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Perturbation scheme for a fluxon in a curved Josephson junction
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The kink solution in the long Josephson junction is studied. The perturbation scheme of constructing the fluxon
solution in curved junction is formulated. The prediction from the perturbation scheme is compared with the
prediction that follows from the numerical studies of the complete field model.
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I. INTRODUCTION

For many years the quantum macroscopic systems have
attracted the attention of many researchers. The best-known
physical systems that (in sufficiently low temperatures) appear
in coherent states are quantum liquids He3 and He4, atomic
Bose-Einsten condensate and superconducting materials. The
effective description of these systems is given by the nonlinear
solitonic equations [1]. The quantum properties of these
systems are used in many technical applications. The leading
role in this field is played by superconductors. In particular,
superconductors can be arranged in a device (that is, not
simply connected system) known as a Josephson junction.
Due to the fact that in a superconducting state each electrode
is a strongly correlated system, they can be described by the
many-particle wave functions. The modulus of such function
describes the square root of the density of the Cooper pairs.
Because the thickness of the dielectric layer is very small,
those two electrodes are not independent quantum systems.
The macroscopic wave functions overlap and the phases of
the wave functions start to play a nontrivial dynamical role.
The main effect, which is connected with overlapping of
the wave functions, is tunneling of Cooper pairs from one
to the other superconducting electrode. This phenomenon
was first predicted by Josephson [2] and then confirmed
experimentally by Anderson and Rowell [3]. The leading
variable that describes the dynamics of this system is the
gauge-invariant phase difference φ. The dynamical properties
of this variable are described by the sine-Gordon equation [4].
The properties and applications of this model are described in
many texts [5]. The properties of the Josephson junction are
modified in the curved junctions. The studies of this system
were performed in the framework of the geometrical formalism
used in many branches of science [6] and the final outcome of
these considerations concern constant and position-dependent
curvatures as well [7]. In these papers the junction is repre-
sented by a curve or a surface with nonzero external curvatures.

In the literature there is also other interesting approach
[8] concerning curved two-dimensional junctions. In this
approach, the junction is represented by the flat surface (the
surface with zero external curvatures) but curvature effects
follow from the curvature of the boundaries of this system.

In the present paper we consider the modified sine-Gordon
equation that describes the dynamics of the gauge-invariant
phase difference in the curved junction with slowly varying
curvatures. In the next section we construct a perturbation
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scheme that provides an approximate description of the fluxon
in the curved junction. Section III contains numerical studies
of the gauge-invariant phase difference φ for the static kink.
In this section we use the relaxation method in order to obtain
the static kink profile [9]. The same solution is obtained in
the framework of the perturbation scheme in Sec. IV. The last
section contains remarks.

II. FLUXON IN CURVED JOSEPHSON JUNCTION

The dynamics of the fluxon in case of slowly varying
curvature is described by the modified sine-Gordon equation

∂2
t φ − ∂s(F∂sφ) + sin φ = 0, (1)

where the function F(s) contains information about the
curvature of the considered space and has the following form:

F(s) = 1

aK(s)
ln

[
2 + aK(s)

2 − aK(s)

]
. (2)

Here K(s) is the curvature of the central curve of the junction
and a is thickness of the dielectric layer. The curvature-
dependent function F is presented in Fig. 1 as a function
of the modulus of the curvature. The physical regime of the
variable |aK(s)| is limited to the interval [0,2). This restriction
on curvatures follows from the fact that for presumed constant
thickness of the dielectric layer, for bigger curvatures, one of
the electrodes disappear [9]. In the static case the field Eq. (1)
can be written in a simpler form:

∂s(F∂sφ) = sin φ. (3)

This equation, in particular for the case of constant curvature,
has a kink solution with the same profile like a kink in flat space
but where its width is magnified by the curvature-dependent
factor 1/

√
F , i.e.,

φ(s) = 4 arctan e
1√
F (s−s0)

. (4)

