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Detecting unstable periodic orbits in chaotic time series using synchronization
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An alternative approach of detecting unstable periodic orbits in chaotic time series is proposed using
synchronization techniques. A master-slave synchronization scheme is developed, in which the chaotic system
drives a system of harmonic oscillators through a proper coupling condition. The proposed scheme is designed so
that the power of the coupling signal exhibits notches that drop to zero once the system approaches an unstable
orbit yielding an explicit indication of the presence of a periodic motion. The results shows that the proposed
approach is particularly suitable in practical situations, where the time series is short and noisy, or it is obtained
from high-dimensional chaotic systems.
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I. INTRODUCTION

Unstable periodic orbits (UPOs) embedded in chaotic
attractors play a fundamental role in understanding chaotic
dynamics. The presence of such orbits in experimental data
is an evidence of determinism. It is an important concept
that defines several properties of chaotic attractors such as
Lyapunove exponents, fractal dimensions, and topological
entropy [1]. Identification of UPOs within chaotic attractors
is also important from a practical point of view. It reveals es-
sential information required in many practical situations such
as noise reduction [2], control [3], chaotic communication [4],
and chaotic computing [5]. Therefore, investigation of UPOs
embedded in chaotic attractors is important to understand and
exploit the underlying dynamics.

Detecting UPOs from experimental data has been addressed
in the past, and various methods have been proposed. The
classical methods utilize the recurrence properties of chaotic
attractors in the full state space [6], or on a Poincaré section [7].
They follow the evolution of the trajectory, and record the mo-
ment at which the trajectory returns to a small neighborhood of
some recurrent point. The statistical analysis is then conducted
to determine whether the recurrent point belongs to a UPO,
or to improve the initial estimation of it. More recent methods
propose a different approach. They suggest utilizing advanced
techniques such as neural network [8], directed weighted com-
plex network [9], or Kalman filters [10] to estimate the vector
field of the underlying dynamics, through which UPOs can
be extracted. In a different approach, an estimated symbolic
model and the classical graph theory has been used to extract
UPOs [11]. An important building block of the previously pro-
posed methods is reconstruction of the state space trajectories
form a single time history of the system [12]. Note that the
reconstruction of the state space trajectory is not a trivial task
considering that only a short and noisy time series is available
in many practical situations. Moreover, identifying a Poincaré
section, or estimating the vector field of the underlying system
can be complicated by the fact that no analytical knowledge
of the system is available in many practical situations.

This paper proposes a different approach using the concept
of synchronization to detect UPOs in experimental chaotic

time series. It is based on a synchronization problem in which
the chaotic system drives a system of harmonic oscillators
through a proper coupling condition. The synchronization
scheme is designed so that the power of the coupling signal
exhibits notches that drop to zero at the vicinity of UPOs.
In contrast to the previous methods, this approach does not
require either state space reconstruction, or an estimation
of the vector field of the underlying dynamics. It detects
UPOs by simply looking at the notches in the power of the
coupling signal. The success of the proposed approach is
demonstrated by detecting UPOs embedded in chaotic time
series obtained from numerical simulations of the well-known
Rössler system, and Mackey-Glass equation. The results show
that the proposed method leads to accurate results even if
the time series is short and noisy, or it is obtained from
high-dimensional chaotic systems.

II. METHODOLOGY

This paper develops an algorithm of detecting UPOs
embedded in a chaotic time series using a synchronization
problem described by

