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Although quantum synchronization phenomena and corresponding measures have been widely discussed
recently, it is still an open question how to characterize directly the influence of nonlocal correlation, which
is the key distinction for identifying classical and quantum synchronizations. In this paper, we present basic
postulates for quantifying quantum synchronization based on the related theory in Mari’s work [Phys. Rev. Lett.
111, 103605 (2013)], and we give a general formula of a quantum synchronization measure with clear physical
interpretations. By introducing Pearson’s parameter, we show that the obvious characteristics of our measure
are the relativity and monotonicity. As an example, the measure is applied to describe synchronization among
quantum optomechanical systems under a Markovian bath. We also show the potential by quantifying generalized
synchronization and discrete variable synchronization with this measure.
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I. INTRODUCTION

Synchronization phenomena in the quantum regime have
recently been attracting a great deal of interest, and they
have been investigated in different branches of quantum
physics, such as quantum phase transitions [1,2], quantum
clocks [3,4], and quantum information processing (QIP) [5–
8]. Basically, quantum synchronization can be regarded as
an extension of classical synchronization, which was first
observed by Huygens in the 17th century [9]. Numerous
mature quantum systems have served as platforms to demon-
strate quantum synchronization. As representatives, cavity
electrodynamics systems with two- or three-level emitters
[10–12] and quantum oscillators [13–15] are widely used
to illustrate quantum synchronization with discrete variables
and continuous variables (CV), respectively. A number of
theoretical works have proposed effective schemes to synchro-
nize quantum systems with inequality dynamic parameters,
e.g., the couplings of two systems with appropriate intensity
[6,16,17], or the exertion of an additional control field based on
quantum control theory [18]. Subsequently, the influence of a
quantum environment, even a non-Markovian environment, on
quantum synchronization is also discussed in open quantum
systems [6,19–21]. The possibilities of probing the spectral
density of a dissipative environment and inducing synchroniza-
tion with noise were proposed in Refs. [22,23], respectively. In
the QIP domain, some straightforward applications of quantum
synchronization are applying synchronous systems as channels
to transfer or share quantum states (signals) [7,24,25], even in
a quantum array or a quantum network [6,8,20,26,27].

With the increasingly deepening and broadening develop-
ments of quantum synchronization theory and its applications,
a fundamental problem becomes ever more noticeable, that is,
how to describe quantitatively the degree of synchronization
between two quantum systems so that cross-comparison
among different synchronization phenomena can be done.
In the classical regime, quantification of synchronization has
developed into a fairly mature technology [28–31]; however,
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hardly any mature technologies can be used to measure quan-
tum synchronization directly because quantum correlation
plays an important role in quantum synchronization [6,32].
Synchronization and quantum correlation have been studied
for a long time in their respective communities; however, the
relation between the two started to be explored only recently.
Therefore, it is still challenging to define a suitable measure for
quantum synchronization with correlation terms. Additional
insights corresponding to this problem can be divided into
two categories: some of the theoretical descriptions about
synchronization only focus on the expectation value of a
quantum system so that the synchronizations can be measured
via classical measures [20,32–34]. Recently, local quantum
fluctuation was also considered in this kind of measure [32].
Notably, quantum correlation has not been introduced into
this kind of measure. Other forms of measures are motivated
by applying a quantum correlation measure, such as quantum
discord, and a mutual information measure based on entropy
theory, in the synchronization domain [15,16,35]. However, it
seems that there does not exist a simple homology relationship
between synchronization and quantum correlation.

Until now, a desirable combination of synchronization and
quantum correlation has been Mari’s measure (Sc), because
synchronization error and a nonlocal term are both included in
its definition [6]. Basically, this measure satisfies the properties
that people intuitively think quantum synchronization should
have. However, some defects remain that restrict further
applications. Most notably, this measure is designed based
on absolute error but not relative error, and it is defined as an
inverse function of error [36]. Due to these two characteristics,
the measure value is not linearly dependent on the magnitude
of the error. In the interval [0.4,1] the measure is quite
sensitive, and a small increment of error will result in a
significant decrease of the measure value. On the contrary,
the measure is insensitive in the interval with a low value, and
the disparity between the values corresponding, respectively,
to synchronous and asynchronous systems is small.

The aim of this work is to address this problem, that
is, we will develop a consistent and quantitative theory of
synchronization for quantum system evolution on the premise
of inheriting the advantages of Mari’s measure. For a clearer
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explanation, we focus on a physical interpretation of quantum
synchronization from the standpoint of quantum measurement,
and we summarize some basic frameworks and postulates
with which the synchronization measure should comply. The
four postulates are boundedness, criterion, monotonicity, and
relativity, and we will discuss them in detail in the following
sections. In accordance with these basic principles, we will
give a general form of the quantum synchronization measure in
which Mari’s measure can also be contained, and we will show
two calculable measures as examples based on this general
formula. Meanwhile, as an intuitive verification, we also
calculate our synchronization measures in an optomechanical
mechanical system [37,38].