The first derivative of this function with respect to the space
variable represents distribution of the magnetic flux in the
junction. This distribution for the flat (gray contour) and curved
space (black contour) are compared in Fig. 2. The existence of
the kink solutions in the curved case for nonconstant curvatures
follows from the Bogomolny argument [9]. In the case of
nonconstant curvatures, i.e., for F �= const, the solutions can
be constructed with the help of perturbation scheme. First,
in order to formulate this scheme, we have to identify the
perturbation parameter. In a realistic junction we can expect
that the thickness of the superconducting electrode is not less
than the curvature radius of the junction. On the other hand, in
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T. DOBROWOLSKI AND A. JARMOLIŃSKI PHYSICAL REVIEW E 96, 012214 (2017)

|aK(s)|

0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0

FIG. 1. The curvature-dependent function F as a function of
modulus of dimensionless quantity aK .

such a junction the superconducting electrode is much thicker
than the dielectric layer and, therefore, even at positions where
the curvature radius is minimal we can expect Rmin � a. In
these circumstances we can identify the natural perturbation
parameter as follows: ε ≡ a

Rmin
. Let us notice that the dimen-

sionless quantity aK(s) = a
R(s) = a

Rmin

Rmin
R(s) can be represented

as the product of the perturbation parameter and limited
function g(s), i.e., aK(s) = a

Rmin
g(s) = εg(s). Next we expand

the function F for small curvatures, i.e., for small εg(s),

F(s) = 1

εg(s)
ln

[
2 + εg(s)

2 − εg(s)

]
=

∞∑
n=0

ε2ng2n

22n(2n + 1)

≈ 1 + 1

12
ε2g2 + 1

80
ε4g4 + · · · . (5)

Similarly, we can expand gauge-invariant phase difference
with respect to perturbational parameter ε,

φ(t,s) =
∞∑

n=0

εnφn(s,t)

= φ0(t,s) + εφ1(t,s) + ε2φ2(t,s)

+ε3φ3(t,s) + · · · . (6)

Additionally, for the sake of convenience, we separate the field
φ on the zero-order term and perturbational correction ψ , i.e.,

φ = φ0 + ψ, ψ =
∞∑

n=1

εnφn(s,t). (7)
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FIG. 2. The first derivative of the field variable φ for the kink
solution in the flat junction (gray line) and in the curved junction
(black line). The curvature in this plot is aK = 1.95.

The perturbational scheme of this type was applied in the
series of papers connected with the solitonic physics [10,11].
According to this scheme, we separate the equation of
motion into different orders of expansion in the perturbational
parameter. We put the expansions (5), (6), and (7) into the
equation of motion (1) and obtain:

∞∑
n=0

εn∂2
t φn − ∂s

( ∞∑
n=0

ε2ng2n

22n(2n + 1)

∞∑
k=0

εk∂sφk

)
+ sin(φ0 + ψ) = 0. (8)

Next, we rearrange the second term in Eq. (8),

∞∑
n=0

εn∂2
t φn −

∞∑
n=0

εn

n∑
m=0

1

22m(2m + 1)
εm ∂s(g

2m∂sφn−m)

+ sin(φ0 + ψ) = 0. (9)

From this expansion we extract the second space derivatives of
the subsequent orders of the gauge-invariant phase difference:

∞∑
n=0

εn
(
∂2
t φn − ∂2

s φn

)
−

∞∑
n=1

εn

n∑
m=1

1

22m(2m + 1)
εm ∂s(g

2m∂sφn−m)

+ sin(φ0 + ψ) = 0. (10)

We expand the sine around the zero-order component of the
field φ,

sin(φ0 + ψ) = sin φ0

∞∑
n=0

(−1)n

(2n)!
ψ2n

+ cos φ0

∞∑
n=0

(−1)n

(2n + 1)!
ψ2n+1, (11)

where the nth power of the auxiliary field ψ can be expressed
as a function of the appropriate products of the components
of the field φ,

ψn =
∞∑

kn=n

εkn

kn−1∑
kn−1=n−1

kn−1−1∑
kn−2=n−2

· · ·
k3−1∑
k2=2

k2−1∑
k1=1

φkn−kn−1φkn−1−kn−2 · · ·φk2−k1φk1 . (12)

In Eq. (11), we extract the sine term and the cosine terms in
all orders of expansion starting from the first order,

sin(φ0 + ψ) = sin φ0 + sin φ0

∞∑
n=1

(−1)n

(2n)!
ψ2n

+ cos φ0

∞∑
n=1

εnφn

+ cos φ0

∞∑
n=1

(−1)n

(2n + 1)!
ψ2n+1. (13)
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If we take into account the last formula, then Eq. (10) can be
transformed to the form(

