary
KRs for each particular value of W are similar. Moreover, it
can be noted that the dephasing induced by the ED smears out
the differences between the spreading tendencies of the FBSs
with respect to the coupling ratios of V = 1 and V �= 1.

Finally, we may summarize that the presented results imply
that, for a given propagation length, normal or anomalous
diffusion of initially excited FBSs in both uniform and binary
KRs with ED can be observed depending on the strength and
the evolution step of the disorder. The insets of Figs. 4(a)–4(c)
and 5(a)–5(c) show the changes in functional dependence of
the second moment along z on �z, which are a consequence
of the decreasing growth rates of m2(z) along z. The same
m2(z,�z) dependence can be observed for both weak and
strong EDs but after shorter propagation distance in the case
of strong ED. This can be related to the observation that the
diffusion rates found for the KRs with weak ED appear as
transient rates of the FBS spreading in the presence of strong
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ED. On the other hand, the last can be used to guess that, for
any disorder strength, the FBS spreading in the presence of
ED tends to settle to the normal diffusive spreading in the long
time (propagation) limit. The confirmation of our assumption
is a challenging task for further investigations.

V. CONCLUSIONS

The study presented here is a step forward in understanding
the influence of disorder on the light propagation in the FB
systems. We investigate the role of the FB and its position with
respect to the dispersive bands in the eigenvalue spectrum of
FB PLs on the propagation of the FBSs in the presence of ED.

We consider binary KRs, which allow us to control the
position of the FB with regard to the rest of the eigenvalue
spectrum by controlling the coupling ratio V . KRs are modeled
by the system of differential-difference equations in the tight
binding approximation. The influence of on-site disorder is
investigated, which is kept frozen in the case of QD or
changed in regular intervals in the propagation direction in
the case of ED. We observe that, in the uniform KRs with
QD, the localization length of the disordered FBS scales with
the disorder strength as ξ (W ) � W−1/2 whereas it remains
constant in the case of the binary KRs with QD, in accordance
with the previous studies [37–40].

Our analysis of the FBS propagation in the uniform and bi-
nary KRs with ED yields that for a given observation length L,

normal or anomalous diffusion can be observed, depending on
the strength and the rate of change in the ED. The same regimes
of diffusive spreading are observed in the uniform and binary
KRs with the ED under the same conditions. Mixing of the FB
with the rest of the PL’s spectrum in the uniform KRs causes
only quantitative differences in the FBS spreading dynamics.
This peculiar dynamics indicates that the spreading of the
FBSs in the presence of the ED is not significantly affected
by the interplay of the dispersive-extended states. In order to
relate the localization of the FBSs in the presence of the QD
and FBSs’ spreading regimes in the presence of the ED, we
have adopted the approach based on the perturbation theory in
Ref. [50].

Although our results are discussed in the context of PLs,
they can be relevant for any system in which FB structures can
be realized, such as optical lattices for trapping of ultracold
atoms [52,53] or metallic lattices for obtaining a flat plasmonic
band [54].
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