In the quantum domain, generalized synchronizations have
been investigated recently in various contexts, such as phase
synchronization, antisynchronization, constant error, and time
delay synchronization [6,14,18,39–41]. It is gratifying that our
measure could also be extended well to these cases. Finally,
we try to apply this quantitative description in the case of a
discrete variable.

II. POSTULATES OF QUANTUM SYNCHRONIZATION
MEASURE

Let us begin our discussion with a brief review of quantum
synchronization theory in the Heisenberg picture. For two CV
quantum systems whose dynamics are described by quadrature
operators q̂j and p̂j (j = 1,2), an intuitive idea to study
quantum synchronization is to define two error operators: q̂− =
(q̂1 − q̂2)/

√
2 and p̂− = (p̂1 − p̂2)/

√
2, which is equivalent

to extending the classical concept “error” into the quantum
domain by canonical quantization. A synchronization measure
(or a criterion) should be a mapping between the error operator
and the real number field R. In Ref. [6], Mari et al. designed
a measure:

Sc(t) := 〈q̂−(t)2 + p̂−(t)2〉−1, (1)

where 〈· · · 〉 denotes taking the operator expectation value
with respect to the quantum state. Under this definition,
Sc ∈ R is obvious. By rewriting the error operator as a
sum of the c-number expectation value and its corresponding
fluctuation operator, that is, ôj = 〈ôj 〉 + δoj (o ∈ {q,p}, j =
1,2) [42,43], Eq. (1) can be divided into two parts, which are,
respectively, as follows: first-order criterion,

lim
t→∞ |q1 − q2| = 0,

(2)
lim
t→∞ |p1 − p2| = 0,

and second-order criterion,

S ′
c(t) := 〈δq−(t)2 + δp−(t)2〉−1. (3)

Here, oj denotes 〈ôj 〉 for convenience. First- and second-
order synchronizations have quite different physical meanings.
Specifically, first-order synchronization reflects the dynamic
characteristics of the system’s expectation value, and the syn-
chronization effect depends mainly on the dynamic parameters
and external control of the system. Since nonlocal correlation
and quantum noise are not included in the expectation
value equation, the synchronization at this level should be

regarded as semiclassical, and its performance is in good
agreement with classical synchronization theories [44,45].
The second-order measure, by contrast, describes the pure
quantum natures of the synchronized systems. Note that
the systematic synchronization error due to slightly different
average trajectories is automatically excluded by a first-order
criterion. As a consequence, the only source of disturbance
bounding this synchronization measure will be quantum (or
thermal) fluctuation or nonlocal correlation. Therefore, the
unique characteristics of quantum synchronization should be
the relation with quantum correlation. For example, the effect
of quantum synchronization will decrease significantly with
increased heat reservoir temperature [6], even though the clas-
sical synchronization theory has proved that synchronization
has a strong robustness to the extra noise [46].

The difference between classical and quantum synchro-
nizations can be further understood from the perspective of
quantum measurement. For an observer, the synchronization
phenomenon of two systems can be regarded as a consistent
evolution in a single measurement process. Semiclassical
systems obeying determined c-number dynamic equations
will give exactly the same measurement results if we repeat
the same observation many times. Therefore, criterion (2) is
adequate to describe classical synchronization. For quantum
systems, the quantum measurement hypothesis yields results
that are random distributions, and they are constrained by the
Heisenberg relation. This means that there may be significant
error between the two systems for a single observation, even if
the two systems have the same expectation value or quantum
state. From this perspective, two identical thermal states (or
maximum mixed states) are obviously unsynchronized. It also
implies that some independent measures (e.g., fidelity) that
have no cross (nonlocal) term cannot be used as quantum
synchronization measures.

According to the above properties, which we think quantum
synchronization should obey, we introduce a basic framework
for the quantification of quantum synchronization. For CV
quantum systems, an effective synchronization measure S
should be a function of system variables satisfying the
following four postulates:

(S1) Boundedness: |S| ≤ 1, and |S| = 1 if and only if
system errors satisfy the standard quantum limit.

(S2) Criterion: Classical synchronization criterion (2)
should be a necessary condition for |S| = 1.

(S3) Monotonicity: For the same system, |S(nth)| < |S(n′
th)|

if nth > n′
th, i.e., decreasing under the increased thermal

environment phonon number nth.
(S4) Relativity: |S(o1,o2,o−)| < |S(o′

1,o
′
2,o−)| if oi < o′

i ,
i.e., errors with the same size will lead to a weaker sensitivity
to synchronization if the dynamic variables of the systems have
a larger value.

The notation S(x) here means that the other variables
remain the same except for x. We emphasize here that the
above properties are phenomenological to a certain extent,
and they are not rigorous properties such as the ones used
to quantify quantum entanglement and coherence [47,48].
Nevertheless, they are still significant constraints for common
CV systems with sufficient physical meaning. Here, S ≥ 0
is not a mandatory requirement because S < 0 corresponds
to antisynchronization in some measures. The monotonic-
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ity originates from our belief that two thermal states are
completely unsynchronous, and it is a relatively important
standard to determine whether a synchronization measure is
appropriate in the quantum regime. Relativity is required for a
crosswise comparison between two different synchronization
phenomena. Practical quantum systems, especially quantum
open systems, can easily have different energies. A measure
will be unfair to the larger energy system if it is defined based
on the absolute size of the error.

