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We consider a mean-field model of coupled phase oscillators with random heterogeneity in the coupling
strength. The system that we investigate here is a minimal model that contains randomness in diverse values of
the coupling strength, and it is found to return to the original Kuramoto model [Y. Kuramoto, Prog. Theor. Phys.
Suppl. 79, 223 (1984)] when the coupling heterogeneity disappears. According to one recent paper [H. Hong, H.
Chaté, L.-H. Tang, and H. Park, Phys. Rev. E 92, 022122 (2015)], when the natural frequency of the oscillator in
the system is “deterministically” chosen, with no randomness in it, the system is found to exhibit the finite-size
scaling exponent ν̄ = 5/4. Also, the critical exponent for the dynamic fluctuation of the order parameter is found
to be given by γ = 1/4, which is different from the critical exponents for the Kuramoto model with the natural
frequencies randomly chosen. Originally, the unusual finite-size scaling behavior of the Kuramoto model was
reported by Hong et al. [H. Hong, H. Chaté, H. Park, and L.-H. Tang, Phys. Rev. Lett. 99, 184101 (2007)], where
the scaling behavior is found to be characterized by the unusual exponent ν̄ = 5/2. On the other hand, if the
randomness in the natural frequency is removed, it is found that the finite-size scaling behavior is characterized
by a different exponent, ν̄ = 5/4 [H. Hong, H. Chaté, L.-H. Tang, and H. Park, Phys. Rev. E 92, 022122 (2015)].
Those findings brought about our curiosity and led us to explore the effects of the randomness on the finite-size
scaling behavior. In this paper, we pay particular attention to investigating the finite-size scaling and dynamic
fluctuation when the randomness in the coupling strength is considered.

DOI: 10.1103/PhysRevE.96.012213

I. INTRODUCTION

Collective synchronization phenomena have been widely
explored via various models of coupled phase oscillators. In
particular, the Kuramoto model and its many variant models
have been mostly considered to understand the mechanism of
the synchronization behavior observed in diverse systems in
nature [1–14].

The models mostly contain the positive coupling (interac-
tion) between the oscillators, where the positive coupling can
be regarded as the reasonable one, based on the fact that the
attractive interaction is realistic and natural in most physical
systems. However, in some biological systems, not only the
positive interaction between the components in the system but
also the negative one can exist [15]. Considering that, there
have been some works on collective behavior in the systems
of coupled oscillators with mixed coupling of both positive
and negative interactions [11–14].

In addition to the positivity and negativity of the interaction,
the heterogeneity of the coupling strength is also worth being
considered, since the coupling strength in most real systems
may not be identical; rather, it may be diverse in values. Based
on these facts, in this paper, we consider the heterogeneity
of the coupling strength and explore how the diverse values
of the coupling strength affect the phase-synchronization
behavior. In particular, we focus on the effects of the “random”
heterogeneity of the coupling strength.

There have been previous works on the effects of random-
ness on collective synchronization [2,3,8–14,16]. In particular,
the unusual finite-size scaling behavior of the Kuramoto model
was reported in Ref. [3], where the finite-size scaling exponent
ν̄ = 5/2 was derived. On the other hand, if the randomness is
removed from the system, the finite-size scaling behavior is
found to be changed, showing another exponent, ν̄ = 5/4 [2].
The dynamic fluctuation has been also investigated, and the

exponent for the dynamic fluctuation is found to be also
changed by removing the randomness. Those findings raised
curiosity and led us to explore the effects of the randomness
on the finite-size scaling and dynamic fluctuation behavior in
the system, which is the main issue of this paper.

On the one hand, we might consider various types of
randomness: for example, randomness in the coupling strength
(which we study in this paper), randomness in natural
frequency, randomness in the delay of the coupling function,
and randomness in connection weights. Among those, the
randomness in connection weights might be regarded as some
kind of random coupling strength between the oscillators. In
fact, about that issue there have been some previous studies
[10,11], where the authors in the studies considered the random
constraints Jij distributed according to a Gaussian distribution
function and explored collective behavior of the system. In
particular, the authors of the paper reported a new type of
ordered state (in some sense glassy) that is characterized
by quasientrainment and algebraic relaxation. Interestingly,
instead of the usual synchronization-desynchronization tran-
sition some sort of “glassy” transition has been reported,
which is the effect of the randomness in the connection
or coupling weights. However, the works have been mostly
done by the numerics due to the difficulties in treating the
issue analytically; accordingly, further studies on the glassy
behavior are still required.

