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Counting statistics of chaotic resonances at optical frequencies: Theory and experiments
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A deformed dielectric microcavity is used as an experimental platform for the analysis of the statistics of
chaotic resonances, in the perspective of testing fractal Weyl laws at optical frequencies. In order to surmount
the difficulties that arise from reading strongly overlapping spectra, we exploit the mixed nature of the phase
space at hand, and only count the high-Q whispering-gallery modes (WGMs) directly. That enables us to draw
statistical information on the more lossy chaotic resonances, coupled to the high-Q regular modes via dynamical
tunneling. Three different models [classical, Random-Matrix-Theory (RMT) based, semiclassical] to interpret the
experimental data are discussed. On the basis of least-squares analysis, theoretical estimates of Ehrenfest time,
and independent measurements, we find that a semiclassically modified RMT-based expression best describes
the experiment in all its realizations, particularly when the resonator is coupled to visible light, while RMT alone
still works quite well in the infrared. In this work we reexamine and substantially extend the results of a short
paper published earlier [L. Wang et al., Phys. Rev. E 93, 040201(R) (2016)].
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I. INTRODUCTION

Confinement and manipulation of photons using whispering
gallery mode (WGM) microcavities [1–3] have triggered
intense research due to their unique features, such as the long
photon lifetime and strong field confinement. By breaking
the rotational symmetry of the WGM microcavities [4], it
was recently found that the deformed microcavities not only
gain directionality, highly desirable for microlasers and other
photonics applications [5–15], but also serve as dynamical
billiards for experimentally testing the systems with a mixed
phase space, from which one can study classical and quantum
chaos [16,17]. In particular, prominent phenomena were so
far demonstrated experimentally in the optical microcavity
system, e.g., dynamical tunneling [10,18–20], dynamical
localization [21,22], scarring [23–25], turnstile transport [26],
and avoided resonance crossings [27].

The study of quasibound states (resonances), of importance
to understand the mechanisms of chaotic scattering [28–31], is
not so often performed on dielectric microcavities [32]. That
is due to both experimental and theoretical challenges. On the
experimental side, chaotic resonances are often very lossy, and
tend to overlap in the spectrum, making recognition problem-
atic [33]. From a theoretical standpoint, the observations may
lend themselves to multiple interpretations [34–36], due to the
partial openness of the system, which makes the wave-ray
correspondence highly nontrivial [37].

In the present work we propose a solution to the above
problems, by employing a silica-made microcavity (Fig. 1;
also see Ref. [38]), which is approximately two-dimensional,
has a deformed circular boundary, and is placed on the top of
a silicon-made, fully absorbing pedestal.
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The ray dynamics inside the resonator, which can be
regarded as a leaky billiard, is mixed: while the chaotic
dynamics mostly dwells in the central region, the regular
(quasiperiodic) rays closely follow the boundary and thus live
in the outer toroid. Although there is no physical boundary
dividing these two regions of the cavity, regular and chaotic
dynamics are well separated in the phase space (Fig. 2) by a
KAM boundary [39], so that no classical trajectory can cross
between the two. Quantum mechanically, however, a wave
localized on one region of the phase space may tunnel into the
other [40], so that, generally, overlapping chaotic resonances
are coupled to sharp, nonoverlapping regular (WGM) ones
[41], and counting the latter from the transmission spectrum
can help us draw information on the statistics of the former.
That is the basic strategy we adopt to avoid the problem of
reading overlapping spectra.

Moreover, the microresonator used here is fabricated on the
top of a silicon pillar of smaller radius, which fully absorbs
virtually every ray that travels directly above it. Consequently,
the system acquires a full opening, and the present experiments
may be used to validate existing predictions for the statistics
of chaotic resonances.

With these premises, the experiments performed here are
aimed at estimating the number of chaotic resonances from the
sole observation of regular ones, mostly WGMs. A thorough
analysis is also presented, where we test three different
models against the experimental data: (1) a classical prediction,
solely based on ray dynamics, (2) a known expression [42]
obtained from the truncation of random matrices, and (3) a
semiclassical correction [43] to (2), which depends on the
Lyapunov exponent of the chaotic dynamics, and therefore
on system-specific properties. Theory, methods, experimental
conditions, and statistical analysis are explained in full detail.

The method we introduce is intended to set the stage for
more general investigations of chaotic scattering phenomena
in open systems, beginning with a test at optical frequencies of
the fractal Weyl law for the scaling of the number of resonances
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FIG. 1. (a) Schematic representation of the free-space coupled
cavity system: the cavity field is excited by visible or infrared laser,
while the transmitted signal is detected by an oscilloscope. Key: PLC
= polarization controller; FC = fiber coupler; OL = optical lens;
PR = photon receiver. (b) A typical transmission spectrum with the
high-Q regular modes highlighted.

with the energy [44]. At present, the scaling exponent in this
prediction is also believed to depend upon the cutoff chosen for
the linewidth [32,45] of the resonances counted, and thus on
the range of decay times of the corresponding chaotic states.
With that in mind, an important aspect of the present analysis is
that to estimate the typical decay time that the experiments are
sensitive to. A comparison of the measured maximum escape
rates of the chaotic states with the estimated Ehrenfest time
of quantum-to-classical correspondence [46] provides useful
information in that respect.

The paper is organized as follows. Section II contains the
theoretical model, with the equations that couple chaotic to
regular modes, obtained with two different but equivalent
approaches (Secs. II A and II B, respectively). The key relation
between number of chaotic modes and probability of excitation
of one regular mode is derived in Sec. II C. The statistics of
chaotic modes is treated in Sec. II D with different models,
that depend on the time scales involved. In Sec. III A we
place an absorber at the center of the cavity to obtain a full
opening. Varying the size of the absorber affects the mean
dwell time of the chaotic rays from the cavity. A theoretical
study of the statistics of resonances and the number of regular
modes excited as a function of the radius of the absorber is
presented in Sec. III B, while in Sec. III C we numerically
investigate the time scale of transient chaos versus escape to
the absorber in the ray dynamics. The experimental apparatus
is described in Sec. IV, together with the techniques employed
to perform measurements of the transmission spectra, and
numerical studies of the propagation of both chaotic modes and
WGMs inside the cavity. Section V contains the experimental
results and their statistical analysis: regular modes are counted
in various experimental conditions, and the three different
models are validated against the data (Secs. V A and V B).