Based on the above four properties, we provide some
judgments about existing quantum synchronization measures
that have been summarized recently in a review article
[32]. We think that some local measures are not excellent
quantum synchronization measures because the nonlocal terms
are not considered, even though quantum fluctuations are
included in them, and they may not satisfy the monotonicity.
For monotonous measures based on mutual information and
correlation [16], they are also not good measures since the
classical synchronization criterion is not a necessary condition
for them. To the best of our knowledge, Eq. (1) is the closest
measure to our postulates, and only relativity is not satisfied.

III. RELATIVE MEASURE OF QUANTUM
SYNCHRONIZATION

With the four postulates proposed in the preceding section,
a natural followup question is how to design a measure
satisfying them simultaneously. A basic idea in this work
is that the quantum synchronization measure should be an
equal-weighted average of the synchronization measure results
for two dynamic trajectories after a quantum measurement.
This idea is derived from the measurement interpretation of
quantum synchronization in the previous section. A mature
classical synchronization measure is enough to describe the
similarity between two trajectories from a single quantum mea-
surement, and the quantum properties of the synchronization
are hidden in the measurement probability. Therefore, we give
a general formula of the quantum synchronization measure:

Lc(t) := lim
N→∞

1

N

N∑
i=1

F
(
qi

1,p
i
1,q

i
2,p

i
2

)
. (4)

Here, the superscript i denotes the observation result for the ith
measurement. N → ∞ implies enough times for measuring
the quantum system. F is a function to reflect the difference of
two system trajectories. Note that the relation Lc(t) = Sc(t)−1

is obvious if the function F is selected as

F =
(

qi
1 − qi

2√
2

)2

+
(

pi
1 − pi

2√
2

)2

. (5)

From this perspective, our measure can be regarded as a more
generalized measure, and it will degenerate to Mari’s measure
with some appropriate designs.

For a normalized measure, here we introduce the well-
known Pearson’s parameter [49]

Cf,g(t,�t) = δf δg√
δf 2 δg2

(6)

to provide a basis for the synchronization measure. In this
expression, δo = o − ō and ō = �t−1

∫ t+�t

t
o(t ′)dt ′, where

o ∈ {g,f }. In general, a perfect synchronization corresponds
to C̄ = 1 and an antisynchronization will be C̄ = −1. With
the requirement of the relativity, we also give a relative error
measure

Ef,g = 1 − |f − g|
|f | + |g| . (7)

For quantum synchronization, it requires us to consider
quadrature variables simultaneously, which leads us to define
the measures as Fc = (Cqi

1,q
i
2
+ Cpi

1,p
i
2
)/2 or F ′

c = (Eqi
1,q

i
2
+

Epi
1,p

i
2
)/2. Hence, our measures can be finally defined as

Lc(t) := lim
N→∞

1

2N

N∑
i=1

(
Cqi

1,q
i
2
+ Cpi

1,p
i
2

)
(8)

and

L′
c(t) := lim

N→∞
1

2N

N∑
i=1

(
Eqi

1,q
i
2
+ Epi

1,p
i
2

)
. (9)

Equations (8) and (9) are calculable measures if one can
solve the probability distribution of the quantum system at
the moment t , and we will show examples in the next section
to illustrate this property.

In addition to having good agreement with the four
postulates, another advantage of our measure is its scalability.
For example, Eq. (4) can be extended easily to measure phase
synchronization and other generalized synchronizations by
setting

Fp = Cφi
1,φ

i
2

or Fp = Eφi
1,φ

i
2
,

Fg = (
Cg(qi

1),g(qi
2) + Cg(pi

1),g(pi
2)

)
/2,

or

Fg = (
Eg(qi

1),g(qi
2) + Eg(pi

1),g(pi
2)

)
/2. (10)

It is very hard, however, to measure explicitly those synchro-
nizations in previous works.

IV. EXAMPLE IN OPTOMECHANICAL SYSTEMS

Now we give some examples to explain further the
effectiveness and computability of our measure in the CV
quantum synchronization regime. In recent years, optome-
chanical devices provided the perfect platform for studying
quantum synchronization where our measure can be applied
directly [6,8,22,34,38]. In this section, we adopt two methods
to analyze the dynamics of optomechanical systems (in Sec.
IV A), and we show the CV quantum synchronization of such
systems with our measure (in Sec. IV B).

A. Dynamics of optomechanical systems

A representative Fabry-Pérot resonator consists of two
highly reflective mirrors, one of which is a moving mirror
with eigenfrequency ωm [see Fig. 1(a)]. By setting h̄ = 1,
the Hamiltonian of such a system can be expressed as
H = H0 + HI + Hd , where H0 = ωcâ

†â + ωmb̂†b̂ are the
free terms of the optical mode and the oscillator mode,
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(a)

(b)

FIG. 1. (a) Schematic diagram of an optomechanical system: a
mechanical resonator is coupled with a Fabry-Pérot cavity through
the nonlinear radiation pressure force of a quantized optical mode.
(b) Two kinds of coupling structures. Here, each node represents an
optomechanical system, and the lines denote phonon tunnelings.