There exists another study that has worked on the ran-
domness in the delay of the coupling function [16], where
the authors have considered heterogeneous delays in the
coupling and explored how the heterogeneous delays affect
the cluster synchronization. The authors found that the parity
of heterogeneous delays plays a crucial role in determining
the mechanism of cluster formation, inducing a rich cluster
pattern.
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Also, there have some studies on the effects of the
randomness in the connection or link between the oscillators
[8], where the authors have paid attention to exploring the
effects by the connectivity or link disorder on the synchro-
nization transition. In particular, the case of complex networks
including scale-free networks with degree distribution given
by the power law P (k) ∼ k−λ has been considered, and the
nature of the synchronization transition has been investigated
in detail. According to the work, the finite-size scaling behavior
can be differently characterized depending on the degree
exponent: the finite-size scaling exponent is found to be
ν̄ = (λ − 1)/(λ − 3) for the region with 3 < λ < 4 and ν̄ =
(2λ − 5)/(λ − 3) for 4 < λ < 5, respectively. For the region
with large degree exponent (λ > 5), the finite-size scaling is
found to be same as that of the original Kuramoto model,
displaying ν̄ = 5/2, which is consistent with the findings
reported in Ref. [3]. This result can be acceptable as a
reasonable one, considering the fact that the region with high
degree exponent (λ > 5) corresponds to the mean-field regime.

In this paper, we consider the randomness in heterogeneous
coupling strength and pay attention to exploring how the ran-
domness affects the finite-size scaling behavior and dynamic
fluctuation in the system.

This paper consists of six sections. Section II introduces the
model we study in the current paper. In Sec. III, we explore
the phase-synchronization behavior in the system. The self-
consistency equation for the order parameter is derived, and
the synchronization transition is investigated. The dynamic
fluctuation of the order parameter is also examined in Sec. III.
The analysis on the finite-size scaling is presented in Sec. IV.
Section V is devoted to understanding the change of the finite-
size scaling exponent by investigating the sample-dependent
correction in the entrained oscillators. Section VI gives a brief
summary.

II. MODEL

We begin with the model system governed by

φ̇i = ωi + 1

N

N∑
j=1

Jj sin(φj − φi), i = 1, . . . ,N, (1)

where φi represents the ith oscillator’s state described by an
angle in [0,2π ). The ωi on the right-hand side of Eq. (1)
is the natural frequency of the ith oscillator, chosen from a
distribution function g(ω). For convenience, we take it as the
Lorentzian one given by g(ω) = �

π
1

ω2+�2 with zero mean and
width �. The Jj in Eq. (1) denotes the coupling strength of
the j th oscillator, chosen from another random distribution
function h(J ). We take the Gaussian distribution function
given by

h(J ) = 1√
2πσ 2

e−(J−μ)2/2σ 2
(2)

for convenience, where σ and μ denote the standard deviation
and the mean of h(J ), respectively. Note that ωi in Eq. (1)
is “deterministically” chosen from g(ω); thus, it does not
contain any randomness in it. Instead, the coupling strength
Ji is “randomly” chosen from h(J ); accordingly, it contains
randomness in it. We are here curious about the effects of the

randomness in Ji in the system with deterministically chosen
ωi , which is the reason why we take ωi and Ji like that.

In the model described as Eq. (1), each oscillator is assigned
its own coupling strength as well as its own natural frequency.
In particular, the coupling strength Jj can be either positive
(Jj > 0) or negative (Jj < 0), where the positive and negative
values can be regarded as the “attractive” and “repulsive”
interactions between the oscillators, respectively. We note
that the interaction is not mutually equal one between the
oscillators. In other words, the coupling strength from the ith
oscillator to the j th one can be different from that of the
j th oscillator to the ith one. In practice, in some biological
systems, such as neural networks with excitatory and inhibitory
neurons [15], such types of interaction can be more realistic.

The system with positive and negative coupling strength
was previously studied in Refs. [14,17], where the double-
δ distribution function such as h(J ) = pδ(J − 1) + (1 −
p)δ(J + 1) has been mostly considered, where p is the
probability that the oscillators have positive coupling strength.
In the previous studies, only two values of the coupling strength
have been taken for simplicity, and various interesting features
of the system have been reported. We here consider a variety of
random values for the coupling strength, by randomly choosing
the coupling strength from the Gaussian distribution given by
Eq. (2), and explore how the randomness in the heterogeneous
coupling strength affects the phase-synchronization transition
and the finite-size scaling behavior.