FIG. 2. (a) (inset) Sketch of the deformed microcavity with an
inner absorber, characterized by the angle θa , and (main) correspond-
ing Poincaré surface of section (φ̂ ≡ φ/2π ) with deformation factor
η = 11.7%. The solid red line indicates the angle of total internal
reflection, while the dashed curve is given by an absorption angle
θa such that r � 0.85. Different shades of color indicate loss to the
absorber (lighter) and by refraction into air (darker). (b) Poincaré
section of the microcavity with η = 4.2%. The dashed curve is given
by an absorption angle θa such that r � 0.77.

We discuss the proportionality between the probability of
excitation of a single regular mode and the number of excited
regular modes in Sec. VI. As an independent test of the theory,
we also count statistics of the linewidths of the excited regular
modes. Conclusions and discussion follow in Sec. VII.

II. THEORETICAL MODEL

Classically, a deformed microcavity allows for both regular
and chaotic motion (Fig. 2), which are well separated, so that
no trajectory can cross between them. In the quantum picture,
however, it is possible for a wave living in one region to leak
into the other via dynamical tunneling [40], which introduces
a coupling between regular and chaotic resonances.

A. Mode-mode coupling theory

The polarized field [Transverse Electric (TE) or Transverse
Magnetic (TM)], excited by the incident beam inside the
microcavity, is written as a superposition of one regular (ω)

012217-2



COUNTING STATISTICS OF CHAOTIC RESONANCES AT . . . PHYSICAL REVIEW E 96, 012217 (2017)

and several (n) chaotic modes [47]:

ψ(x,t) = aω(t)cω(x)eikωz−iωt +
∑

n

bn(t)cn(x)eiknz−iωnt . (1)

As said, the regular mode is coupled to the chaotic ones via
dynamical tunneling, and therefore, one can write a system of
response equations [48] under the slowly varying amplitude
assumption [49], and integrate out the spatial part of the modes,
to obtain

b̈n + ω2
nbn + γnḃn = fnE0 − Vnaω, (2a)

äω + γω ȧω + ω2aω =
∑

n

Vnbn. (2b)

Here fn is the coupling strength of the nth chaotic mode
with the laser beam of amplitude E0 and frequency ω0. Vn

(assumed real) is the coupling strength of the nth chaotic mode
with the regular mode, while γn and γω are damping rates.
Assuming that ωn ≈ ω0, one can first set

bn = Re[bne
−iω0t ], (3a)

aω = Re[aωe−iω0t ] (3b)

and then rewrite Eqs. (2) as [38]

ḃn + γnbn = fnE0 − Vnaω, (4a)

ȧω + [γω + i(ω0 − ω)]aω = ∑
nVnbn. (4b)

We are interested in the steady-state solution, obtained by
setting ȧω = ḃn = 0. The amplitude aω of the envelope of the
regular mode is found to be [38]

aω =
E0

∑
n fn

Vn

γn

[γω + i(ω − ω0)] + ∑
n

V 2
n

γn

. (5)

B. An alternative approach

The same equation may be derived in a different way
[50,51]. Consider a Hamiltonian H0 modeling the closed
billiard, whose eigenstates |aω〉 and |bn〉 represent the regular-
and chaotic states respectively, uncoupled to one another.
The coupling is introduced by the opening, that modifies the
Hamiltonian to the non-Hermitian H = H0 + V . Moreover,
an incident beam of amplitude E is shone into the cavity. We
begin by writing an eigenfunction of H as the superposition

|ψ〉 = aω|aω〉 +
∑

n

bn|bn〉 + E|E〉. (6)

We have the following coupling properties:

〈aω|H |aω〉 = ω − iγω, 〈bn|H |bn〉 = ωn − iγn,

〈aω|H |bn〉 = Vn, 〈aω|H |E〉 = 0,

〈E|H |bn〉 = fn. (7)

We also assume regular-, chaotic states, and state of the
incident beam to be orthogonal to one another [52]. We can
now take the Schrödinger equation

H |ψ〉 = ω0|ψ〉 (8)

and sandwich it with

(1) 〈aω|, to obtain

(ω − iγω)aω +
∑

n

bnVn = ω0aω; (9)

(2) 〈bn|, and we get

bn = aωVn + fnE

(ω0 − ωn) + iγn

. (10)

We now plug Eq. (10) into Eq. (9) to obtain

aω =
E

∑
n

fnVn

(ω0−ωn)+iγn

(ω0 − ω) + iγω − ∑
n

V 2
n

(ω0−ωn)+iγn

. (11)

As before, we assume that ωn � ω0 for all chaotic states, which
simplifies Eq. (11) to the form

aω = −
E

∑
n fn

Vn

γn

[γω + i(ω0 − ω)] + ∑
n

V 2
n

γn

. (12)

Equation (12) differs from Eq. (5), previously derived, by
an overall minus sign, which however does not affect the
excitation probability (squared modulus of the amplitude), and
by the ω0-ω term, where the two frequencies are swapped with
respect to Eq. (5).