HI = −gâ†â(b̂† + b̂) [37,38] describes the well-known radi-
ation pressure interaction, and Hd = iE(â†e−iωd t − âeiωd t ) is
the driving term. Here we consider two approximately identical
mechanical resonators interacting mutually through phonon
tunneling with intensity μ [see Fig. 1(b)]. Then the total
Hamiltonian of this coupled system can be expressed as [50]

H =
∑
j=1,2

[−�j â
†
j âj + ωmj b̂

†
j b̂j − gâ

†
j âj (b̂†j + b̂j )

+iE(â†
j − âj )] − μ(b̂1b̂

†
2 + b̂

†
1b̂2) (11)

after a frame rotating. In this expression, for j = 1,2, aj and
bj are the optical and mechanical annihilation operators, and
�j = ωdj − ωcj is the detuning between the frequency of
cavity and driving. E is the laser intensity driving the optical
cavities, and g is the single-photon coupling coefficient. The
dynamics of such a system can be solved by considering
dissipative effects in the Heisenberg picture, and we can write
the following quantum Langevin equations [51,52]:

˙̂aj = [−κ + i�j + ig(b̂†j + b̂j )]âj + E +
√

2κâin
j ,

(12)
˙̂bj = [−γ − iωmj ]b̂j + igâ

†
j âj + iμb̂3−j +

√
2γ b̂in

j ,

where κ and γ are, respectively, the optical and mechanical
damping rates. ain

j and bin
j are the input bath operators, and they

are assumed to be white Gaussian fields obeying standard cor-
relation relations 〈âin

j (t)†âin
j ′ (t ′) + âin

j ′ (t ′)âin
j (t)†〉 = δjj ′δ(t −

t ′) and 〈b̂in
j (t)†b̂in

j ′ (t ′) + b̂in
j ′ (t ′)b̂in

j (t)†〉 = (2n̄b + 1)δjj ′δ(t − t ′),
where n̄b = [exp(h̄ωmj/kbT ) − 1]−1 is the mean occupation
number of the mechanical bath and it gauges the temperature
T of the system [53]. Note that Eq. (12) can also be used to
discuss a single optomechanical system by setting μ = 0.

To simulate the quantum trajectory of the ith observation,
we translate the operator equations (12) into two c-number
differential equations with stochastic noise terms and initial
conditions [22], that is,

α̇i
j = [ − κ + i�j + 2ig Re

(
βi

j

)]
αi

j + E +
√

2καin
j ,

(13)
β̇i

j = [−γ − iωmj ]βi
j + ig

∣∣αi
j

∣∣2 + iμβi
3−j +

√
2γ βi

j ,

and the initial Gaussian state ρ0 of the system is simulated
by the Gaussian random complex number obeying N (oj ,δoj ),
where

o = Tr(ôρ0) (14)

and

δo =
√

Tr(ô2ρ0) − [Tr(ôρ0)]2. (15)

Moreover, the noise operators are also simulated by the
Gaussian distribution N (0,1) without time correlation. Note
that the c number does not have the commutation relation, and
the correlation relations become [22]

〈
αin∗

j αin
j ′ + αin

j ′α
in∗
j

〉 = 2
〈
αin∗

j αin
j ′
〉 = δjj ′ ,

(16)〈
β in∗

j β in
j ′ + β in

j ′ β
in∗
j

〉 = 2
〈
β in∗

j β in
j ′
〉 = (2n̄b + 1)δjj ′ .

By using the transformation

xi
j = (

αi∗
j + αi

j

)
/
√

2, yi
j = i

(
αi∗

j − αi
j

)
/
√

2,
(17)

qi
j = (

βi∗
j + βi

j

)
/
√

2, pi
j = i

(
βi∗

j − βi
j

)
/
√

2,

our measure can be calculated conveniently by substituting
(17) into Eq. (8) or (9).

The ensemble-averaged quantities and the quantum fluctua-
tion can also be obtained by simulating the stochastic Langevin
equations a large number of times, i.e., aj = ∑

αi
j /N

and 〈δa2
j 〉 = ∑

αi
j

2
/N − (

∑
αi

j /N )2, and the correlation
terms are reconfigurable by using the definition 〈δa1δa2〉 =∑

αi
1α

i
2/N − (

∑
αi

1/N )(
∑

αi
2/N). The mechanical modes

b1,2 can also be deduced in the same manner. It is well known
that a Gaussian state can be characterized completely by its
corresponding covariance matrix, and therefore we can obtain
all the quantum properties at time t by adopting the stochastic
Langevin equations (13).

