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Nonlinear dispersive waves in repulsive lattices
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The propagation of nonlinear waves in a lattice of repelling particles is studied theoretically and experimentally.
A simple experimental setup is proposed, consisting of an array of coupled magnetic dipoles. By driving
harmonically the lattice at one boundary, we excite propagating waves and demonstrate different regimes of
mode conversion into higher harmonics, strongly influenced by dispersion and discreteness. The phenomenon
of acoustic dilatation of the chain is also predicted and discussed. The results are compared with the theoretical
predictions of the «-Fermi-Pasta-Ulam equation, describing a chain of masses connected by nonlinear quadratic
springs and numerical simulations. The results can be extrapolated to other systems described by this equation.
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I. INTRODUCTION

Repulsive interactions among particles are known to form
ordered states of matter. One example is the Coulomb
interaction, which forms the basis of solid state physics [1]. In
a crystal, atoms and ions are organized in ordered lattices by
means of repulsive forces acting among them. Such noncontact
forces provide also the coupling between neighboring atoms,
which allows the propagation of perturbations in the form
of phonons, or elementary excitations of the lattice. This
picture is not restricted to the atomic scale. At a higher
scale, the interaction of charged particles other than from
atoms and ions has shown the formation of crystal lattices. A
remarkable case is a ionic crystal in a trap [2]. Such crystals,
which are considered to be a particular form of condensed
matter, are formed by charged particles, e.g., atomic ions,
confined by external electromagnetic potentials (Paul or other
traps), and interacting by means of the Coulomb repulsion.
Crystallization requires a low temperature that is achieved
by laser cooling techniques. Different crystallization patterns
have been observed by tuning the shapes and strengths of
the traps. Crystals of trapped ions have been the subject
of great attention as a possible configuration to perform
quantum computation [3]. Crystallization of a gas of confined
electrons, known as Wigner crystals, has been also predicted
and observed [4,5].

Waves in such crystals show strong dispersion at wave-
lengths comparable to the lattice periodicity. The linear (in-
finitesimal amplitude) dispersion relation, and some nonlinear
characteristics of wave propagation, have been experimentally
determined in electrically charged, micrometer-sized dust
particles immersed in the sheath of a parallel plate rf discharge
in helium in a rf plasma [6], where the waves are excited by
transferring the momentum from a laser to the first particle in
the chain.

In other types of plasma crystals, linear wave mixing
and the harmonic generation of compressional waves have
been theoretically [7] and experimentally [8] demonstrated.
Also, nonlinear standing waves have been discussed in a
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two-dimensional system of charged particles [9]. Here, the
generation of second and third harmonics was predicted on
the long-wavelength (non- or weakly dispersive) limit.

Some experiments with analog models of repulsive lattices
have been done using magnets as interacting particles, with
the aim of demonstrating the generation and propagation of
localized perturbations (discrete breathers and solitons). For
example, in the seminal work of Russell [10], a chain of
magnetic pendulums (very similar to the setup presented in
this paper) was used to simulate at the macroscopic level
some natural layered silicate crystals, such as muscovite mica.
More recently, in Ref. [11], the authors proposed another
configuration of a chain of repelling magnets, for the study
of solitary waves, similar to the highly discrete kinks studied
theoretically in Coulomb chains including realistic interatomic
and substrate potentials [12].

We finally note that repulsive potentials are not restricted
to those of an electric or magnetic nature. A celebrated
case is the granular chain of spherical particles interacting
via Hertz potentials. Many studies have been done in this
system, both theoretical and experimental, on the propagation
of solitary waves. Recently, several nonlinear effects related
to the propagation of intense harmonic waves in such granular
lattices have been described in Ref. [13], with special attention
to the dispersive regime.

In this paper, we investigate experimentally and numeri-
cally the propagation of nonlinear and dispersive waves in
harmonically driven repulsive lattices with on-site potentials.
In particular, we study the harmonic generation of monochro-
matic waves traveling in an array of coupled magnetic dipoles,
comparing the observations with the predictions from the
«o-Fermi-Pasta-Ulam (FPU) equation and numerical results
including an on-site potential. Two main results are reported:
first, the experimental observation of the generation of a
second harmonic in highly dispersive nonlinear lattices and,
second, the saturation in the generation of the evanescent
zero frequency mode in lattices with an on-site potential.
The paper is organized as follows: In Sec. II, the theoretical
model, the equation of motion of a lattice of particles
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FIG. 1. Scheme of the lattice of nonlinearly coupled oscillators.

interacting by inverse power-law forces, is presented. The
weakly nonlinear limit is considered, where the model ap-
proaches the celebrated «-FPU equation. The linear dispersion
relation and the analytical solutions for propagating and
evanescent nonlinear periodic waves are given. In Sec. III,
the theory is particularized for the case of an array of coupled
magnetic pendulums, and the experimental setup is presented,
based on a lattice of magnetic pendulums rotating by means
of a magnetic bearing system that guarantees low friction. In
Sec. IV, we discuss the experimental results, concerning the
generation of harmonics and a static displacement (dilatation)
mode. Finally, the conclusions of the study are given in Sec. V.