C. Probability of excitation of a regular mode

Let us now rewrite

∑
n

fn

Vn

γn

� nγ

〈
fnVn

γn

〉
, (13a)

∑
n

V 2
n

γn

� nγ

〈
V 2

n

γn

〉
, (13b)

where the averages are taken over nγ chaotic modes of small
enough linewidth (γ sets the upper bound) to effectively
contribute to the excitation of the regular modes. In that way,
we can express Eq. (5) as

aω =
E0nγ

〈
fnVn

γn

〉
[γω + i(ω − ω0)] + nγ

〈V 2
n

γn

〉 . (14)

This can be rewritten (setting ε = E0〈fnVn/γn〉
〈V 2

n /γn〉 and 
 = γω

〈V 2
n /γn〉 )

as

aω = ε
nγ[


 + i (ω−ω0)
〈V 2

n /γn〉
] + nγ

. (15)

The excitation probability for the regular mode is therefore

|aω|2 = ε2
n2

γ

(
 + nγ )2 + (ω−ω0)2〈
V 2

n /γn

〉2

, (16)

which becomes, at resonance [38],

|aω|2 = ε2
n2

γ

(
 + nγ )2
. (17)
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D. Statistics of chaotic states

Equation (17) is central to our construction, as it links the
number of excited regular modes (proportional to |aω|2), that
we measure directly, to the number of chaotic modes nγ , that
we estimate as follows.

In principle, we lack information on the typical decay rate or
linewidth of the chaotic modes that contribute to the excitation
of the regular ones. Specifically, we do not know whether
the latter decay within the Ehrenfest time τEhr of quantum-
to-classical correspondence, or whether they are, on average,
significantly longer lived (quasibound). Because of that, we
present here three different models, the first entirely classical,
the second based on the truncation of random unitary matrices
[42], suitable for quasibound states, and the third that combines
the previous two [43], and that thus applies to an intermediate
timescale.

The following analysis refers to the classical dynamics
of the chaotic billiard, and all the time-related quantities are
expressed in units of the average (“Poincaré”) time between
two consecutive bounces of a ray on the boundary.

(1) We begin with the classical description, and assume
that the motion inside the chaotic part of the phase space
is hyperbolic, so that the survival probability takes the form
P (t) ∝ e−t/τd , where τd is the mean dwell time of a trajectory
in the system. If there are M states in the cavity at t = 0, the
average number of states that survive in the cavity by time
t∗ < τEhr is given by

n(t∗ < τEhr) = Me−t∗/τd = Me−1/γ τd (18)

having set γ = 1/t∗. In particular, the number of states that
survive at the Ehrenfest time is given by

n(τEhr) = Me−tEhr/τd = MN−1/μ̂τd , (19)

where μ̂ is of the order of the Lyapunov exponent, N is the
number of open channels, so that τd = M/N , and we took
τEhr = μ̂−1 ln N (see Appendix A for details).

(2) The statistics of the spectrum of a chaotic Hamiltonian
is typically determined by means of Random Matrix Theory
(RMT) [53]. We now follow this approach in order to estimate
the number of long-lived states, starting with an expression for
the probability distribution P (r), r = e−γn/2 (γn escape rate of
an eigenstate of the open system), obtained from truncated
random matrices [42]:

�(r) = C
2r

(1 − r2)2
, (20)

where C is a normalization constant. The number of eigen-
states nγ,RMT with escape rate γn < γ is then evaluated from
the integral of Eq. (20),

nγ,RMT =
∫ √

1/τd

rγ

�(r) dr, (21)

with rγ = e−γ /2, under the assumptions that τd 
 1, and
limγ→∞ nγ,RMT = M − N , that is the number of states that
do not decay instantaneously. The final result is

nγ,RMT � M

[
1 − 1

τd

1

1 − e−γ

]
. (22)

(3) If we then want to remove the states that decay within
Ehrenfest time from the estimate of nγ , we just combine (22)
and (19), obtaining [38,43]

nγ,Weyl = M

N1/μ̂τd

[
1 − 1

τd (1 − e−γ )

]
. (23)

The previous expression, which scales as a nonintegral power
of the number of states consistently with the fractal Weyl law
[43,45], is therefore a semiclassical correction to the RMT
prediction. It depends on the Lyapunov exponent of the chaotic
dynamics, and therefore it takes into account system-specific
properties.

In what follows, we will validate Eq. (18), Eq. (22), and
Eq. (23) respectively against the experimental data.

III. CHAOTIC RAY DYNAMICS AND EXCITATION
OF REGULAR MODES

A. Absorber and phase space

In order to achieve the full opening required to test the
above predictions, we introduce an absorber in the cavity. In
the analysis, the dielectric microcavity [Fig. 2(a), inset] has
the deformed circle ρ(φ) as boundary (see Sec. IV for details),
which encloses an absorber of shape ρ(φ) − R. Figure 2 shows
the classical phase space, together with the critical line of total
internal reflection (sin θc), as well as the line given by the
incidence angle θa , below which the reflected ray hits the
absorber. In what follows we neglect the dependence of θa

on φ by taking the average value, approximately given by
the ratio r of the mean radius of the absorber to the cavity’s.
We assume in this model that the rays that hit the absorber
are completely absorbed by it. We will justify the assumption
in Sec. IV. We also previously remarked that only a subset
of longer-lived chaotic states, out of those available in the
whole phase space, effectively contribute to the excitation of
the regular modes [Eqs. (13)]. Because of that, we do not count
the rays that escape the cavity by refraction into the air with an
angle of incidence θ  θc, since these are very lossy and they
are not expected to contribute to the excitation of the regular
modes. Instead, we only take into account the states supported
on a strip of the chaotic phase space with momentum above
a certain threshold, sin θ > sin θth, to be chosen below but
close enough to the critical line of total internal reflection. Let
us introduce the notation ξ ≡ sin θa − sin θth to indicate the
strip of the phase space opened by the absorber. The N open
channels (cf. Sec. II D) out of the M Planck cells available in
the phase space, are produced by the absorber (full opening,
Na) and the refraction out of the cavity (partial opening, Nr ),
so that the mean dwell time of a ray is given by [38]

τd = M

Na + Nr

(24)

with Nr = M
A

∫ sin θc

sin θa
T (sin θ ) d sin θ , T transmission coeffi-

cient according to Fresnel law, and A area of the chaotic phase
space in exam, while Na = Mξ/A.