III. PHASE-SYNCHRONIZATION TRANSITION

In this section, we investigate the phase-synchronization
behavior, with particular attention to the possibility of the
synchronization transition and the critical behavior near the
transition. Collective synchronization has been conveniently
described by the complex order parameter Z defined as [1]

Z ≡ Rei� = 1

N

N∑
j=1

eiφj , (3)

where R measures the magnitude of the phase coherence
(synchronization), and � denotes the average phase (angle) of
the synchronized oscillators. On the one side, when the system
has random heterogeneity in the coupling strength, such as in
the present model given by Eq. (1), we can consider another
order parameter given by [17,18]

W ≡ Sei� = 1

N

N∑
j=1

Jje
iφj . (4)

We note that the coupling parameter Jj is multiplied in front
of eiφj , as shown in Eq. (4). In that sense, the order parameter
W can be regarded as either an “effective” coupling strength
or a sort of “weighted” mean field. In fact, it is advantageous
to take the new order parameter W : Theoretical analysis can
be possible by introducing W into the system governed by
Eq. (1). Moreover, since R (= |Z|) is found to be proportional
to S (= |W |) near the transition, we can estimate the behavior
of R via the analysis of S.

For the theoretical analysis on Eq. (1), we first insert the
order parameter W (≡Sei�) into the model. Equation (1) is
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then rewritten as

φ̇i = ωi − S sin(φi − �), (5)

where i = 1, . . . ,N . The system is now expected to be divided
into two subpopulations, depending on the condition: One
is the population of the oscillators with |ωi | � S, and the
other one is that of the oscillators with |ωi | > S. In other
words, one population consists of the “locked” oscillators
having zero phase velocity (φ̇i = 0), and the other one consists
of the “unlocked” oscillators having nonzero phase velocity
(φ̇i �= 0). The locked oscillators have the stationary phase
given by φ

(s)
i = � + sin−1(ωi/S), mostly contributing to the

synchronization behavior in the system. On the other hand, the
unlocked oscillators exhibit drifting behavior, having their own
natural frequency ωi , which means that the phase of the drifting
oscillator is given by φi ≈ φi(0) + ωit . We note that the above
description is similar to that for the original Kuramoto model.
However, for the case of the Kuramoto model, the order
parameter S should be replaced with the order parameter R

multiplied by the identical coupling strength.
Based on the idea of the division of the oscillators into two

subpopulations of the locked and unlocked oscillators, we find
that the self-consistency equation for the order parameter S is
given by [18]

Sei� =
∫ ∞

−∞

∫
|ω|�S

J ei�ei sin−1(ω/S)h(J )g(ω) dω dJ

= 〈J 〉
∫ S

−S

√
1 − (ω/S)2g(ω) dω, (6)

where 〈J 〉 = ∫
Jh(J ) dJ is the mean value of the distribution

function h(J ). For the Gaussian distribution shown in Eq. (2),
the mean is given by 〈J 〉 = μ. Expanding g(ω) near ω = 0,
Eq. (6) reads

S = π

2
g(0)μS + π

16
g

′′
(0)μS3 + O(S5). (7)

Note that the first derivative, g′(0), vanishes due to the
symmetric property of g(ω) around ω = 0; thus, the term is
invisible in Eq. (7). As shown in Eq. (7), when the mean
is zero (μ = 0), the order parameter S always vanishes;
therefore, the order parameter R also goes to zero. This implies
that the system with the coupling strength chosen from the
symmetric distribution having zero mean does not exhibit
phase synchronization. On the other hand, when the mean
is a nonzero positive value (μ > 0) the system is expected to
show phase synchronization.

In Eq. (7), to have the nonzero solution with S �= 0, it should
be

S2 = 1 − π
2 g(0)μ

π
16g

′′ (0)μ
> 0, (8)

where μ > 0. At μc, S goes to zero, which means that the
transition occurs at

μc = 2

πg(0)
, (9)

which reads μc = 2� for g(ω) chosen as the Lorentzian
distribution given by g(ω) = �/[π (ω2 + �2)].

We are curious about the effects induced by the randomness
in the system. To see it, we first assume that the {ωi} in Eq. (1)
does not contain any randomness. Under this condition, we
pay attention to exploring how the randomness affects the
synchronization behavior of the system when the randomness
comes into the system via the heterogeneity of the coupling
strength {Ji}.