II. THEORETICAL MODEL

A. Equation of motion

We consider an infinite chain of identical particles with
mass M aligned along the x axis, interacting with their nearest
neighbors via repulsive potentials Vj,. In the absence of
perturbations, every mass has a fixed equilibrium position,
with the interparticle distance given by a, as shown in Fig. 1.
Since the forces are repulsive, note that for a finite chain this is
only possible if there is an external potential V., that keeps the
particles confined. This effect can be provided by a periodic
on-site potential, or a force keeping the boundary particles at
fixed positions. The equation of motion can be written as

Ml;in = Vi;t(un+l - un) - Vj;[(’/tn - unfl) + Ve/xts (1)
where u, stands for the displacement of the nth particle
measured with respect to its equilibrium position, M is the
mass of the particle, V are the potentials, and V’ their
derivatives with respect to the spatial coordinate, i.e., the
forces. For small displacements, the interaction forces V;;, can
be considered to be linear with respect to the distance between
the particles, r, i.e., V'(r) = kr, where « is a constant, then
Eq. (1) represents a system of coupled harmonic oscillators.
For higher amplitude displacements, the linear approximation
of the interaction force cannot be assumed in most real systems
and nonlinearity must be considered. Chains of nonlinearly
coupled oscillators have been extensively studied in the past
for different types of anharmonic interaction potentials. Some
relevant cases are the «-FPU lattice, where V'(r) = k17 + kor?
(quadratic interaction), the B-FPU lattice where V'(r) =
K17 + k31> (cubic interaction), the Toda lattice, with V'(r) =
exp(—r) — 1, or the granular lattice, with V'(r) = «r3/%. Here,
we consider the case of forces that decrease with an inverse
power law of the distance V'(r) = Br~¢, typical of interatomic
interactions, e.g., as the Coulomb repulsive interaction. For
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such a force, the equation of motion results in
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The exponent « can take different values depending on
the particular system: « = 2 for electrically charged particles,
e.g., in ion Coulomb crystals [2] or dusty plasma crystals [8],
o = 4 for distant magnetic dipoles [10], or any other noninte-
ger power [11].

In general, Eq. (2) does not possess analytical solutions.
Approximate analytical solutions can be obtained in the small
amplitude limit, i.e., assuming that the particle displacement
|u,| is small compared to the lattice constant a. Under this
assumption, the forces can be expanded in a Taylor series
and Eq. (2) can be reduced, neglecting cubic and higher-order
terms, to an equation in the normalized form

. 1
Uy, = Z(unfl —2u, + un+1)

&
_g(unfl - 2Mn + unJrl)(unfl - un+l) + Q%un’ (3)

where the normalization u,, = u,/a has been introduced, dots
now indicate the derivative with respect to a dimensionless
time T = w,t, where w,, =/4af/Ma**' is the maximum
frequency of propagating waves (upper cutoff frequency of
the dispersion relation), ¢ = (1 + «)up is the nonlinearity
coefficient, and 29 = wy/w,, is the on-site potential charac-
teristic frequency. The on-site restoring force V,, is in general
nonlinear. However, for small displacements, as considered
here, it may be represented by a term V,,, = M Q3u,a, where
Qp is related to the frequency of oscillation of the particle
in the external potential. The particular form of this term for
the proposed experimental setup will be discussed later. If the
on-site potential term is neglected (no external forces acting on
the chain), Eq. (3) reduces to the celebrated «-FPU equation.
It has been considered as an approximate description of many
different physical systems, and has played a central role in the
study of solitons and chaos [14].