The mean dwell time plays a central role in the present
study, since the main idea of our experiments resides in
counting resonances as a function of the size of the absorber,
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FIG. 3. (a), (c), (e) Number of chaotic states nγ vs the rescaled
absorber-to-cavity ratio ξ , obtained by classical, RMT and Weyl law
respectively. (b), (d), (f) The corresponding expectations for |aω|2.
The red vertical line corresponds to the critical angle, sin θc � 0.69.
Here sin θth = 0.6. (c)–(f) adapted from Ref. [38].

and therefore in using τd as the variable for the predictions
(18), (22), and (23).

B. Excitation of the regular modes

We proceed by steps and examine the above theories
(classical, RMT, semiclassical) for the number of chaotic states
nγ with escape rate less than γ , as a function of the mean
dwell time τd , or, equivalently, the rescaled absorber-to-cavity
ratio ξ . We set ξ̂ = 1/τd = ξ/A + Nr/M , and rewrite the
predictions of Sec. II D in terms of ξ̂ .

(1) The classical model [Eq. (18)] becomes

nγ,Class = Me−ξ̂ /γ (25)

in the new notation. Figure 3(a) shows the decay of the number
of states as the opening increases in size, and [Fig. 3(b)]
the correspondent decay of the probability of excitation of a
regular mode: while nγ,Class and |aω|2Class [obtained by plugging
Eq. (25) into Eq. (17)] decrease slowly for ξ small such that
θa < θc, that is when the loss is mainly due to refraction into
air, both quantities fall off rapidly, and nonlinearly, when the
loss is entirely due to the absorber (full opening).

(2) The RMT-based prediction, Eq. (22), is also rewritten
as a function of ξ̂ [38]:

nγ,RMT = M

[
1 − ξ̂

1 − e−γ

]
. (26)

Its behavior is illustrated in Fig. 3(c): here nγ,RMT decreases
linearly with ξ in the region of total internal reflection, when
the loss is entirely due to the absorber. The probability of
excitation of the high-Q regular modes |aω|2RMT starts to fall
off as ξ reaches some critical value, controlled by the parameter
γ [Fig. 3(d)]. The other parameter 
̃ = γω

M〈V 2
n /γn〉 controls the

slope of the curve.
(3) The semiclassical estimate (23) becomes, as a function

of ξ̂ [38],

nγ,Weyl = M1−ξ̂ /μ̂

ξ̂ ξ̂/μ̂

[
1 − ξ̂

1 − e−γ

]
. (27)

The rescaled Lyapunov exponent μ̂ of the chaotic region
of the phase space is what really characterizes (27), which
resembles the linear RMT expression (26) for large enough
μ̂, and otherwise becomes visibly nonlinear [Figs. 3(e)] when
μ̂  1. This nonlinearity produces a characteristic tail in the
probability |aω|2Weyl [Fig. 3(f)], similar to that of the classical
prediction (18). We therefore interpret it as a signature of
chaos, which is most evident slightly above the onset of chaotic
dynamics.

C. Transient chaos

The survival probability leading to Eqs. (18) and (23) for
the classical estimates of the number of decaying states, has
an exponential form because it rests on the assumption of
a fully chaotic phase space. However, the phase portraits
of Fig. 2 suggest the presence of nonhyperbolic (“sticky”)
regions [54,55], as well as of partial transport barriers [56,57]
even in the chaotic part of the phase space, which would
make the survival probability decay algebraically, instead of
exponentially. We address the issue by performing extensive
ray-dynamics simulations of the microcavity-shaped billiard of
two different deformation factors, and computing the survival
probability in the chaotic region. Here the absorber at the
center of the billiard constitutes the sole, full opening. Figure 4
illustrates the results: despite an overall power-law decay,
a closer look at the short-time dynamics reveals that the
decay is initially exponential, behavior known as transient
chaos [58]. The applicability of a model involving fully
developed chaos would depend on how the Ehrenfest time of
quantum-to-classical correspondence compares to the typical
transition time τtrans by which the chaotic decay turns algebraic.
We estimated τtrans = 6(14) units of Poincaré time for a cavity
with deformation factor η = 11.7%(4.2%). We shall estimate
the Ehrenfest times of the microcavity of these deformations
in Sec. V A, and confirm the validity of the fully chaotic model
for the present experiments.

IV. EXPERIMENTAL SETUP AND MEASUREMENT

The experimental apparatus consists of a deformed toroidal
microcavity of boundary shape given by the curve

ρ(φ) =
{

ρ0
(
1 + ε

∑
i=2,3 ai cosi φ

)
for cos φ � 0,

ρ0
(
1 + ε

∑
i=2,3 bi cosi φ

)
for cos φ < 0,

(28)

with ρ0 = 60 μm, a2 = −0.1329, a3 = 0.0948, b2 =
−0.0642, and b3 = −0.0224. The WGMs in the deformed
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FIG. 4. Survival probability in the chaotic region (log scale).
Points: average survival probability P (t) of a ray in the microcavity
vs t (in units of Poincaré time) at: (a) η = 11.7%, ξ = 0.13, from 106

randomly started trajectories. Line: P (t) ∝ exp(−t/τd ), τd = 6 (from
Ref. [38]); (b) η = 4.2%,ξ = 0.1, τd = 14. Insets: the long-time
simulation showing algebraic decay.

microcavity have been demonstrated to possess ultrahigh
quality factors in excess of 108 in the 1550 nm wavelength
band and to exhibit highly directional emission towards the
180◦ far-field direction, which emits tangentially along the
cavity boundaries at polar angles φ = π/2 and φ = 3π/2 [20].
The deformation is controlled by η = (dmax − dmin)/dmax,
dmax and dmin respectively the maximum and minimum
diameters of the cavity. The parameter η is related to
ε through η = ε|a2 + a3 + b2 − b3|/2. The microcavity is
coupled to a free-space propagating laser beam of wave-
length λ � 1550 nm (swept from 1555 nm to 1545 nm,
free-spectral range 4.4 nm [59]), or 635 nm (swept from
639 nm to 637 nm, free-spectral range 0.74 nm), as shown
in Fig. 1. The microtoroid [refractive index � 1.44,1.46
depending on λ, Fig. 5(a)] has principal or minor diam-
eters of 120/5 μm, consistently with the two-dimensional
model. Thus the effective Planck constant heff ∼ λ/a ∼ 10−2

(a: principal diameter) justifies the semiclassical analysis.
The microcavity is fabricated through optical lithography,
buffered HF wet etching, XeF2 gas etching, and CO2 pulse
laser irradiation. The resulting silica microtoroid is supported
by a silicon pillar of similar shape, which has a high refractive
index (�3.48,3.88), and it acts as the absorber in the model.