∂2
t φ0 − ∂2

s φ0 + sin φ0
) +

∞∑
n=1

εnL̂φn

= sin φ0

∞∑
n=1

(−1)n+1

(2n)!
ψ2n

+ cos φ0

∞∑
n=1

(−1)n+1

(2n + 1)!
ψ2n+1

+
∞∑

n=1

εn

n∑
m=1

1

22m(2m + 1)
εm ∂s(g

2m∂sφn−m), (14)

where L̂ is the following linear operator:

L̂ ≡ ∂2
t − ∂2

s + cos φK. (15)

From Eq. (14), we extract the zero-order term of expansion of
the field equation:

∂2
t φ0 − ∂2

s φ0 + sin φ0 = 0. (16)

This equation coincides with the sine-Gordon equation in the
flat space. The zero-order equation provides the solution that
is a base for further perturbation. In our case, we choose the
stationary kink (with unit topological charge). This choice
allows us to determine the influence of the curvature on the
kink motion and, moreover, the kink profile. In the lowest
order of expansion, we have the stationary kink solution which
satisfies the only nonlinear equation in the whole scheme, i.e.,
the zero-order equation

φ0(t,s) = φK (s − vt) = 4 arctan[eγ (s−s0−vt)], (17)

where γ = 1√
1−v2 and v is the kink speed. If we take into

account the zero order (16), then Eq. (14) simplifies as follows:

∞∑
n=1

εnL̂φn

= sin φ0

∞∑
n=1

(−1)n+1

(2n)!
ψ2n + cos φ0

∞∑
n=1

(−1)n+1

(2n + 1)!
ψ2n+1

+
∞∑

n=1

εn

n∑
m=1

1

22m(2m + 1)
εm ∂s(g

2m∂sφn−m).

(18)

Next, we enumerate the last term in the above formula,

∞∑
n=1

εnL̂φn

= sin φ0

∞∑
n=1

(−1)n+1

(2n)!
ψ2n + cos φ0

∞∑
n=1

(−1)n+1

(2n + 1)!
ψ2n+1

+
∞∑

n=1

2n∑
m=n+1

εm 1

22(m−n)[2(m − n) + 1]

× ∂s[g
2(m−n)∂sφ2n−m]. (19)

If we use the formula (12) then we can extract the subsequent
orders of expansion in Eq. (19). As a result, we obtain
the infinite number of equations for the functions φn. For
example, in the first order of expansion (n = 1) we obtain the
following equation:

L̂φ1(t,s) = 0. (20)

All equations obtained in higher orders of expansion (n > 1)
are also defined by the same linear operator,

L̂φn(t,s) = fn(φ0,φ1, . . . ,φn−1). (21)

Let us notice that all obtained equations are nonhomogenous
but linear because the functions fn do not depend on φn.
If we put the solutions of the equations of lowest orders
{φ0, φ1, . . . ,φn−1 } into fn, then this function becomes some
explicit function of t and s variables. For example, in the first
orders of expansion these functions have the form

f1 = 0, f2 = 1
2 (sin φ0) φ2

1 + 1
12 ∂s(g

2∂sφ0), (22)

f3 = (sin φ0) φ1φ2 + 1
6 (cos φ0) φ3

1 + 1
12 ∂s(g

2∂sφ1), (23)

and

f4 = (sin φ0)
(
φ1φ3 − 1

24 φ4
1 + 1

2 φ2
2

)
+ 1

2 (cos φ0)φ2
1φ2 + 1

12 ∂s(g
2∂sφ2) + 1

80 ∂s(g
4∂sφ0).

(24)

This perturbation scheme is well formulated in the sense that
if we know the Green function for the operator L̂, then the
subsequent corrections can be found by integration of the
functions fn with this Green function. The Green function
for the operator L̂ has been studied in several papers con-
nected with nonlinear Klein-Gordon equations [12]. For the
completeness of the presentation we recall the main results. At
the beginning, let us notice that for the stationary kink (17) the
last term defining the operator can be transformed as follows:

cos φK = 1 − 2sech2(s − s0 − vt).

In all orders of expansion, we have to solve the differential
equation of the form

L̂φ = ∂2
t φ − ∂2

s φ + [cos φK (s − vt)]φ = f (t,s). (25)

This equation simplifies in the comoving coordinates which,
in the case of stationary kink, are related with the original
coordinates by the Lorentz boost

t̄ = γ [t − v(s − s0)], s̄ = γ (s − s0 − vt).