Before further discussion about quantum synchronization,
one may wonder if the stochastic Langevin equations are
effective and accurate to simulate the CV quantum system.
To clarify this query, we have utilized the mean-field approxi-
mation to resolve the quantum Langevin equations (12) in the
strong driving and weak-coupling regime (g/κ � 1) [54,55],
and we showed the comparisons of the results based on two
methods. By dividing the operators in the quantum Langevin
equations in the forms of âj = aj + δaj and b̂j = bj + δbj ,
we can write directly the dynamic equations, including the
expectation value and fluctuation, as

ȧj = [−κ + i�j + ig(b∗
j + bj )]aj + E,

(18)
ḃj = [−γ − iωmj ]bj + ig|aj |2 + iμb3−j ,
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and

δ̇aj = [−κ + i�j ]δaj

+2ig Re(bj )δaj + igaj (δb†j + δbj ) +
√

2κain
j ,

δ̇bj = [−γ − iωmj ]δbj

+ig(aj δa
†
j + a∗

j δaj ) + iμδb3−j +
√

2γ bin
j (19)

after neglecting the nonlinear fluctuation terms. The system
evolutions can be solved by simulating Eqs. (18) and (19) in
the correct order.

Adopting a similar transformation corresponding to
Eq. (17), the fluctuation equation can be given in a more
compact form [43]:

d

dt
û = Sû + ξ̂ , (20)

where S is the coefficient matrix (see Appendix B for
details) and û = (δx1,δy1,δx2,δy2,δq1,δp1,δq2,δp2). ξ̂ =
(δx in

1 ,δy in
1 ,δx in

2 ,δy in
2 ,δq in

1 ,δpin
1 ,δq in

2 ,δpin
2 ) is the input noise

vector. Under this representation, the evolution of the covari-
ance matrix should obey

d

dt
C = SC + CS + N, (21)

where cij (t) = cji(t) =〈ui(t)uj (t) +uj (t)ui(t)〉/2 and N =
diag[κ,κ,κ,κ,γ (2n̄b + 1),γ (2n̄b + 1),γ (2n̄b + 1),γ (2n̄b + 1)]
with the bath phonon number n̄b. So Mari’s measure can also
be calculated by the coefficient matrix C.

In Fig. 2, we present some comparisons of results calcu-
lating by the mean-field approximation and the stochastic
dynamic method, respectively. In (a) and (b), we plot the
expectation values and the corresponding fluctuations of
the coordinate evolutions of oscillator 1. One can observe
intuitively that the two simulation methods can achieve
consistent evolutions. The subfigure on the right-hand side
of (a) shows the local magnification of the curve based on
stochastic dynamics. Here, each blue (dashed) line denotes
a random quantum trajectory that can be considered as a
measurement result of the CV quantum system, and the black
line is the ensemble average of all random trajectories. One
may wonder why this consistency can be satisfied only when
we calculate local variables. To clarify this point further, we
also plot the nonlocal measure Sc, and Fig. 2(c) shows that the
two methods indeed provide us with the same results.

B. Synchronization of optomechanical systems

Now we use an extreme example to explain that local
measures, such as fidelity, are not good measures for quan-
tum synchronization. Consider two optomechanical systems
coupled as in Fig. 1(b). The states of two oscillators will
always be identical under the same dynamic parameters
(ωm,�,g,κ,γ,E) and initial states even though there does
not exist any interaction between two subsystems (μ =
0). The fidelity of two oscillator states should always be
100% in this case, indicating that two oscillators have the
same expectations, even the identical size of the fluctuation
(〈δ2o1〉 = 〈δ2o2〉). Under the definitions of classical or local
quantum synchronization measures, the two oscillators here
have already become perfect synchronization, and it seems that
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δ2
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(c)

t

t

......

......

FIG. 2. (a), (b), and (c) Evolutions of q1, 〈δ2q1〉, and Sc based on
the mean-field approximation (yellow dashed line) and the stochastic
dynamic method (black solid line), respectively. The blue dashed lines
on the right side of (a) present the 100 stochastic trajectories. Here,
we set ωm1 = 1 as a unit, and other parameters are ωm2 = 1, �j = 1,
g = 0.003, E = 10, μ = 0.02, n̄b = 0, κ = 0.15, and γ = 0.005.
In this simulation, the stochastic dynamics (black solid lines) are
obtained based on 10 000 calculations of the stochastic Langevin
equations.

the synchronization degree does not depend on the magnitudes
of fluctuations since their difference is always zero. However,
because there is no correlation, the respective measurement
results of two oscillators will be independent and random,
meaning that the oscillators may still be unsynchronized if
the magnitudes of fluctuations are too large, and the only
way to improve synchronization is to increase correlation.
In other words, the synchronization in the quantum regime
cannot be measured by the fidelity or the difference of the
quantum fluctuations. On the contrary, a good measure should
consider nonlocal terms (〈δo1δo2〉) and the sum of the quantum
fluctuations (〈δ2o1〉 + 〈δ2o2〉), which is in agreement with
Mari’s theory. According to this criterion, it is quite natural to
understand the thermal monotonicity in mathematics because
the increased bath temperature can amplify the fluctuations
and destroy the nonlocal correlation simultaneously. It is also
notable that quantum synchronization does not require the
system to be entangled, although nonlocal terms are necessary
for the quantum synchronization measure.