FIG. 5. (a) Image of the microcavity obtained by scanning
electron microscopy (SEM). (b) SEM cross-section image of the
toroidal part, taken at an angle of 56◦ with the horizontal direction.
(c) Finite-element method simulation of a fundamental TE mode
(color scale in arbitrary units). The white solid curve is the boundary
of the cavity. (d) Finite-element method simulation of the light
propagating inside the 2-μm-thick silica waveguide bonding with
a thick silicon layer (color scale in arbitrary units). (e) Fraction of
remaining energy in silica vs the propagating distance.

After each measurement of the transmission spectrum (Fig. 6),
the top diameter of the silicon pillar, connected with the silica
disk, is progressively reduced by a new isotropic XeF2 dry
etching process. In this way we control the openness of the
microcavity with the ratio r between the top diameters of pillar
and toroid. Finite-element method simulations [Figs. 5(d)
and 5(e)] show that the light power decreases to less than 5%
of the input value, when propagating by a distance of 20 μm
inside the 2-μm-thick silica waveguide bonding with a silicon
wafer, as it is reasonable to expect, given the high refractive in-
dex of the silicon. Thus the silicon pillar acts as a full absorber,
consistently with the model presented here. On the other hand,
high-Q regular modes living inside the toroidal part, whose
circular cross section has diameter of 5 μm, do not leak into the
silicon pillar and therefore are not directly affected by the pillar
size. Figure 5(c) illustrates the numerical simulation of a regu-
lar TE mode, that is confined in the toroidal region. Due to the
free-space propagation, the laser beam can only enter the cavity
with a relatively large angle of incidence, which results in
smaller angles of refraction into the resonator, and of incidence
with its boundary at the next collisions. As a consequence,
the laser beam only directly excites the chaotic cavity modes
localized in the central region of the cavity, which in turn
couple with the regular modes localized in the outer toroid via
dynamical tunneling, consistently with the model of Sec. II.

The dependence of the transmission spectra on the pillar
size is shown in Fig. 6. When the pillar approaches the inner
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FIG. 6. Normalized transmission and top-view optical images of
the cavity with r � 0.81 [(a) and (e)], 0.77 [(b) and (f)], 0.70 [(c) and
(g)], 0.64 [(d) and (h)]. Inset of (a) shows background noise. Insets
of (b)–(d) show the high-Q modes. Reflection of the silica-to-silicon
interface results in a brighter color for the silicon pillar in the optical
image (boundary shown by red dashed curves). Scale bar is 50 μm.
Adapted from Ref. [38].

edge of the toroid [Figs. 6(a) and 6(e), r � 0.81], no high-Q
regular modes are observed in the spectrum, since most of
the probe laser field in the cavity radiates into the silicon and
cannot tunnel to couple with high-Q regular modes. As we
gradually reduce the size of the pillar [Fig. 6(f), r � 0.77],
increasingly many high-Q modes appear in the spectrum
[Fig. 6(b)]. When the absorber-to-cavity ratio r is small enough
[Figs. 6(g) and 6(h), r � 0.7], the transmission no longer
changes sensibly [Figs. 6(c) and 6(d)], and the number of
high-Q modes in the spectrum also stabilizes.

It is noted that the high-Q regular modes are easily
recognized even when the coupling efficiency is low, because
linewidths coming from noise are typically orders of magni-
tude wider than those of the high-Q resonances in the trans-
mission spectrum, as shown in the insets of [Fig. 6(a) and 6(b)].
That is to say, nearly all the existing high-Q modes are
conspicuous in the spectra and can be detected.

V. STATISTICS OF CHAOTIC RESONANCES

As anticipated, we use the transmission spectra to test the
theory, by counting the excited high-Q regular modes for

TABLE I. Parameters related to the best-fit of Eqs. (25) and (29)
to the data, and to the experimental conditions. Here γ is expressed
in units of T −1, with T � 3 × 10−13 s Poincaré time.


̃ γ η λ (nm) M χ 2

6 × 10−5 0.01 4.2% 630 40 4
2 × 10−4 0.015 4.2% 1550 20 1.6
6 × 10−4 0.014 6.0% 630 40 3.1
10−3 0.017 6.0% 1550 20 1.1
2.4 × 10−4 0.017 11.7% 1550 50 0.4

different sizes of the silicon pillar. A polarization controller
is used to alternatively excite TE or TM modes, which
are collected by the photon receiver, and read from the
transmission spectra. We single out and add up the modes
with high Q factors (Q > 105) for both polarizations, and
then multiply the result by the ratio of free-spectral range to the
range of wavelengths swept by the laser beam [for example,
that is 0.74/(639–637) for visible light]. Since TE and TM
modes are not perfectly orthogonal to each other in the real
microcavity, some may be counted twice, which is the main
source of uncertainty in our data.

Based on the assumption (discussed in Sec. VI) that the
number of regular modes excited via dynamical tunneling is
proportional to the probability of excitation of a single regular
mode, given by Eq. (17), we henceforth test all the predictions
presented in the theoretical sections, and plug Eqs. (25),
Eq. (22), and Eq. (23) respectively into the expectation

nreg = κ
n2

γ

(
 + nγ )2
(29)

for the counted high-Q resonances.