The linear operator in new coordinates has a simplified
potential,

L̂φ = ∂2
t̄ φ − ∂2

s̄ φ + [cos φK (s̄)]φ = f (t̄ ,s̄). (26)

The Green function for this operator is defined by the equation

L̂G = δ(t̄ − t̄ ′)δ(s̄ − s̄ ′). (27)

A particular solution of initial value problem defined by
Eq. (26) and initial conditions imposed on φ and its first time
derivative at t = 0 can be found from the formula

φ(t̄ ,s̄) =
∫ ∞

0
dt̄ ′

∫ +∞

−∞
ds̄ ′G(t̄ ,s̄; t̄ ′,s̄ ′)f (t̄ ′,s̄ ′), (28)
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where the Green function has the explicit form

G(t̄ ,s̄; t̄ ′,s̄ ′) = 1

8πiγ 2
(t̄ − t̄ ′)θ (t̄ − t̄ ′)sechs̄sechs̄ ′

∫ +∞

−∞
dkeik(s̄−s̄ ′)

×
{

[tanh s̄ − iγ (k + vω)][tanh s̄ ′ + iγ (k + vω)]

ω(vk + ω)2
eiω(t−t ′)

− [tanh s̄ − iγ (k − vω)][(tanh s̄ ′ + iγ (k − vω)]

ω(vk − ω)2
e−iω(t−t ′)

}
, (29)

where ω and k are related by the dispersion relation ω = √
1 + k2.

III. STATIC KINK ON CURVED
BACKGROUND—NUMERICAL SOLUTION

In this section we will obtain the static kink on a curved
background. First, we fix the position-dependent curvature.
We know that the curvature of the junction corresponds to the
existence of some effective potential that affects the kink mo-
tion [13,14]. The kink can be static only in the local minimum
of this potential. Moreover, we can always choose the system
of coordinates in a way where this minimum coincides with the
origin of the system of coordinates. We consider the following
example of the position-dependent curvature:

aK(s) = A

1 + 5(s − 1)2
+ A

1 + 5(s + 1)2
. (30)

Due to symmetry of this function with respect to the origin of
the coordinate system, the natural candidate for the rest posi-
tion of the static kink is s0 = 0. During the numerical studies
we use the field equation equipped in the dissipation term

∂2
t φ + γ ∂tφ − ∂s(F∂sφ) + sin φ = 0. (31)

According to the relaxation method, we choose the initial
condition that is sufficiently close to the expected final
configuration. In our case, this initial configuration has a form
of the static kink, characteristic for flat space, located in the
origin of the coordinate system. The presence of the dissipation
term is responsible for removing some part of the energy from
the system and tendency of the field to reach the configuration

s
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FIG. 3. The static kink in the curved junction. The dashed gray
line represents the curvature of the junction and the black continuous
line represents the space gradient of the gauge-invariant phase
difference. The configuration was stabilized before the instant t = 10
and no change was observed until t = 100. The parameters chosen in
this plot are the following A = 1.9, γ = 5.

with minimal energy. This is a reason why the static sector
of the model (31) is identical with the static sector of the
model (1). We applied the implicit backward differentiation
formulas (BDF) procedure with the maximum size of a single
step limited to 0.1. The effective accuracy is fixed at the level of
three digits. In order to emphasize the difference between the
kink profile in the flat and curved junctions we consider the first
space derivative of the gauge-invariant phase difference. More-
over, this quantity represents distribution of the magnetic flux
in the junction. In the numerics the amplitude of the curvature is
chosen as follows: A = 1.9. Additionally, we choose the dissi-
pation constant γ = 5. This value guarantees both quick dissi-
pation of the energy from the system and sufficiently quick evo-
lution of the field configuration. The final configuration in these
conditions became stable before t = 10. The shape of the final
configuration (its first space derivative) in Fig. 3 is represented
by black continuous line. The dashed gray line represents the
curvature of the junction. The static kink configuration in this
case is located in the origin of the coordinate system.