B. Dispersion relation

Some important features of the propagation of waves
in a lattice can be understood by analyzing its dispersion
relation. For infinitesimal amplitude waves, it can be obtained
analytically by neglecting the nonlinear terms in the equation
of motion, and solving for a harmonic discrete solution
in the form u, = expi(Q2t — kn), where Q = w/w,, is the
normalized wave frequency and k is the wave number. By
replacing this solution in the linearized Eq. (3), we obtain the
well-known dispersion relation for a monoatomic lattice that
in normalized form reads

Q= [sin? (g) + Q3. “

On one hand, there is an upper cutoff frequency at which
the transition from propagative to evanescent solutions is
produced, i.e., [Im(k)| > 0, and it is given in this normalization
by Q =+1+ Q%. On the other hand, the effect of the on-site
potential is to create a low-frequency band gap in the dispersion
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relation, i.e., 2y represents the lower cutoff frequency. In
the absence of an external confining potential, 29 — 0, the
dispersion relation reduces to €2 = | sin (ka/2)|. In this case
the upper cutoff normalized frequency is 2 = 1.

Although the dispersion relation has been derived assuming
infinitesimal amplitude (linear) waves, it describes also the
propagation of other modes as the higher harmonics of a
fundamental harmonic wave (FW), when these are generated
by weakly nonlinear processes, as described in the following
sections.

C. Analytical solutions

One known effect of the quadratic nonlinearity is the
generation of second and higher harmonics of an input signal.
This is the basic effect, for example, of nonlinear acoustic
waves propagating in homogeneous, nondispersive media
[15,16], where the amplitude of the harmonics depends on
the nonlinearity of the medium, the excitation signal, and the
propagated distance (the excitation amplitude in the chain u,
the frequency €2, and its position 7).

In general, the generation of harmonics is strongly de-
pendent on the dispersion of the system, as occurs in the
discrete lattice described by Eq. (3). To study the process of
harmonic generation, an analytical solution can be obtained by
perturbative techniques, such as the successive approximation
method. We follow this approach, by assuming that the
nonlinear parameter ¢ is small (which implies displacements
much smaller than the interparticle separation), and expressing
the displacement as a power series in terms of &, in the
form u, = u® + eu'l + &2u'® + - ... After substituting the
expansion into Eq. (3), and collecting terms at each order in ¢,
we obtain a hierarchy of linear equations that can be recursively
solved. This has been done in Ref. [13] to study nonlinear
waves in a granular chain, formed by spherical particles in
contact interacting by Hertz potentials, and the result is readily
extendible to a chain of particles interacting by inverse power
laws of an arbitrary exponent, which results in a particular
value of the nonlinearity coefficient. The equation of motion
is always given by Eq. (3), the value of ¢ being dependent
on the exponent «. In the case of a granular chain, it was
shown that ¢ = u(/2. In this work, a chain with a quasidipolar
interaction, o = 4, gives & = Suy, i.e., the nonlinear effects
are one order of magnitude higher.

Up to second order of accuracy in ¢, the displacement field
can be expressed as (the details of the derivation can be found
in Ref. [13])

1 1 Ak . ;
u, = eQ%n + 5[1 + Zié‘zCQ sin <7n>e’ﬁf"}e’9"

+ & cot (£ sin (BEn)eitneren 4 5)
4C0 3 sin 3 nje e C.C.,

where 6, = Qt — kna, n is the oscillator number correspond-
ing to the discrete propagation coordinate, and

sin[k(2€2)/2]

o= Sniak@2r

(6)
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where Ak = 2k(2) — k(2Q2) is the wave-number mismatch
between the forced, 2k(£2), and free, k(2£2), contributions to
the second harmonic.

The solution given by Eq. (5) describes wave propagation
in the system when the frequency of the second harmonic
belongs to the dispersion relation, which is the case for driving
frequencies Q2 < % For higher driving frequencies, the second
harmonic frequency is outside the propagation band (becoming
an evanescent mode) and the solution takes the form

1 1 P )
u, = Q%n + §|:1 + gSZCQ(l —e¥ ”e’k")i|e’9"

+ ¢ cot (li)(l — e Ktk my2ion 4 ¢ ¢, @)
8 2

where k” = 2cosh™'(2Q) and k' = 2k(2) — 1 and the mis-
match now takes the form Ak = k' + ik”.

The previous analytical solutions (5)—(7) predict a number
of distinctive features in the nonlinear dynamics of the system,
depending on the frequency regime. In the case of the
second harmonic belonging to the propagation band, Eq. (5),
dispersion causes a beating in the amplitudes of the different
harmonics, since two components of the second harmonic
with different wave numbers propagate asynchronously. Both
the fundamental wave and its second harmonic oscillate out
of phase in space: The displacement of the fundamental
is maximum where the second harmonic vanishes, which
occurs at positions satisfying the following condition, n =
27/ Ak. This process repeats periodically in space as energy
is transferred between the two waves as they propagate. The
half distance of the spatial beating period corresponds to the
coherence length [,

®)

and it physically corresponds to the position where the free
and forced waves are exactly in phase, i.e., the location of the
maximum of first spatial beat.