A. Classical model

We start with the classical model. Equation (25) is plugged
into Eq. (29) and fitted to the data via the parameters 
̃, γ ,
up to an overall multiplicative constant. The total number of
chaotic states is estimated theoretically as M � A/heff (A
area of the chaotic phase space we consider). The results are
shown in Fig. 7, with details in Table I. The classical prediction

FIG. 7. Dots: number of high-Q regular modes (nω) observed in
the transmission spectra of the microcavity coupled to infrared light,
as a function of rescaled absorber-to-cavity ratio ξ . Blue dashed curve:
best fit of the classical prediction (25) [together with Eq. (29)]. Left:
η = 11.7%; right: η = 6%. Here sin θc � 0.69 and sin θth = 0.6.
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TABLE II. Lower and upper bounds for the typical Ehrenfest time
(in units of Poincaré time) of the chaotic states of microcavities with
different deformation factors, coupled to either infrared or visible
light, in comparison with the average γ −1

Class coming from Table I, and
γ −1

Weyl coming from Table IV.

η λ (nm) τmin
Ehr τmax

Ehr γ −1
Class γ −1

Weyl

4.2, 6% 630 6.5 14 83 7.4
4.2, 6% 1550 15 25 63 6.3
11.7% 1550 10 14 59 5.3

appears to fit the data rather well, overall. The statistical
test of χ2 [60] evaluates the average discrepancy between
expectations [nγ,Class(ξi)] and observations (nγ,i), divided by
the experimental errors σi , in d degrees of freedom:

χ2 = 1

d

∑
i

[nγ,i − nγ,Class(ξi)]2

σ 2
i

. (30)

Here we generally obtain χ2 ≈ 1, indicating that the extent
of the match between observations and estimates is in accord
with the error variance. However, in order for this model to
be accurate, all the chaotic states indirectly detected by the
experiment should decay within Ehrenfest time, which seems
unlikely, in principle. The minimum decay time of the chaotic
modes is determined from the best fits as γ −1, and it can be
compared with the Ehrenfest time (we should find τEhr > γ −1),
with the latter estimated in terms of the laser wavelength,
the dimensions of the cavity, the Lyapunov exponent of
the classical dynamics, and the size of the absorber (see
Appendix B for details). In this regard, the absorber-to-cavity
ratio ξ varies within a certain range, thus we estimate upper
and lower bounds for τEhr in units of the Poincaré time T , as
summarized in Table II, for cavities of different deformations,
coupled to either visible or infrared light. As we can see,
the estimated Ehrenfest time of the rays in the microcavity
is always significantly shorter than the minimal escape time
γ −1, although of the same order of magnitude. That suggests
that the classical model for the statistics of the chaotic states
alone does not describe the experiment consistently with the
assumptions.

B. RMT and semiclassical predictions

Next, we validate (1) the RMT-based prediction (26), and
(2) the semiclassical expression (27), which we alternatively
plug into Eq. (29). The results are illustrated in Fig. 8
(details in Tables III and IV), for two microcavities of distinct
deformations, probed at visible and infrared wavelengths.

In the RMT-based approach we have two fitting parameters,
γ and 
̃. Figure 8 shows overall agreement between the
experimental data and this theory, particularly in the infrared
band and at large deformation. However, the purely RMT
model fails to capture the tail of the data at larger sizes of
the absorber in the experiments with visible light, where the
χ2 significantly exceeds the optimal value of unity.

After that, the semiclassical correction (27) is tested, using
the finite time Lyapunov exponent μ̂ evaluated by direct
iteration, over a short enough time for the dynamics to be

still hyperbolic (cf. Sec. III C). In addition, we still have
the estimated parameter M and the fitted parameters γ and

. This expression is found in better agreement with the
experimental data (χ2 ≈ 1) than the RMT-based estimate at
smaller deformation and in the visible light band, where the
two predictions differ the most due to the smaller μ̂ (cf. Fig. 3).
Specifically, the semiclassical theory accounts for the tail of the
curve, that corresponds to the microcavity having the largest
openings and thus with the maximum number of instantaneous
decay states, where the semiclassical correction is important.

Similarly to the classical model, we check whether the
fitted values of the parameter γ for the RMT and semiclassical
expressions make physical sense. It is found that, typically,
γ � 0.15; now recall that γ −1 = τesc the minimum escape
time of the chaotic rays contributing to the excitation of the
regular modes, from which Q = 2πντesc ∼ 103, on average
(ν is the frequency of the laser beam). We find this estimate
consistent with the typical order of Q independently obtained
from ray-dynamics simulations (Fig. 9), which corroborates
the result from the analysis. By the same token, one can write
the linewidth of a resonance as Im � = − a

2c
γ , where again a

is the cavity radius and c the speed of light inside the silica. We
estimate on average Im � � −0.1, which is close to the median
value Im �̂ � −0.15 of the distribution of resonances found in
the numerical experiment of Ref. [32], where a stadium-shaped
microcavity of refractive index n = 1.5 was considered. At
last, but importantly, we compare γ −1 with the Ehrenfest time.
Equations (26) and (27) are based on the assumption τEhr <

γ −1, the opposite of the classical model’s. We find from our
fits (Tables III and IV) that τEhr ≈ γ −1 in all the realizations
of the experiments, and therefore the above assumption is
not always validated within the uncertainties. We believe at
the present stage the semiclassical prediction to be a more
accurate model for the statistics of the chaotic states than the
entirely classical one. All the same, a number of chaotic states
that escape within Ehrenfest time may also contribute to the
excitation of the regular modes, for our experiment to capture
that intermediate time scale at the border line between ray-
and purely wavelike modes. One could at that point combine
theories using the following expression [61]:

nγ = εnγ,Class + (1 − ε)nγ,Weyl, (31)

which would, however, add one presently unknown parameter
(ε) to the analysis.