IV. STATIC KINK ON CURVED
BACKGROUND—APPROXIMATE SOLUTIONS

In case of static solutions the perturbational scheme is
defined by the equations of the form

L̂φn = −∂2
s φn + cos φK (s)φn = fn(t,s). (32)

The solutions of this equation and the Green function were
presented in a number of papers [10,15]. Here we use these
results. The effects of curvature in perturbational scheme first
appear in the second order because in the first order we have
f1 = 0 and therefore we approximate the solution by the
expansion

φ ≈ φ0 + εφ1 + ε2φ2. (33)

Let us recall that the φ0 is kink solution in a flat space and one
of solutions φ1 of the equation (32) represents translational
mode. Because we are interested in the static kink, we choose
the trivial solution φ1 = 0. The second function f2 in this case
simplifies to the term that solely depends on the curvature, i.e.,
f2 = 1

12 ∂s(g2∂sφ0). Let us also notice that the choice φ1 = 0
makes f3 = 0 and we obtain L̂φ3 = 0, see Eqs. (21) and (23).
This observation suggests that the proposed approximation
extends up to the third order. Due to clarity of presentation
and the physical meaning of the space derivative of the
gauge-invariant phase difference we consider expansion of
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FIG. 4. The space gradient of the gauge-invariant phase differ-
ence calculated from the perturbational scheme (gray line) and the
numerical solution obtained in the model (31) (black line). The figures
(a) A = 1, (b) A = 1.5, and (c) A = 1.9 correspond to different values
of the curvature parameter A.

the gradient of the field φ,

∂sφ ≈ ∂sφ0 + ε2∂sφ2. (34)

In Fig. 4, we perform comparison of the perturbational scheme
for three different values of the parameter A (i.e., for A =
1, A = 1.5, and A = 1.9) with the numerical results for the
same values of this parameter. The results of the perturbational
scheme are represented by the gray line. On the other hand, in
all figures the numerical results are represented by continuous
black line.

V. REMARKS

We formulated the complete perturbation scheme that
allows for description of the evolution of the kink in the
curved Josephson junction. The method relies on the infinite
number of equations. The first of the equations is the only
nonlinear equation in the scheme. The solution of this equation
is some field configuration being a solution in the flat space.
This configuration is modified due to curvature effects. The

other equations in the scheme are linear equations defined
by the same linear operator L̂. The Green function for this
operator is known in the explicit form. This knowledge makes
the scheme complete. In particular, this method provides
possibility to calculate the profiles of the static kinks. On
the other hand, in order to obtain the static kink profiles
in the curved junction, we used the relaxation method. The
numerical profiles obtained in this way were compared with the
profiles obtained in the framework of the perturbation scheme.
The results obtained in the second-order approximation are
compared with the numerical results based on the complete
field equation in curved space. This comparison shows good
agreement especially for small curvatures.

One of the most promising areas of application for the
Josephson device is rapid single flux quantum (RSFQ) elec-
tronics [16]. The digital information in these devices is carried
by magnetic flux quanta identified with the kink solution of
the sine-Gordon model. A particular role in this area can be
played by the curved Josephson junctions. On the base of
the modified sine-Gordon equation, several geometries were
identified which can be used in RSFQ electronic elements.
The first interesting shape is responsible for acceleration
or deacceleration of fluxons. This element can work in
RSFQ circuits as boosters [17]. The other geometry enables
separation of fast from slow fluxons. This element can work as
a discriminating element in RSFQ electronic devices. Finally,
the last identified shape may be used in storing binary data in
the form of fluxons [9,18].
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APPENDIX A: RELATION BETWEEN CURVATURE
AND THE SHAPE OF THE JUNCTION

As in the main text, we consider curves that are free of
torsion. In this case the curve is located in a single plane.
Moreover, in order to simplify description, we identify the
parameter s with the x variable. The vector field in this case
has the form

	X(x) = x	ex + f (x)	ex.

The normal vector to the curve

	n = nx(x)	ex + ny(x)	ey

is fixed by the orthogonality and normalization conditions

	n · 	X′(x) = 0, 	n2 = 1,

where 	X′(x) = ∂x
	X is vector tangent to the curve. The

components of the normal vector are as follows:

nx = − f ′(x)√
1 + f ′(x)2

, ny = 1√
1 + f ′(x)2

.

Finally, the curvature of the considered curve is a simple
function of the derivatives of the function f (x),

K(x) = 	n · 	X′′ = f ′′(x)√
1 + f ′(x)2

.