Unfortunately, the analysis of the self-consistency equation
shown as Eqs. (6) and (7) does not discern between cases
with or without randomness in the system, even though the
transition point can be predicted. To discriminate the two cases,
therefore, we now resort to the numerical analysis, performing
the numerical simulations on Eq. (1).

First, to remove the randomness in the set of {ωi}, we
deterministically assign ωi on each site. Namely, the ωi can be
chosen according to the procedure given by [2]

i

N
− 1

2N
=

∫ ωi

−∞
g(ω) dω. (10)

For the Lorentzian distribution given by g(ω) = �
π

1
ω2+�2 , the

above procedure generates the ωi as follows:

ωi = � tan

[
iπ

N
− (N + 1)π

2N

]
, i = 1, . . . ,N. (11)

This comes from

i − 1/2

N
= �

π

∫ ωi

−∞

1

ω2 + �2
dω,

= 1

π
tan−1

(
ωi

�

)
+ 1

2
. (12)

We note that the system with {ωi} given by Eq. (11) does
not contain any randomness in it. Instead, the randomness is
included in the coupling strength Ji that is randomly chosen
according to the random Gaussian distribution function h(J )
given as Eq. (2).

To see how the randomness in the heterogeneous coupling
strength affects the phase-synchronization behavior, we now
numerically explore it. We perform the numerical integrations
on Eq. (1), using the fourth-order Runge-Kutta method with
dt = 0.01. For the total Nt = 1×106 time steps, Eq. (1) was
integrated, where the first Nt/2 steps were discarded for the
equilibrium state, after which all quantities of interest were
measured and averaged over time. We measure the order
parameters R and S for various values of the mean μ, for
a given value of the width �. Figure 1 shows the behavior of
R and S as a function of μ, where � = 0.5, varying the system
size N . The theoretical prediction on the transition (μc = 2�)
reads μc = 1 for � = 0.5, which is shown together in Fig. 1.
We observe that both R and S show decreasing behavior for
μ < μc when the system size N increases. On the other hand,
the order parameters for μ > μc do not show size-dependent
behavior. This suggests the possibility of the synchronization
transition at μ = μc, which is consistent with the theoretical
prediction in Eq. (9).

To see the existence of the synchronization transition at μc

further, we now measure another quantity such as Binder’s
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FIG. 1. (a) Behavior of the order parameter R as a function of the
mean μ, varying the system size N from N = 100 to N = 12 800.
(b) Behavior of the order parameter S plotted as a function of
μ, for various system size N . The width of the natural-frequency
distribution function is set to � = 0.5. The theoretical prediction
about the transition point, μc = 2�, is also shown as a dotted line
with the label μc. The data for both R and S have been averaged
over one hundred samples with different sets {Jj } and different initial
conditions {φi(0)}, where the magnitude of the error is the symbol
size.

fourth-order cumulant BR , defined as [19]

BR ≡
[

1 − 〈R4〉
3〈R2〉2

]
, (13)

where R = |Z|, and 〈· · · 〉 and [· · · ] represent the time
average and the sample average, respectively. Here, the sample
average means the average over various configurations with
different sets of the coupling strength, {Jj }, and different initial
conditions {φi(0)}. The Binder cumulant has been widely used
as a useful indicator for predicting the transition point in many
physical systems. When the transition exists in the system,
the Binder cumulant in the subcritical region (e.g., μ < μc)
approaches 1/3 as the system size N increases. On the other
hand, in the supercritical region (μ > μc) it goes to 2/3. At
the transition (μ = μc), the Binder cumulant should have a
unique crossing point for different sizes N . This characteristic
behavior is shown in Fig. 2, which supports the existence of
the synchronization transition at μ = μc.
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FIG. 2. Binder’s fourth-order cumulant for the order parameter
R as a function of the mean value μ for various system size N , for a
given value of � = 0.5. The theoretical prediction for the transition
point, μc = 1, is also shown by the dotted line with the label μc. The
data have been averaged over one hundred samples with different sets
{Jj } and different initial conditions {φi(0)}, where the magnitude of
the error is the symbol size.