VI. TUNNELING RATES AND STATISTICS
OF LINEWIDTHS

In this section, we discuss the proportionality between the
probability of excitation of a single regular mode and the
number of excited regular modes in the microcavity, which
we have estimated as

nreg = κ
n2

γ

(
 + nγ )2
. (29)

In doing so, we have implicitly neglected the ω dependence of
the excitation probability of a regular mode at resonance

|aω|2 = ε2
n2

γ

(
 + nγ )2
. (17)
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FIG. 8. Number of high-Q regular modes (nreg) observed in the transmission spectra of the microcavity (dots), as a function of rescaled
absorber-to-cavity ratio ξ . Blue dashed and red solid curves are respectively RMT- and semiclassical prediction best fits. (a), (b), (c) Infrared
light; (d), (e) visible light. Here sin θc � 0.69 and sin θth = 0.6. Insets: the area where the two curves differ most.

In order to better understand this approximation, let us restart
from the excitation amplitude

aω =
E0

∑
n fn

Vn

γn

[γω + i(ω − ω0)] + ∑
n

V 2
n

γn

. (5)

Here, we can regard the term

γ tot
ω = γω +

∑
n

V 2
n

γn

(32)

as the total (hence measured) linewidth [47], where the
first term γω indicates the intrinsic linewidth of the regular

mode, while the second, γ
dyn
ω ≡ ∑

n

V 2
n

γn
, represents the decay

rate into the chaotic modes. It is to be determined whether
the fluctuations ultimately due to the dependence of these
quantities on the frequency ω of the mode can be neglected,
say, to a first-order approximation.

In what follows, we first argue that such fluctuations are
small compared to the decay rates and therefore the linewidths
of the regular modes, based on a semiclassical treatment of
dynamical tunneling, and secondly we test the validity of the
approximation (29) with two independent experiments.

TABLE III. Parameters related to the best fit of Eqs. (26) and (29)
to the data and to the experimental conditions in Fig. 8. Here γ is
expressed in units of T −1, with T � 3 × 10−13 s Poincaré time.


 γ η λ(nm) M χ 2

0.025 0.1 4.2% 630 40 16
0.08 0.15 4.2% 1550 20 3.2
0.07 0.11 6.0% 630 40 11
0.08 0.13 6.0% 1550 20 2
0.11 0.17 11.7% 1550 50 1.1

A. Action-based prediction of tunneling rates

The tunneling rates into the chaotic field of distinct regular
WGMs localized in the toroid of the microresonator, or
equivalently, in the top region of the phase portraits of Fig. 2,
vary with the momentum of the corresponding rays, as it can
be inferred from the expression for the penetration through a
potential barrier [62]

γ tun ∝ e− 2
h̄

∫ b

a
|p| dq . (33)

Intuitively, since the WGMs are confined in a narrow strip of
the phase space (cf. Fig. 2), the distributions of momenta of
the regular trajectories and of their tunneling rates into the
chaotic sea are also supposedly quite narrow. For an estimate
of the variation of the tunneling rate of a regular mode with the
momentum, we need to be more accurate, and we may use an
expression derived in Ref. [63] for the tunneling rate out of a
stability island into the chaotic region of a mixed phase space

γ dyn
ω = c√

1 − Sω

e
− 2Areg

heff
{√1−Sω−Sω ln( 1+√

1−Sω√
Sω

)}
, (34)

where c is a constant, while Sω = A−1
reg

∮
pdq is the quantized

action of the classical orbit corresponding to the regular mode

TABLE IV. Parameters related to the best-fit of Eqs. (27) and (29)
to the data, and to the experimental conditions in Fig. 8. Here γ and
μ are expressed in units of T −1, with T � 3 × 10−13 s Poincaré time.


 γ η λ (nm) M μ χ 2

0.24 0.12 4.2% 630 40 0.05 6.9
0.28 0.16 4.2% 1550 20 0.05 1.5
0.55 0.15 6.0% 630 40 0.05 4.8
0.54 0.16 6.0% 1550 20 0.05 0.6
0.73 0.19 11.7% 1550 50 0.1 0.5
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FIG. 9. Statistics of the quality factor for the chaotic rays in the
deformed microcavity, from a ray-dynamics simulation.

in exam, scaled by the area of the regular region of the phase
space Areg. In the present construction Sω < 1, which is also
true in our setting. Then, by Taylor-expanding the action, the
overall expression for the tunneling rate becomes

γ dyn
ω ≈ ce

− 2Areg
heff

{1+ Sω
2 ln Sω}

. (35)

FIG. 10. Dots: average linewidth of the excited regular modes
vs. their number from a free-space coupling experiment (cf. Fig. 6).
Each data point represents one experiment with a different size of
the silicon pillar. Solid line: best-fit curve of Eq. (41). (a) η = 4.2%,
λ = 635 nm, with fitting parameters γreg = 419 MHz, and κ = 78.
(b) η = 6%, λ = 635 nm, γreg = 378 MHz, and κ = 120.5.

At this point, one can compute with some algebra the
differential

dγ dyn
ω ≈ −γ dyn

ω

Areg

heff
ln Sω dSω, (36)

and thus an estimate for the relative error of the tunneling rate
with the change in action

�γ
dyn
ω

γ
dyn
ω

≈ −Areg

heff
ln Sω�Sω. (37)

Recalling the definition of action, and, in particular, that the
WGMs in the microcavity are supported on regular orbits
in the upper part of the phase space that closely follow the
boundary, where the momentum p is almost constant along
each trajectory, we may write the change in action as

�Sω � 2π�p

Areg
, (38)

whence the estimate �γ
dyn
ω

γ
dyn
ω

∼ 10−1 in our experimental condi-
tions.