ȧn = inωan + κn

(
y −

∞∑
r=−∞

ar

)
, (1)

where an is a component of the synchronized system for n ∈ Z,
y is a scalar output of the chaotic system, ω is the angular
frequency parameter, κn is the coupling strength such that κn

is the complex conjugate of κ−n, and i2 = −1. Equation (1)
defines an external synchronization problem in which the
chaotic system drives a system of harmonic oscillators ȧn =
inωan through the coupling f = y − ∑∞

r=−∞ ar of the gain
κn. The coupling gains are assigned so that the synchronized
system remains bounded, and forgets its initial condition as
t → ∞ [13]. Note that the synchronization problem described
by Eq. (1) is a unidirectional version of the synchronization
scheme proposed in [13]. However, it has different character-
istics. The synchronization problem proposed in [13] presents
a bidirectional coupling that describes mutual interactions
between the chaotic system and the system of harmonic
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oscillators. It aims to stabilize a target unstable orbit by
assuming ω is a known parameter identical to the frequency
of the target orbit. This paper proposes a synchronization
scheme, in which the chaotic system affects the behavior
of the harmonic oscillators, while the reverse does not
happen. Since the chaotic system remains intact, y can play
the role of a recorded time history. Moreover, it assumes
that ω is a variable parameter, and detects the coordinates
of the UPOs embedded in the chaotic signal by studying
the response of the synchronized system with respect to
the frequency parameter. The relation between the extended
delayed feedback control (EDFC) [14] and the bidirectional
version of the proposed coupling scheme of this paper for
κn = κ has been investigated in [15]. It has been shown that
both schemes have identical spectral properties when dealing
with periodic signals provided that the delay in the feedback
loop of EDFC and the period of harmonics oscillators 2π

ω
are

set to be equal. This observation leads to a simple method
of evaluating linear stability properties of EDFC controlled
orbits. However, this work is of a different nature, as it deals
with chaotic signals characterized by continuous frequency
bandwidths. It tries to find the frequency parameter and
the moment of time that correspond to an unstable periodic
motion by analyzing a unidirectionally coupled version of
the synchronization scheme. While [15] is concerned with
evaluating linear stability properties of EDFC controlled orbits
(Floquet exponents), this paper aims to extract nonlinear
features of chaotic attractors (UPOs).

The proposed approach detects UPOs embedded in chaotic
time series by examining the periodicity of the system of
coupled harmonic oscillators as described by Eq. (1). It is
based on a weak formulation of the synchronized system with
respect to a set of orthogonal test functions {eimω(t−τ )}∞m=−∞,
which is defined in the interval of interest τ < t < τ + 2π

ω
, as

described by

∫ τ+ 2π
ω

τ

(
y −

∞∑
r=−∞

ar

)
e−inω(t−τ )dt = �n

κn

, n = m, (2)

∫ τ+ 2π
ω

τ

ane
−imω(t−τ )dt =

�n − κn

κm
�m

i(n − m)ω
, n �= m, (3)

where n ∈ Z, m ∈ Z, and �n = an(τ + 2π
ω

) − an(τ ). �n

denotes the deviation of the final state of an from its initial
state in the designated interval. The necessary condition for
the synchronized system to be periodic with frequency ω is
described by �n = 0. Equations (2) and (3) reveal that �n = 0
describes the sufficient condition as well. Under this condition,
Eq. (2) implies that the coupling signal is identically zero in the
entire interval yielding y = ∑∞

r=−∞ ar , while Eq. (3) reveals
that an has a single component of frequency nω. In other
words, the synchronized system exhibits a periodic behavior
with frequency ω, whose nth component is identical to the nth

term in the Fourier expansion of y, if and only if, �n = 0 for
n ∈ Z. This criterion allows identification of unstable orbits
embedded in the chaotic signal y by examining the periodicity
of the well-defined system of Eq. (1).

An alternative way of examining this criterion is to study
the behavior of the coupling signal. Referring to Eq. (2), the
power of the coupling signal f (τ,ω) in the designated interval

can be expressed by

〈f (τ,ω)〉 =
∞∑

n=−∞

∣∣∣∣an

(
τ + 2π

ω

) − an(τ )
2π
ω

κn

∣∣∣∣
2

, (4)

which reflects the deviation of the system from a periodic orbit.
This paper investigates the behavior of 〈f (τ,ω)〉 to detect
UPOs embedded in the chaotic signal y. It utilizes the fact
that a typical chaotic trajectory visits the small neighborhood
of each unstable orbit during its temporal evolution on the
attractor. It approaches an unstable orbit along the stable
manifold, smears out the orbit for a priori unknown period
of time, and leaves the orbit along its unstable manifold to
some other orbits embedded in the attractor. Suppose that the
system evolves close to an unstable orbit with frequency ωo

in the interval τo < t < τo + 2π
ω

. In this situation, y exhibits a
periodic behavior, which can be described by

y =
∞∑

m=−∞
ymeimωot . (5)