We also measured the dynamic fluctuation of the order
parameter, where the dynamic fluctuation is defined as

χR = N [〈R2〉 − 〈R〉2] (14)

with R = |Z|. Figure 3 shows the behavior of χR as a function
of μ, for a given value of � = 0.5, which also supports the
presence of the synchronization transition at μc = 1. The χR

is found to increase near the transition, as the system size N

increases, which implies that the dynamic fluctuation diverges
in the thermodynamic limit (N → ∞), suggesting the possible
phase transition at μc.
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FIG. 3. Dynamic fluctuation χR as a function of the mean value μ

for various system size N , where � = 0.5. The theoretical prediction
of the transition point, μc = 1, is also displayed as the dotted line with
the label μc. The data have been averaged over one hundred samples
with different sets {Jj } and different initial conditions {φi(0)}, where
the magnitude of the error is the symbol size.
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FIG. 4. Order parameter R versus the system size N is shown in
log-log scale, for three different values: μ = 0(<μ), μ = 1(= μc),
and μ = 2(>μc). At the transition (μ = μc), R is found to behave as
R ∼ N−0.21.

IV. FINITE-SIZE SCALING

In this section, we investigate the critical behavior of R

at the transition μc. To do it, we now examine the finite-size
scaling behavior of R depending on the value of μ. Figure 4
shows the size-dependent behavior of the order parameter R

for three different regions with μ < μc, μ > μc, and μ = μc,
respectively. We find that the order parameter R behaves as
R ∼ N−1/2 when the mean is small enough (μ < μc), which
implies the presence of the incoherent phase (R = 0) in the
thermodynamic limit (N → ∞). On the other hand, when the
mean is large enough (μ > μc), the order parameter shows a
finite value (R > 0), irrespective of the various sizes N , which
implies the existence of the synchronized state. This finding
is consistent with the mean-field analysis, showing that the
transition occurs at μc, from the incoherent state (R = 0) to
the coherent one (R > 0).

According to the finite-size scaling theory [2], the order
parameter is expected to show a critical decaying behavior
characterized by R ∼ N−β/ν̄ at the transition μ = μc. Here,
β is the critical exponent for the order parameter, and ν̄ is the
finite-size scaling exponent, respectively, which is shown later.
Analyzing the self-consistency equation given by Eqs. (6) and
(7), we find S ∼ (μ − μc)1/2, where μc = 2�. This means
that the order parameter exponent is given by β = 1/2. We
numerically investigated the size-dependent behavior of R

at the transition (μ = μc). Figure 4 shows that the order
parameter R at the transition behaves as R ∼ N−0.21, which
implies β/ν̄ = 0.21. With β = 1/2, this suggests ν̄ ≈ 5/2.

Note that, for the case of the Kuramoto model with
deterministically chosen natural frequencies, it has been
reported that the model shows ν̄ = 5/4 [2], which is different
from ν̄ ≈ 5/2 for the present system in this paper. In the current
system, we have chosen ωi deterministically, following the
procedure given by Eq. (11); thus, there is no randomness
in the set of the natural frequencies. However, the coupling
strength Ji in the current system contains the randomness in
it: We have chosen it randomly according to the Gaussian
distribution function h(J ).

To understand ν̄ = 5/2 for the current system, we now
revisit the finite-size scaling theory of the order parameter

further. According to the conventional finite-size scaling
theory [2], we expect that the order parameter R at finite size
N can be written as

R(μ,N ) = N−β/ν̄f (εN1/ν̄), (15)

where ε = μ − μc, and f (x) is a scaling function having the
asymptotic properties

f (x) =
⎧⎨
⎩

const, x = 0
xβ, x � 1
(−x)β−ν̄/2, x 
 −1.

(16)

The critical decay of the order parameter R is thus expected
to be characterized as R ∼ N−β/ν̄ at the transition (ε = 0).
Accordingly, the size dependence of R at the transition (μ =
μc), shown in Fig. 4, implies β/ν̄ = 0.21. Since we found that
the order parameter exponent is given by β = 1/2 from the
analysis of the self-consistency equation given by Eq. (7), we
deduce ν̄ ≈ 5/2. This result means that the finite-size scaling
exponent ν̄ is the same as that for the Kuramoto model with
randomly (not deterministically) chosen natural frequencies
[2]. In other words, the system has the same finite-size scaling
exponent (ν̄ = 5/2) when the randomness of the coupling
strength newly comes into the system with no randomness
in {ωi}.

Meanwhile, in the case of the dynamic fluctuation given by
Eq. (14), its critical behavior is characterized as [2]

χR =
{

(−ε)−γ , ε < 0
ε−γ , ε > 0 (17)

in the thermodynamic limit (N → ∞). We here assume that
the scaling of χR can be controlled by one single exponent,
γ , which is valid for most homogeneous systems. According
to the finite-size scaling theory [2], the critical increasing
behavior of χR at the transition (μ = μc) can be characterized
as χR ∼ Nγ/ν̄ . We numerically measured χR at the transition
for various system size N (see Fig. 5). We find that χR behaves
as χR ∼ N0.41, where the power value 0.41 means γ /ν̄ ≈ 0.41,
according to the finite-size scaling theory. With the value
ν̄ = 5/2, the power 0.41 gives us the value of γ : γ ≈ 1.