B. Statistics of the regular modes and their linewidths

The expression

γ tot
ω = γω +

∑
n

V 2
n

γn

� γreg + nγ

〈
V 2

n

γn

〉
(39)

indicates that γ tot
ω increases with nγ . We shall now neglect the

dependence on ω, and derive an expression for γ tot
reg in terms

of the number of regular modes nreg, to be tested with an
experiment. Let us first write nγ as a function of the observed
quantity nreg, by solving the quadratic equation (29)

nγ = 

nreg + √

κnreg

κ − nreg
. (40)

Recalling the definition 
 = γω

〈V 2
n /γn〉 , we have

γ tot
reg = γreg

[
1 + nreg + √

κnreg

κ − nreg

]
. (41)

We may now fit this prediction to the data in the free-space
coupling experiment, that is the number of detected high-Q
modes, and their linewidths. Figure 10 shows that the data
points representing the average linewidths of the regular modes
do follow the trend predicted by Eq. (41).

Although the fluctuations can be significant here
[Fig. 10(b)], overall quantitative consistency between the
proposed model and the data is definitively found through
an auxiliary experiment, illustrated in Figs. 11(a) and 11(b),
and described as follows. The WGMs are excited directly (no
excitation of chaotic modes) through a tapered fiber [64]. The
silicon pillar attached to the microtoroid has largest size, so that
dynamical tunneling is inhibited and no whispering-gallery
mode can be excited with the free-space coupling [Fig. 11(c)].
Measuring linewidths of the detected modes results in a quality
factor Qreg typically of the order of 106–107.

We now compare this value with the average fitting
parameter γreg = 399 MHz of Eq. (41) to the data of Fig. 10,
which is related to the average intrinsic Qreg factor of the
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FIG. 11. Normalized transmission and top-view images of the
cavity coupled by fiber taper [(a) and (b); notice the fiber beside
the cavity] and free-space laser beam [(c) and (d)]. The resonances
in (a) have Q factors typically of the order of 106–107. Here the
absorber-to-cavity ratio is r � 0.83.

WGMs as Qreg = 2πν/γreg � 5 × 106, consistently with the
outcome of the fiber-taper experiment.

Thus, the overall enlargement of the average linewidths
with the number of observed regular modes supports the
approximations leading to Eq. (29).

VII. CONCLUSION AND DISCUSSION

We count statistics of chaotic resonances in a deformed
optical microcavity by the sole experimental detection of high-
Q regular modes, using the coupling between regular and
chaotic modes, which occurs via dynamical tunneling.

Being a priori unaware of the typical escape time of the
chaotic modes that effectively contribute to the excitation of
the regular modes, we use the experimental data to validate:
(1) an entirely classical model, (2) a RMT-based, purely
statistical prediction, which is independent of system-specific
properties, and, finally, (3) a semiclassical correction to
(2), which does depend on the Lyapunov exponent of the
chaotic dynamics. We find theory (3) in the best agreement
with the observations, particularly when a microcavity of
lower deformation factors is coupled with visible light, while
prediction (2) also proves adequate when working in the
infrared.

The estimation of the Ehrenfest time of quantum-to-
classical correspondence from the experimental parameters
plays a key role in framing the time scale of the decay (or
typical linewidth) of the chaotic states (resonances). The fastest
escape occurs around Ehrenfest time, and generally within the
average time of transition of the decay of correlations from
exponential to algebraic, so that the classical description of
the dynamics as fully chaotic seems appropriate.

On the other hand, accounting for the long-lived chaotic
resonances does not seem to be as straightforward. Specif-
ically, the effects of partial transport barriers, as well as
the “stickiness” along KAM tori and stability islands are
relegated to the fitting parameters in the current model. The
correct detection and modeling of long-lived resonances are
therefore primary issues to be addressed by future work,
especially in perspective of a test of fractal Weyl law at

optical frequencies. Other challenges include the possibility
of estimating and measuring the amplitude of the regular-to-
chaotic mode coupling, as well as developing a more refined
prediction for the excitation of the regular modes.
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APPENDIX A: RESCALING THE LYAPUNOV EXPONENT

The classical estimate of the prefactor MN−1/μ̂τd involves
Ehrenfest time, defined for open systems as [46]

τEhr = 1

μ
log

τH

τd

. (A1)

Here μ is the Lyapunov exponent of the closed system, τd is
the mean dwell time, while τH is the Heisenberg time

τH = h

�E
, (A2)

with �E mean level spacing, that is average distance (dif-
ference) bewteen consecutive energy levels. We know, on
the other hand, that E = hν, and we may therefore express
Heisenberg time in terms of the frequency spacing

τH = 1

�ν
(A3)

and Ehrenfest time as

τEhr = 1

μ
log

N

�ϒ
. (A4)

Here N is the number of open channels as we know, whereas
�ϒ = MT �ν, that is the mean frequency spacing times the
Poincaré time (to make it dimensionless), times the number of
states M . In plain words, �ϒ is the frequency range of our
modes in units of the Poincaré time. At this point we can still
write

τEhr = 1

μ̂
log N (A5)

as in Sec. II D, provided that

μ̂ = log N

log N − log �ϒ
μ. (A6)

Thus we have determined the rescaling to the Lyapunov
exponent, following the definition of the Ehrenfest time.

APPENDIX B: ESTIMATION OF EHRENFEST TIME

Let us start from the definition of the Ehrenfest time

τEhr = 1

μ
ln

τH

τd

, (B1)

with

τH = h

�E
= 1

�ν
, (B2)

τd = M

N
T, (B3)
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and T is the Poincaré time. For visible light, we observe about
100 WGMs in a range of wavelengths of about 10 nm, hence
an estimated mean spacing between consecutive regular modes
�λ ∼ 10−10. Then

�ν � c�λ

λ2
∼ 2 × 108 × 10−10

62 × 10−14
= 5 × 1010 Hz, (B4)

while

T � a

2c
∼ 6 × 105

2 × 108
= 3 × 10−13 s, (B5)

with a principal diameter of the microcavity. In that
way,

τEhr = 1

μ
ln

ξ

�νAT
, (B6)

where we took ξ � A
τd

(neglecting refraction into air), and
A = 2π (sin θmax − sin θth), area of the phase space available
to chaotic states above sin θth.
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