For a quantitative explanation, we plot some curves to
compare Gaussian fidelity [56], the local measure (C〈q2

1 〉,〈q2
2 〉),

Mari’s measure, and our measure in Figs. 3(a) and 3(b).
The results confirm that the local measure could not get any
response to the varied interaction intensity μ and bath phonon
number n̄b, implying that it will lose effectiveness in the
quantum synchronization regime. From this perspective, the
local measure should be a necessary and insufficient condition
for quantum synchronization. In contrast, both Mari’s measure
and our measure show reasonable responses to nonlocal
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FIG. 3. (a) and (b) Comparisons of Gaussian fidelity, local
measure [blue marks in (a)], Mari’s measure, and our measure with
varied interaction intensity μ and bath phonon number n̄b. Parts (a)
and (b) are obtained, respectively, by 5000 and 3000 calculations of
the stochastic Langevin equations. Here, the black (dark) solid lines
denote Gaussian fidelity, and black (dark) and yellow (pale) dashed
lines are our measures Lc and L′

c. The yellow (pale) circles and lines
are normalized Mari’s measure Sc/max{Sc} calculated by stochastic
Langevin equations and the mean-field method, respectively. The
local measure and fidelity are calculated by the mean-field method.
(c) and (d) Synchronizations corresponding to the same value of
Mari’s measure. The blue dashed lines are the 100 stochastic
trajectories of q1 and Er = q1 − q2, and the black lines denote 〈q2〉
and 〈Er〉. Here we set �t = 0.1 for Lc and g = 0 in (c,d), and the
other parameters are the same as those in Fig. 2.

interaction and a thermal environment [57]. In particular,
in Fig. 3(b) the thermal monotonicity is well suited for all
three measures, certifying that it can indeed measure inside
the quantum effect in quantum synchronization. One can also
observe from Fig. 3(a) that Sc, Lc, and L′

c exhibit consistent
evolution with varied μ. Note that it is not a monotonic
evolution, and all three measures point out that the most perfect
synchronization effect corresponds to μ ∼ 0.005. Therefore,
we think the three measures are in agreement with each other
and are all effective when the crosswise comparison is not
involved.

Now we discuss relativity, which is an essential characteris-
tic of our measure compared with Mari’s measure. According
to our relativity measure, a larger amplitude can weaken the
disturbance of errors on the synchronization, which is different
from Mari’s definition, that is, the same size errors always
damage the synchronization equivalently. To illustrate this,
we consider another extreme example: only two oscillators
with the same dynamic parameters (ωm,γ ) and initial states.
This model becomes equivalent to our system by setting

2 4 6 8 10
0

0.5

1

0.01 2 4 6 8 10
0

0.5

1

(a) (b)

FIG. 4. (a) Comparisons of Mari’s measure (Sc/max{Sc}) and
our measure with varied classical amplitudes. Here we set 〈b̂j 〉(0) =
20Am. (b) Comparisons of our measure Lc with a different time
window �t . The parameters in (a) and (b) are the same as those in
Figs. 3(c) and 2, respectively.

g = 0, and it becomes a pure linear dynamic system with
Hamiltonian H = ∑

j=1,2 ωmb̂
†
j b̂j − μ(b̂1b̂

†
2 + b̂

†
1b̂2). Such a

linear Hamiltonian causes the dynamic equations of each order
quantity to be closed [58]. In other words, the evolutions
of quantum fluctuation and the covariance matrix are not
dependent on the first-order expectation in this case. Therefore,
this model will correspond to an unchanged Mari measure Sc

with varied amplitudes of expectation.
In Figs. 3(c) and 3(d), we plot two different synchronization

processes, and one can observe visually that the damage
degree of synchronization by quantum fluctuation is quite
different when the system corresponds, respectively, to larger
or smaller amplitudes in the expectation value level even
though Sc is equal. Because Mari’s measures give an equal
value corresponding to the above two processes, we believe
that it is inaccurate, meaning that Mari’s measure and other
absolute measures have a limited ability to discuss quantum
synchronization crosswise. For our measures, however, either
Lc or L′

c exhibits significant monotonicity with varied ampli-
tude. As is shown in Fig. 4(a), the values of two measures
will decrease with the increased amplitudes even if the size of
the error is invariable. In other words, this result confirms that
Lc and L′

c satisfy the relativity, and therefore we have proved
that all four postulates are satisfied by our measures up to now.
Figure 4(b) shows that time-averagedLc is little affected by the
time window �t . This is an advantage of Peason’s parameter,
and one can set �t arbitrarily when this measure is adopted.