When the second harmonic frequency lies beyond the cutoff
frequency, the free wave is evanescent. However, a forced
wave still exists, driven by the first harmonic at any point
in the chain. Due to this continuous forcing, the amplitudes
of the fundamental and its second harmonic do not oscillate,
reaching the amplitude of the second harmonic as a constant
value after a short transient of growth. This implies propagation
of the second harmonic even in the forbidden region. We note
that similar results about the behavior of the harmonics have
been obtained for nonlinear acoustic waves propagating in a
one-dimensional (1D) periodic medium or superlattice [17].
Finally, we note that the theory predicts the existence of a
zero-frequency mode u, = £Q’n, which represents a static
deformation of the lattice, i.e., a constant dilatation. This effect
will be studied in detail in Sec. IV.

III. LATTICE OF MAGNETIC DIPOLES

A. Forces acting on a magnet

Consider two magnetic dipoles, with magnetic moments
m and m,. The force between them is given by the exact
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relation [18]

(my - F)(my - T)

-3 } €))

Fip,=-—-V-

47 r3 rs

2, Ho 2 |:l711 -1y
where 7 is the vector joining the centers of the dipoles. This
relation implies that, in general, the force depends on the angle
between the dipoles. In the particular case when the dipole
moments are equal in magnitude, parallel to each other, and
perpendicular to 7 (dipoles in the same plane), the force takes
the simpler form

> 3o m?
Fio=——%, 10
12= 7 (10)
wherem = |m | = |ma|, i is the permeability of the medium,

and X is a unitary vector in the direction of the axis that connect
the centers of the magnets. Equation (10) gives the force at
equilibrium position (r = a) at a magnetic dipole (n = 1) of
the chain produced by its neighbor (n = 2) in the chain. An
opposite force is produced on the oscillator n = 2.

In the case of a perturbed chain of magnets with nearest-
neighbor interactions, the distance between the centers is
a dynamic variable. Assuming small displacements of the
magnets, i.e., the angles between the dipole moments are small,
we can use Eq. (10) with r = a — u,, + u, 4+ to describe the
interaction between two neighboring oscillators,

3pom? 1
4 (a =ty + tpy))*

I_'; nn+l = (1 l)
Comparing with the equation of motion of the chain, given by
Eq. (2), we identify the parameters

B = (3/4m)pom*,

This small angle Eq. (11) for the forces is a crude approxima-
tion and exact expressions can be found in Ref. [10]. However,
since our aim is to obtain simple analytical expressions based
on the FPU equation, Eq. (3), we will keep this degree of
accuracy. The validity of this approximation to describe our
setup will be tested in the following sections, comparing with
experimental results and numerical simulations.

The above expressions for the forces between magnetic
dipoles are valid for loop currents or magnets of negligible
dimensions. Expressions for finite-size magnets can be found
in the literature [19] and are in general lengthy and cumber-
some. Gilbert’s model of the magnetic field of magnets used
here results in approximate but simple expressions for the

a=4. (12)
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forces [18]. For cylindrical magnets of length 4, with their
magnetic moments parallel, and their axis perpendicular to the
line joining the centers, the force between adjacent magnets
can be expressed as

By o (1 r ; (13)
Y27 a2\ T 2 h2pn )t

where the magnetic moment is m = Mhw R?, M is the
magnetization, and R the radius of a the cylindrical magnet.
In the limit 2 <« r, Eq. (13) reduces to Eq. (10), i.e., magnets
with small dimensions compared to their separation interact
via dipolar forces, i.e., « = 4. In the opposite limit & > r,
parallel magnets close to each other, the interaction law
approaches a Coulomb-type force, i.e., « = 2. In general, the
interaction law of magnets can be approximated by an inverse
law with any given exponent that ranges between monopole
and dipole cases.

B. Experimental setup

A chain of coupled magnets was built in order to test the
theoretical predictions. The experimental setup is shown in
Fig. 2. The chain was composed of 53 identical cylindrical
neodymium magnets (Webcraft GmbH, DE, magnet type
N45), with mass M =2 g, arranged in a one-dimensional
periodic lattice. The radius and height of the magnets were R =
2.5 mm and & = 14 mm, respectively, and its magnetization
was M = 1.07 x 10°® A/m. The magnets were oriented with
the closest poles being those of the same polarity, therefore the
produced forces were repulsive.