 0.1

 1

 10

 100  1000  10000  100000

χR

N

0.07 x0.41

FIG. 5. Dynamic fluctuation χR is shown as a function of the
system size N at the transition (μ = μc) in log-log scale. The χR is
found to behave as χR ∼ N 0.41.
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Summarizing, the critical exponents we found for the
present system can be given by

β = 1/2, ν̄ ≈ 5/2, γ ≈ 1, (18)

which shows that the hyperscaling relation does not
hold:

γ̄ �= ν̄ − 2β. (19)

The breakdown of the hyperscaling relation is the same as
that for the original Kuramoto model with randomly chosen
natural frequencies. This finding means that adding some new
randomness in the coupling strength makes the system comes
back to the same universal class as the Kuramoto model with
randomly chosen natural frequencies, which is the main result
of this paper.

V. SAMPLE-DEPENDENT CORRECTION
IN ENTRAINED OSCILLATORS

In this section, we try to understand the origin of ν̄ ≈ 5/2
even for the absence of any randomness in {ωi}.

We note that the self-consistency equation given by
Eq. (7) is valid for the thermodynamic limit (N → ∞). For
a finite-size system, on the other hand, it can be written
as

S = π

2
g(0)μS + π

16
g

′′
(0)μS3 + �N, (20)

where �N is the term induced by the finite-size correction.
Note that �N is proportional to the number of entrained
oscillators [2]:

�N ∝
√

Ns/N, (21)

where Ns is the number of entrained oscillators with |ωi | < S.
We note that Ns is linearly proportional to S×N , which reads
�N ∼ √

S/N . At μ = μc, Eq. (20) then leads to

S3 ∼
√

S/N. (22)
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FIG. 6. Behavior of
√

Ns as a function of
√

NS at the transition
(μ = μc), displaying the linearly proportional relation.

If we assume that S ∼ N−a with an arbitrary power a, Eq. (22)
then reads

N−3a ∼ N−(a+1)/2, (23)

which yields a = 1/5. This means S ∼ N−1/5 at the transition,
where 1/5 corresponds to the critical exponents β/ν̄ = 1/5.
Substituting β = 1/2, we then find ν̄ = 5/2, which is the same
as the Kuramoto model with randomly distributed natural
frequencies [2].

We have numerically measured Ns as a function of N×S.
Figure 6 shows N

1/2
s ∝ (N×S)1/2, which is consistent with

the prediction.

VI. SUMMARY

We have considered a minimal model of globally coupled
phase oscillators with random heterogeneity in the coupling
strength, and investigated how the randomness affects the
phase synchronization behavior. In particular, we have paid
attention to the synchronization transition and the finite-size
scaling behavior at the transition. We found that the system
exhibits the phase transition from the incoherent state to the
synchronized one at a finite mean value of the distribution of
the coupling strength. In particular, we found that the system
exhibits β = 1/2, ν̄ ≈ 5/2, and γ ≈ 1, which implies that the
present system returns to the same universal class as that for the
Kuramoto model with randomly chosen natural frequencies.

Based on the findings in the present paper, it seems that
the randomness in coupling strength and the randomness
in natural frequency play (effectively) the same role in the
finite-size scaling of the synchronization behavior. Here, it
is noteworthy that the two randomnesses can be regarded
as a sort of “quenched disorder” that does not depend on
time. In other words, once it is chosen initially from a
certain random distribution function, its value persists for the
whole dynamics of the synchronization, which is different
from the usual “thermal noise” that does depend on time. In
some sense, the quenched disorder can be considered stronger
than the thermal noise, which allows us to expect that the
quenched disorder yields stronger finite-size scaling in the
synchronization behavior.

The different characteristics of the noise are found to induce
different finite-size scaling behavior when the thermal noise
comes into the system, where the finite-size scaling behavior
is found to be characterized by the exponent, the same as that
for many other conventional mean-field systems, i.e., ν̄ = 2
[9]. According to the findings in many works, it seems that the
quenched randomness in the natural frequency, randomness
in coupling strength, and randomness in link or connectivity
induce the same finite-size scaling exponent, ν̄ = 5/2 [2,3,8],
which is another interesting issue that requires further study.
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