This paper intends to identify τo, ωo, and ym by investigating
the behavior of f (τ,ω), as the system evolves on the chaotic
attractor. Solving Eq. (1) on the target UPO yields an explicit
expression for the coupling signal as

f (τo,ω) =
∞∑

m=−∞

(
1 +

∞∑
n=−∞

κn

imωo − inω

)−1

ymeimωot .

(6)
Equation (6) reveals that the intensity of the components of
the coupling signal exhibit notches that drop to zero at integer
submultiples of ωo. The coupling signal exhibits a similar
behavior as τ → τo for ω = ωo. The fact that the frequency of
periodic oscillations dependent on the amplitude in nonlinear
systems, allows expressing the coupling signal at the vicinity
of the unstable orbit as

f (τ,ωo) =
∞∑

m=−∞

(
1 +

∞∑
n=−∞

κn

imω̃ − inωo

)−1

ỹmeimω̃t , (7)

where ω̃ and ỹm converge to ωo and ym as the system
approaches the unstable orbit along the stable manifold,
and diverge from those values, as it leaves the orbit along
the unstable manifold. In other words, the power of the
coupling signal exhibits a notch that drops to zero at τ = τo.
Equations (6) and (7) show that ωo and τo can be identified at
notches of 〈f (τ,ω)〉, while ym is determined by the amplitude
of am in the designated interval.

This paper suggests investigating a time average of
〈f (τ,ω)〉 over the entire time series as described by

f̄ (ω) =
∫

w(τ,ω)〈f (τ,ω)〉dτ∫
w(τ,ω)dτ

, (8)

where w(τ,ω) = 〈f (τ,ω)〉−α for α � 0. The weight function
w(τ,ω) is assigned based on the fact that the power of
the coupling signal is more important around τ = τo than
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other regions, when detecting UPOs is concerned. ωo can be
extracted at notches of f̄ (ω), and τo can be identified at the
notch shape minima of f (τ,ωo). Once ωo and τo are extracted,
the components of the unstable orbit can be evaluated by

yn = ωo

2π

∫ τo+ 2π
ωo

t=τo

an(t)e−inωot dt . (9)

The proposed theoretical procedure can be implemented
in practical situations, where y is only available at discrete
time points {t1,t2, . . . ,tJ } as a finite sequence of samples
{y1,y2, . . . ,yJ }. Note that the magnitude of an vanishes
exponentially with respect to n, once the system starts evolving
close to a periodic orbit. This suggests employing a truncated
version of the synchronized system, for which the components
with |n| > N are assumed to have negligible contributions to
the response of the system. The truncated version of Eq. (1)
can be solved for an at each consecutive sampling time using
the Euler exponential integrator [13] over a desirable set of
discrete frequencies {ω1,ω2, . . . ,ωK} defined by

ωk = 1

Lk

2π

�t
, (10)

where �t is the sampling period, and Lk is the number of
samples in the designated interval. The following outlines the
steps involved in the implementation of the proposed methods
starting with k = 1 and j = 1.

(1) Numerical integration of the synchronized system for
ω = ωk using the Euler exponential integrator that yields [13]

a(tj+1) = e��ta(tj ) + �−1(e��t − I )κy(tj ) (11)

for j = 1,2, . . . ,J − 1. In this equation, a =
[a−N, . . . ,a0, . . . ,aN ]�, � is the coefficient matrix of a

in Eq. (1), and κ = [κ−N, . . . ,κ0, . . . ,κN ]�, where the
superscript � denotes the transpose of a matrix. Note that
e��t and �−1(e��t − I )κ are constant matrices that are
evaluated once for the whole integration process. The initial
condition required for the integration is arbitrary, as the results
are derived independently from the initial conditions.