To achieve the necessary stability of the chain, the magnets
were attached to a rigid bar which allows them to oscillate
around a T-shaped support, each magnet actually being a
pendulum (see Fig. 2). The length of the vertical bars was
L = 100 mm, and the distance between supports (and therefore
the distance between magnets at equilibrium) was a = 20 mm.
The bearing of the T-shaped support was specially designed
to minimize the effects of friction and give stability to the
system. This was achieved by using additional ring-shaped
magnets which kept the oscillators quasilevitating in air, with
just one contact point, as shown in the inset of Fig. 2.

The effect of the pendulums is to introduce an additional
external force to the dynamics of the chain, corresponding to
the term V,, in Eq. (2). If 6, is the angle formed by a magnet
with respect to its vertical equilibrium position, the restoring
force due to gravity is F, = Mg sin6,. For small angles 6,,

LI E b L

FIG. 2. Photograph of the experimental setup. The chain of magnets is driven mechanically by a dynamic subwoofer speaker. On the right,
a detail of the construction of the pendulums with the magnetic quasi-levitation system to minimize the losses at the bearing.
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and using the notation of Eq. (2), the force per mass can be
approximated as V/,, ~ Q3u,, with Qo = /g/L/wpy.

All magnets oscillate freely except for the outermost
boundary magnets. The last magnet is fixed, and the first one is
attached to the excitation system. The driving system consists
of an electrodynamic subwoofer (Fostex-L.363) connected to
an audio amplifier (Europower EPS2500) and excited by
an arbitrary function generator (Tektronix AFG-2021). The
first magnet is attached to the loudspeaker’s diaphragm, thus
being forced with a sinusoidal motion for different values of
frequencies and amplitudes.

The motion of the chain is recorded by using a GoPro-Hero3
camera. The camera is placed at a proper distance from the
chain in order to track the motion of a certain number of
magnets. In this work, the first 18 magnets were recorded
simultaneously. Then, each pendulum was optically tracked
using image postprocessing techniques. Image calibration was
employed here to correct the lens aberration using the image
processing toolbox in MATLAB, allowing the measurement of
the displacement wave forms u,,. We considered the traveling
wave regime, ignoring the reflected wave by time windowing
the recorded video. The measurement in a finite time window
guarantees no reflections from the n = N boundary. Due to the
quasi-instantaneous temporal duration of the impulse response
of the system, after some temporal cycles of measurement, the
system becomes stationary. Therefore, the transient measure-
ment is equivalent to the response of an infinite chain and the
finite-size effects of the chain do not influence the experiments.

The duration of each record was about 3.5 s, and the camera
resolution was set to 960p with a frame rate of 100 frames per
second, i.e., leading to a sampling frequency of 100 Hz. Using
the measured wave forms, the amplitude of each harmonic was
estimated as usual using the Fourier transform.

IV. EXPERIMENTAL RESULTS
A. Dispersion relation

To obtain the dispersion relation experimentally, the first
magnet was excited with a short duration impulse with low
amplitude excitation in order to ensure that the excited waves

(a)
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are described by linear theory. The generated traveling pulse
was recorded at two consecutive magnets, i.e., n and n + 1.
The real part of the wave number was calculated by estimating
the phase difference between them, and the imaginary part of
the wave number was calculated estimating the attenuation, as

o arg[Uy1(0)/ Up(w)]

Re(k) = = , (14)
Re(cp) a
Im) = 2 — In|Upq1(@)/ Up(@)] (15)
©Im(c,) a ’

where U,(w) is the Fourier transform of the measured
displacement of the nth magnet and ¢, is the phase velocity.
A set of ten measurements at the oscillator n = 3 was used to
compute the mean value of the phase speed. Figures 3(a) and
3(b) show the real and imaginary parts of the wave number,
respectively, where the experimental results and the dispersion
relation of Eq. (4) were evaluated at frequencies with a step
of Af = 0.66 Hz. The small magnitude of the experimental
errors in the propagating band indicates good repetitiveness of
the measurements. The experimental lower-frequency cutoff
was fo = 1.68 Hz, which agrees with the theoretical value
fo=(1/2m)/g/L = 1.48 Hz (fy = 1.56 Hz if we consider
the rigid-body pendulum, taking into account the momentum
of inertia of the steel rod). The measured upper cutoff
frequency was f,, = 17.7 Hz. This value was used to fit
Eq. (13) to an inverse power law, and using the theoretical
prediction f,, = (1/2m)/4aB/Ma**+! = 17.6 we obtained an
inverse power law with an exponent o = 3.6 (quasidipolar
interaction), which is in agreement with the ratio between the
height and the separation distance between the magnets given
by Eq. (13). Both the upper and lower values of the dispersion
relation obtained experimentally can slightly change with the
amplitude of the input excitation u(, which is in fact a signature
of nonlinear dispersion caused by the finite amplitude of the
wave. Note that for higher amplitudes the pulsed excitation
used in this experiment leads to the generation of Korteweg—de
Vries (KdV)-like compression solitons [11]. However, as long
as the condition u#y < a is fulfilled, the chain propagates linear
modes and the dispersion relation can be obtained.