012214-5



T. DOBROWOLSKI AND A. JARMOLIŃSKI PHYSICAL REVIEW E 96, 012214 (2017)

FIG. 5. The shape of the junction that corresponds to the curvature
(30). The dashed line represents the curvature. The gray region
represents the dielectric layer.

Let us notice that the last formula can be used in order to
calculate the shape function f (x) whenever we know the
explicit form of the curvature K = K(x), i.e.,

f ′′(x) − K(x)
√

1 + f ′(x)2 = 0.

In particular, for considered in this paper curvature (30) the
shape of the junction, i.e., function f (x) is presented in Fig. 5.
For better visualization, we placed the dashed contour that
represents the curvature. The thickness of the dielectric layer
of the junction is represented by the gray strip.

APPENDIX B: IMPACT OF THE EXTERNAL BIASED
CURRENT ON THE CONFINED FLUXON

The other issue is the problem of the stability of the
multipeak structure demonstrated, for example, in Fig. 3. The
effective dynamics of the fluxon in the curved junction was
studied in Ref. [14], where it was shown that the curvature of
the junction corresponds to the effective potential experienced
by the fluxon. According to the conclusions of this paper,
the two curvature peaks form the effective potential barrier
that confines the fluxon and deforms its profile. In the present
section we check whether this observation remains true if the
system is subject to an external biased current flow. We will
study the system described by the following equation:

∂2
t φ + γ ∂tφ − ∂x(F∂xφ) + sin φ = J.

First, we checked the relaxation time, i.e., the time needed to
relax from initial configuration having the form of the free
kink configuration (gray line in Fig. 2) to the configuration
deformed by the presence of the curvatures in the system
(black line in Fig. 3). According to performed simulations,
in the case of γ = 1 and J = 0, the final configuration is
reached at t = 8 ≡ τ . We use this result as the relaxation
time of the considered system for γ = 1. Here, we lowered
the value of the dissipation parameter (in comparison to the
previous simulations) in order to increase mobility of the
kink. As a result of the performed studies, we observed that
the time scale of the kink motion is much longer than the
relaxation time in the system and therefore the behavior of
the fluxon in the presence of the external current shall be
approximated by the method applied in the previous sections.
Having the knowledge of the relaxation time τ , we performed
simulations for several values of the J parameter. Here we

FIG. 6. The final shape of the gradient of the gauge-invariant
phase difference φ at t = 1000. The dashed line represents the
curvature of the junction.

assumed that the normalized current density J is constant.
In all numerical experiments we presumed the curvature in
the form of (30) and, moreover, A = 1.9. The calculations
confirmed that there are two regimes of the | J | parameter. In
the first regime the kink is confined between curved regions
of the junction (see Fig. 6). The configuration presented in
this figure corresponds to | J |= 0.2. In agreement with our
expectations the kink structure was stabilized just after the
relaxation time τ . The shape of this configuration is slight
deformation of the configuration presented in Fig. 3. Next we
observed that the deformed kink preserves its form without
any changes. Figure 6 presents the kink profile at t = 1000.

In the second regime, the kink escapes from the region
located between two curvatures and therefore does not form the
static structure. In this regime we can expect that the relaxation
method provides merely qualitative behavior of the system.
The kink in this case is pushed out from the confining region

FIG. 7. The evolution of the fluxon. (a) The fluxon leaves the
potential hole at t = 10. (b) Outside the curved region of the junction
the fluxon became free t = 25.
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of the junction. Figures 7(a) and 7(b) show the evolution of
the gradient of the order parameter φ for instants exceeding
the relaxation time. The value of the external biased current in
these plots is | J |= 0.5. Figure 7(a) shows the configuration at
t = 10. One can see that magnetic flux of the fluxon is pushed

out from the curved region of the junction. In Figure 7(b) the
profile is typical for the free kink. This configuration represents
the fluxon at instant t = 25.

More accurate studies of this subject will be continued in
future work.
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A. Martens, and E. E. Rożko, Acta Phys. Pol. B 41, 165
(2010); P. I. Marinov and I. M. Mladenov, J. Geom. Symmetry
Phys. 27, 93 (2012); N. Ogawa, Phys. Rev. E 81, 061113
(2010).

[7] T. Dobrowolski, Ann. Phys. (N. Y.) 327, 1336 (2012); A.
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