In addition to these special examples, we finally give a
dynamic evolution process in which three different optome-
chanical systems (with different oscillator frequencies and
initial states) interact each other as shown in Fig. 1(b). We
have already proved in previous work that three oscillators will
evolve from unsynchronized to synchronized states if they sat-
isfy the dissipative condition [8]. This process can show us the
performance of our measure in unsynchronized-synchronized
crossover. Corresponding to the coupling structure in Fig. 1(b),
the dissipative condition reads

ω1 − ωs = μ1 + μ2,

ω2 − ωs = μ1, (22)

ω3 − ωs = μ2,
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FIG. 5. Coordinates (a), momenta (b), and errors (c) of three
coupled optomechanical systems. In (a) and (b), the black (dark,
solid) lines correspond to system 1, and the yellow (pale, dashed)
lines denote system 2. The subfigures on the right side are the
corresponding local magnifications in which the blue circles cor-
respond to system 3. Here we set g = 0.005, ωs = 1, ω1 = 1.03,
ω2 = 1.02, and ω3 = 1.01, which leads to μ1 = 0.02 and μ2 = 0.01.
The other parameters are the same as those in Fig. 2. In this simulation,
the stochastic dynamics are obtained by 1000 calculations of the
stochastic Langevin equations.

where ωs is a stated quantum standard frequency. To avoid
a small coordinate or momentum to make the denominator
in Eq. (7) tend to zero, here we modify L′

c by redefining
Fc = (E r

bi
1,b

i
2
/2 + E i

bi
1,b

i
2
/2)/2, where

E r
f,g = 1 − |Re(f ) − Re(g)|

|f | + |g| ,

(23)

E i
f,g = 1 − |Im(f ) − Im(g)|

|f | + |g| .

Then the evolution and measure can be calculated according
to this model.

It can be found from Figs. 5(a) and 5(b) that three different
systems will achieve coincident coordinate and momentum
with enough evolution time, and the classical errors among
them tend to zero after t > 1300, as shown in Fig. 5(c).
This dynamic process can be measured by using the methods
mentioned above, and the evolutions of Sc, Lc, and L′

c are
shown in Fig. 6. The agreement between the measure and the
synchronization effect can be seen intuitively by contrasting
Figs. 5 and 6. Although all three measures show a similar
tendency to evolve from a lower value to a higher value, the
details of their performances are essentially different. Mari’s
measure is restricted in such an interval with a low value [0,0.3]
even though the other two measures tend to 1. Moreover, Sc

remains almost unchanged and tends to 0 before t = 1000 even
if the synchronization degree has an obvious improvement
in this time interval. This defect is mainly caused by the
reciprocal operation in the definition of Sc. Correspondingly,
Sc will be quite sensitive, and a small increment of error

0 500 1000 1500

0

0.5

1

0 500 1000 1500
0

0.5

1

1000 1200 1400
0.998

0.999

1

0 500 1000 1500
0

0.5

1

1000 1200 1400
0.98

1 (b)

(a)

(c)

FIG. 6. Comparisons of Mari’s measure Sc (a) and our measures
Lc (b) andL′

c (c). Here the black (dark, solid) lines denote the measure
between systems 1 and 2, and the yellow (pale, dashed) lines present
the measure between systems 1 and 3. The parameters are the same
as those in Fig. 5. In (a), the time window of the measure is set as
�t = 10.

will lead to a significant decrease of its value in the interval
Sc ∈ [0.3,1]. In fact, the possibility to reach the maximum
bound ofSc in an actual physical system has not been reported,
so that the value of Mari’s measure is changed only in a
small range. It finally causes Mari’s measure to be inadequate
in the unsynchronized-synchronized crossover process since
the values corresponding to synchronous and asynchronous
systems are closed. On the contrary, Figs. 6(a) and 6(b) show
that both Lc and L′

c increase significantly in the crossover
interval t ∈ [0,1000], and their values corresponding to the
synchronized and unsynchronized systems will change in a
larger range. Therefore, we think the change of our measures
is uniform, and it is more effective for applying Lc and L′

c to
describe the unsynchronized-synchronized crossover.

V. EXTENSION IN THE DISCRETE VARIABLE CASE

Now we discuss the potential for applying our measure in
the discrete variable case. In the research area of quantum
synchronization, a discrete variable system is always a contro-
versial issue. On the one hand, the theory of quantum properties
in a discrete variable system is more mature, so the relationship
between synchronization and quantum correlation can be stud-
ied more rigorously [15,16,59,60]. On the other hand, there is
no good agreement for some concepts in discrete variables
because synchronization is a generalization from classical
mechanics to quantum mechanics, which means that it is still
a defect for measuring discrete variable synchronization.

Let us reconsider the general formula (4) of our measure,
which requires an evaluation for each measurement result
of dynamical variables. The dynamical variables q̂ = (â† +
â)/

√
2 and p̂ = i(â† − â)/

√
2 can be extended in Fock space

with finite dimension [15], and the evaluation function F can
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be designed as

Fq = 1 − 2|q1 − q2|
|q−max|

, Fp = 1 − 2|p1 − p2|
|p−max|

, (24)

where, for the discrete variable system, q(p)i are a series of
discrete eigenvalues and q(p)−max has their largest absolute
value.

For the two-level system q(p) becomes σx(y)/
√

2, and the
relation between the measurement result and the synchroniza-
tion measure should be

Fo =
⎧⎨
⎩

1, o1 = o2 = c or o1 = o2 = −c,

−1, o1 = c, o2 = −c,

−1, o1 = −c, o2 = c,

(25)

where c = 1/
√

2 and o ∈ {q,p}. Its weighted average can
be calculated by summing Fo times their corresponding
probability, which is exactly 〈σx1σx2〉 or 〈σy1σy2〉. Hence our
measure for the two-level system is finally expressed as

Lc = 〈σx1σx2 + σy1σy2〉
2

= 2 Re〈σ+
1 σ−

2 〉, (26)

and it is exactly the same as the measure used widely in
previous works [10–12,32]. Therefore, we think that our
formula is indeed an effective and general conclusion.