(b)

25 T I T T Fy 25
Lossless =
° Lossy |
20 - o Experimental 1 20
Lossless
~ 15 = 15 o Lossy
= j==3 o Experimental
10t =10
5r¢ 5
0 . . 0 . . . -
0 0.2 0.4 1 0.2 0.4 0.6 0.8
Re(k)d/m Im(k)d/m

FIG. 3. Dispersion relations of a monoatomic chain obtained analytically by using Eq. (4) (continuous line), by the experimental
measurements (squares), and numerically including damping (circles). Horizontal bars indicate the experimental error of the normalized
wave number. (a) Real part of the wave number. (b) Imaginary part of the wave number.
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One remarkable result is the low damping of the system,
given by the smallness of the imaginary part of the wave
number in the propagating band.

The complex dispersion relation obtained by the numerical
integration of Eq. (2) adding a damping term y du,, /d¢ to the
equation of motion is shown in Figs. 3(a) and 3(b). The damp-
ing coefficient y was fitted to the experiments and corresponds
to 0.52 dB/m (note the chain is 1 m long). The damping terms
produce a force that opposes the pendulum movement. It is
worth noting here that, in the propagating band, the total drag
force is roughly twice the viscous drag force estimated for
a cylinder of the size of a single magnet oscillating in air
[20]: The magnetic bearing system itself produces only small
damping. The effect of the small losses is to smooth the limits
of the band gap, as it is also observed in other highly dispersive
systems, e.g., as in acoustics [21], and to produce a small
attenuation in the propagating band. The damping term is used
in the numerical simulations in the following sections.

B. Harmonic generation

By driving the first magnet with a sinusoidal motion, u; =
uo sin wt, harmonic waves are excited and they propagate along
the chain. On one hand, the amplitude u was uy = 2.4 mm. On
the other hand, according to the dispersion relation shown in
Fig. 3, the driving frequency €2 can be chosen among three
different regimes regarding the propagation of the second
harmonic: (a) weakly dispersive, (b) strongly dispersive, and
(c) evanescent.

The first case (a) is obtained when the frequency of the
fundamental wave lies in the lower part of the passband, and
the generated second harmonic is also in the passband, in the
region of weak dispersion. Thus, in this regime the motion
equations of the lattice can be approximated by a continuum
whose dynamics follows the Boussinesq equation [13] and
the wave roughly propagates without dispersion. In this
low-frequency regime, the lower harmonics propagate with
nearly the same phase velocity. The amplitude of the second
harmonic increases roughly linearly with distance while the
first harmonic amplitude decreases due to the energy transfer
from the fundamental component to the higher harmonics. This
case is shown in Fig. 4(a), where a fundamental wave with
frequency f = 5 Hz (2 = 0.27) generates a second harmonic
whose frequency 2 f = 10 Hz lies on the weakly dispersive
region of the propagative band (2 = 0.54). We note that in
this regime, a third harmonic is also generated, as shown
Fig. 4(b), although it is not predicted by the perturbative
analytical solution due to its second-order accuracy.

Second, case (b), corresponding to a strongly dispersive
second harmonic, is shown in Fig. 4(b). Here, the driv-
ing frequency approaches half of the passband frequency.
The second harmonic lies in the highly dispersive part
of the band, but still in a propagative region (slightly below
the cutoff frequency f;,). As observed in the previous case, the
amplitude of the second harmonic increases with distance, but
now, at a particular distance given by the coherence length /., it
decreases. Both the fundamental wave and its second harmonic
present spatial oscillations, i.e., spatial beatings. Figures 4(c)
and 4(d) illustrate this case for a fundamental wave with
frequency f = 8.8 Hz, i.e., a second harmonic with frequency
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Q2 = 0.96. The experimental value of the coherence length was
I, &~ 4.5a, which is in agreement with the theoretical value
given by Eq. (8).