An advantage of our measure in a discrete variable system
is that the boundedness of the measure can be well guaranteed
under its definition. In contrast, if we extend directly Mari’s
measure to the discrete variable system,

Sc = 〈
σ 2

x− + σ 2
y−

〉−1
, (27)

the boundedness Sc � 1 may not hold because the commuta-
tion of σ 2

x− and σ 2
y− is no longer a constant.

VI. CONCLUSION

In summary, we have studied quantitatively quantum syn-
chronization from the perspective of quantum measurement.
The quantum synchronization theory proposed in Ref. [6]
pointed out that nonlocal correlation plays an important
role in quantum synchronization. By adopting this definition,
four postulates for quantifying quantum synchronization are
proposed in this work. These postulates, especially the mono-
tonicity, can help us to distinguish whether the synchronization
is in a quantum or semiclassical level. From the perspective of
measurement, we have introduced a measure of CV quantum
synchronization that can satisfy all four of our postulates.
To clarify the advantages of our measure, some extreme
dynamical processes are analyzed to illustrate that some local
measures and absolute measures will lose their accuracy
to some extent. As an example, we discuss CV quantum
synchronization between optomechanical systems, and we
provide a detailed calculation method of our measure. Finally,
we discuss the potential of applying our measure in a discrete
variable quantum system.

In addition to the above characteristics, we also want to
emphasize here that our measure only needs the measurement
result statistics of mechanical quantities, but it does not require
the reconstruction of the density matrix or the complete
covariance matrix. Moreover, our measure is not restricted
in linear evolution and a Gaussian state. Therefore, we think

that our measure is more suitable for quantum synchronization
experiments in QIP. To sum up, we believe that our theory can
be applied to reveal the interplay between quantum correlation
and synchronization, and it can be adopted as a useful resource
measure for quantum communication and quantum control.

ACKNOWLEDGMENTS

All of the authors thank J. Cheng, J. Zhang, and Y. Zhang for
useful discussion. This research was supported by the National
Natural Science Foundation of China (Grants No. 11574041
and No. 11175033).

APPENDIX A: STOCHASTIC SYSTEM DYNAMICS

In this appendix, we explain the numerical method for
solving stochastic Langevin equations. For a single optome-
chanical system, Eq. (13) in the main text can be expressed in
a more compact form:

α̇i = fα(αi,βi) +
√

2καin,
(A1)

β̇i = fβ(αi,βi) +
√

2γ βi
j ,

and they can be further expanded as

αi(t + h) = αi(t) + fα(αi(t),βi(t))h + dWα,
(A2)

βi(t + h) = βi(t) + fβ(αi(t),βi(t))h + dWβ

by using the time-difference method. Here, W is a Brownian
random process, and it can be simulated by GαN and
GβN , where Gα = √

κh and Gβ = √
γ (2n̄b + 1)h. N is a

Gaussian random complex number that can be generated by
N = (z1 + iz2)/

√
2, where z1,z2 ∈ R and z1,z2 ∼ N (0,1) are

obtained by substituting the modified correlation function
(16) into Eq. (A2). The fourth-order Runge-Kutta method
corresponding to differential equations (A2) provides the
following general formulas:

αi(t + h) = αi(t) + h

4∑
i=1

vjKαi + GαN,

(A3)

βi(t + h) = βi(t) + h

4∑
i=1

vjKβi + GβN,

where the coefficients are v1 = v4 = 1/6 and v2 = v3 = 1/3.
Here, for l ∈ {α,β},
Kl1 = fl(α(t),β(t)),

Kl2 = fl

(
α(t) + hKα1

2
+ GαN

2
,β(t) + hKβ1

2
+ GβN

2

)
,

Kl3 = fl

(
α(t) + hKα2

2
+ GαN

2
,β(t) + hKβ2

2
+ GβN

2

)
,

Kl4 = fl(α(t) + hKα3 + GαN,β(t) + hKβ3 + GβN ).

Note that the noise term is simulated in the first-order level,
and therefore the above simulation method is accurate only if
Gl is constant.
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APPENDIX B: COEFFICIENT MATRIX OF SYSTEM DYNAMICS

The coefficient matrix S in the main text is

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κ −�1 − 2g Re(b1) 0 0 −2g Im(a1) 0 0 0

�1 + 2g Re(b1) −κ 0 0 2g Re(a1) 0 0 0

0 0 −κ −�2 − 2g Re(b2) 0 0 −2g Im(a2) 0

0 0 �2 + 2g Re(b2) −κ 0 0 2g Re(a2) 0

0 0 0 0 −γ ωm1 0 −μ

2g Re(a1) 2g Im(a1) 0 0 −ωm1 −γ μ 0

0 0 0 0 0 −μ −γ ωm2

0 0 2g Re(a2) 2g Im(a2) μ 0 −ωm2 −γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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