Finally, case (c) corresponds to the second harmonic lying
within the band gap, as shown in Figs. 4(e) and 4(f) for an
excitation frequency of f = 10.1 Hz (2 = 0.55). In this case,
the second harmonic is evanescent and its amplitude does not
change with distance. One would expect the absence of the
second harmonic (SH) field (since it is an evanescent mode),
but a finite amplitude is observed, in agreement with theory
and numerical simulations. The second harmonic component
is generated locally as itis “pumped” by the fundamental wave.
Its amplitude value remains constant all along the chain, with
its amplitude dependent on the driving amplitude and on the
properties of the medium (the nonlinearity and the magnitude
of the dispersion).

The experimental results shown in Fig. 4 are in good
agreement with the analytical predictions of the asymptotic
theory (solid lines), and also with the numerical simulation
of Eq. (3). However, small discrepancies can be observed
between the theory and the experiments, as well as between
the theory and the simulations. The value of the nonlinear
coefficient used in the experiments was ¢ = (1 + a)ug = 0.55.
Thus the small disagreements between the theory and the
experiments and simulations are mainly explained due to
the nonsmallness of the nonlinear parameter ¢. For small
excitation amplitudes, i.e., small ¢, the theory and numerical
solutions converge to a similar result. However, due to the
precision of the motion-tracking acquisition system, it was
difficult to accurately measure small amplitude perturbations.

C. Chain dilatation

Besides the harmonic generation, the FPU equation also
predicts the presence of a static (zero-frequency) mode. It
physically represents an incremental shift of the average
position of each oscillator, which in turn results in a constant
dilatation or expansion of the chain. This term is accounted
for by the first term in Eq. (5). Since the average displacement
grows linearly with distance, it can be interpreted as a constant
strain produced by the acoustic mode along the lattice.

The phenomenon was originally reported for acoustic
waves propagating in a solid described by a nonlinear
wave equation [22], which is actually the continuous (long-
wavelength) analog of Eq. (3). The effect was described there
as an acoustic-radiation-induced strain. The physical origin of
the expansion of the discrete chain (and also in the continuous
solid) is the anharmonicity of the interaction potential, and
therefore is a general nonlinear effect. Note that radiation
forces also appear in other nonlinear systems as acoustic waves
in fluids, soft solids, or even light (radiation pressure), with
the generation of acoustic radiation forces being a general
mechanism of any wave motion [23]. We remark that the
phenomenon of acoustic expansion is analogous to the thermal
expansion of solids, which also has its physical origin in
the lattice anharmonicity. The link between these two effects
and its relation to the acoustic nonlinear parameter has been
pointed out in Ref. [24].

We show in Fig. 5 the generation of the zero mode in
the particular case of a chain of coupled oscillators and for
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FIG. 4. Three different regimes of harmonic generation, measured at different frequencies. (a) Weakly dispersive regime (f =5 Hz,
Q = 0.27) obtained using the analytical equation (continuous lines), numerical solution of the motion equations (crosses), and experimental
results (squares). (b) Corresponding experimental spectrum as a function of the oscillator number. (c) Strongly dispersive regime (f = 8.8 Hz,
Q = 0.48), and (d) its corresponding spectrum. (¢) Evanescent regime for the second harmonic (f = 10.1 Hz, 2 = 0.55), and (f) corresponding
spectrum.
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FIG. 5. (a) Amplitude of the static displacement mode as a function of the space obtained by numerical integration of the equation of
motion (continuous lines) and measured experimentally (markers) at different frequencies. (b)—(e) Corresponding experimental (colored lines)
and simulated (gray) wave forms acquired at oscillator n = 14.
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FIG. 6. Dependence of the amplitude of static mode on the excitation frequency obtained using the analytical solution (dashed lines),
numerical integration of the FPU equation (crosses), numerical integration with the pendulum restoring force (thick gray line), and experiments
(squares), measured at the oscillator (a) n = 3, (b) n = 5, and (c¢) n = 10.

different excitation frequencies. The experimental results
agree with simulations of the full equations of motion
including the restoring force. We can see that for all the
frequencies, a linear increase of the displacement predicted
by the analytical solutions is not observed. Instead, we can
observe two regimes, and a transition between them at a
particular distance. First, in the region near the boundary
(extending up to n & 8 in our experiment), the displacement
grows roughly linearly with distance, as predicted by the theory
without restoring force. However, beyond a given distance
the growth of the static displacement mode saturates, and the
chain attains an unstrained state, with the oscillators moving
around positions shifted with respect to their initial values.
This behavior is not predicted by the theory.

The saturation effect can be understood if we recall that the
theory was developed assuming that there was not a prescribed
equilibrium position for any oscillator in the chain, the chain
was assumed to be semi-infinite, and the only force acting on
the masses was a nearest-neighbor interaction. However, in the
experimental setup, an additional restoring force is present,
due to gravity. For small perturbations this is equivalent to
an on-site potential. Since the magnets are pendulums, the
maximum shift of a magnet with respect to the equilibrium
position is also bounded. Note that in Fig. 5 the oscillators are
displaced by less than a lattice step. Note also that for a finite
value of the on-site potential 2, the zeroth mode is always
evanescent. Then, as described previously with the second
harmonic in the evanescent case, only the forced contribution
to the zeroth-order mode is present, leading to a constant value
of the zeroth mode.

Finally, Fig. 6 shows the dependence of the zero mode
on frequency, measured at n =3, n =35, and n =10. It
can be observed that the experimental results agree with
the simulations of the full equations of motion, while the
simulations of the FPU equation roughly agree with the theory
(in this case the excitation amplitude was uy = 4.8 mm,
leading to a value of the nonlinear parameter of ¢ = 0.96).
For frequencies below €2 = 0.8, the amplitude of the zero
mode roughly follows a quadratic dependence on frequency.
In addition, the period average displacement of an oscillator
corresponds to the position where there exists a balance
between the gravity restoring force and the equivalent acoustic

radiation force produced by a nonlinear compressional wave,
corresponding to FArp = Q%(un), where (u,,) is the amplitude
of the zero mode. Thus, the induced acoustic radiation force
in the experimental chain also follows a quadratic dependence
on frequency for low-frequency waves.

V. CONCLUSIONS

The propagation of nonlinear monochromatic waves in a
lattice of particles coupled by repulsive forces following an
inverse power law with distance has been studied theoretically,
numerically, and experimentally. In the limit of small ampli-
tudes, the system is described by a FPU equation with quadratic
nonlinearity, where analytical solutions were generalized for
the case of arbitrary inverse frequency power-law interactions.
In particular, we developed an experiment consisting of a
lattice of coupled magnetic dipoles sinusoidally driven at one
boundary, while a magnetic bearing system for the rotation of
each pendulum provides low mechanical damping.

In spite of the simplifying assumptions made in the
theoretical analysis, the observations agree quite well with
the model concerning the generation of the second harmonic,
e.g., characteristic spatial beatings of the second harmonic due
to the dispersion of the lattice are observed.

One particular feature of the studied lattice is the existence
of a restoring force due to the action of gravity on the
pendulums. This is roughly equivalent to the introduction of an
on-site potential, leading to the generation of a low-frequency
band gap. In this work, it has been observed that the generated
zero mode is evanescent due to the presence of an on-site
potential, therefore only the forced component of the zero
mode propagates through the chain and a saturation of the
amplitude of the zero mode is observed. Discrepancies exist
between the analytical FPU theory and the experimental
measurements of the static dilatation mode. They are caused,
mainly, because the developed theory is based on a FPU
equation that lacks an on-site potential that produces a low-
frequency band gap. Therefore, while the FPU theory predicts
a linear monotonic growth of the zero mode, the presence
of a low-frequency band gap makes the zero-frequency mode
evanescent, and, as a consequence, a saturation of the dilatation
of the chain is observed in the experiments and in the numerical
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simulations. The particular dynamics of the generated zero
mode is discussed in analogy with the radiation force produced
by a nonlinear monochromatic traveling wave. This result
has an interest beyond the particular studied system, since
a number of systems exist, e.g., as condensed matter or
granular crystals, that present similar dispersion relations, with
a low-frequency band gap.

Additionally, the present low-friction experimental setup
can be used to explore other effects of nonlinear discrete
systems that have been predicted in the literature, e.g.,
nonlinear localized modes. Under the assumption of small
amplitude, these results indicate that the lattice of magnetic
dipoles is well described by an «-FPU equation, which opens
the possibility of extending the results to other systems which
are described by the same generic equation. The proposed
system can be also viewed as a mechanical analog of a
microscopic crystal of interacting charged particles (atoms or
ions) at a macroscopic scale. Despite the limited applicability

PHYSICAL REVIEW E 96, 012208 (2017)

of this simple one-dimensional lattice to describe real crystals,
the approach possesses, however, some advantages, such as the
possibility of varying parameters that are normally fixed, the
strength of the interaction and on-site potentials, or exploring
strongly nonlinear regimes which are hardly achievable at
atomic scales.
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