(2) Evaluation of the power of the coupling signal at each
time point τj for j � J − Lk according to

〈f (τj ,ωk)〉 =
N∑

n=−N

∣∣∣∣an

(
τj + 2π

ωk

) − an(τj )
2π
ωk

κn

∣∣∣∣
2

. (12)

(3) Evaluation of the weighted time average of of the power
of the coupling signal over the entire time series. Equation (13)
allows evaluating f̄ (ω) for a given α as

f̄ (ωk) =
∑J−Lk

j=1 〈f (τj ,ωk)〉1−α∑J−Lk

j=1 〈f (τj ,ωk)〉−α
. (13)

(4) k → k + 1 and return to step 1, if k < K .

FIG. 1. Flow chart of detecting UPOs in chaotic time series.

(5) Evaluation of the components of the periodic orbit
according to

yn = 1

Lo

Lo∑
l=1

an(τo + l�t)e−inωo(τo+l�t), (14)

where ωo and τo are identified at notches of f̄ (ω) and
〈f (τ,ωo)〉, respectively, and Lo is the number of samples in
the interval τo � t � τo + 2π

ωo
.

Figure 1 presents a schematic of the proposed algorithm of
detecting UPOs in chaotic time series.

III. RESULTS AND DISCUSSIONS

To demonstrate the capabilities of the proposed approach,
detecting UPOs embedded in chaotic attractors of the Rössler
system and Mackey-Glass equation for a simple coupling
condition of κn = ω

π
is addressed.

A. Rössler System

The well-known Rössler system can be defined by the
following system of differential equations:⎡

⎣ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣ −x2 − x3

x1 + 0.2x2

0.2 + x3(x1 − 5.7)

⎤
⎦. (15)
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FIG. 2. Extracting the coordinates of UPOs from the x1 component of the Rössler system. (i) Noise-free data: (a) the recorded time history,
(b) the time average of the coupling signal for α = 0 (—), α = 1 (−−−), α = 2 ( · · · · ), (c) the power of the coupling signal for period-1
orbit (solid line), period-2 (dashed line), period-3 (dotted line), (d) the extracted component of the periodic evolution. (ii) White Gaussian
noise contaminated data with signal-to-noise ratio of 1dB: (e) the recorded time history, (f) the time average of the coupling signal for α = 0
(solid line), α = 1 (dashed line), α = 2 (dotted line), (g) the power of the coupling signal for period-1 orbit (solid line), period-2 (dashed line),
period-3 (dotted line), (h) the extracted component of the periodic evolution.

Assume that the x1 component of the system is available
for measurement. Figure 2 plots the results obtained from
the recorded time history of 5000 samples with the sampling
rate 40 Sps. The first set of results is presented for a noise-free
time series as plotted in Fig. 2(a) for N = 12. The period
of UPOs embedded in the measured signal is identified at
notches of f̄ (ω), as illustrated in Fig. 2(b). Figure 2(c) plots
the power of the coupling signal at the extracted frequencies. τo

is identified at the notch shape minima of 〈f (τ,ωo)〉. Extracting
ωo and τo allows evaluating the x1 component of the periodic
orbit through Eq. (14) as plotted in Fig. 2(d). Note that the
notches of Fig. 2(b) are very close to the first, second, and
third multiples of 2π

ω
= 5.88s. This implies the notches of

this figure may correspond to a single UPO around which the
system evolves for one, two, and three times of the period of
the UPO. To refute this possibility in the frequency domain,
the power of the coupling signal at each frequency needs to
be analyzed in the time domain. As illustrated in Fig. 2(c), the
notch shape minima of the power of the coupling signal at
the detected frequencies are separated by several periods of the
UPO, and no overlap is observed. This indicates the notches of
Fig. 2(b) correspond to distinct UPOs as illustrated in Fig. 2(d).
Figure 2(e) plots the white Gaussian noise contaminated signal
with signal-to-noise ratio (SNR) of 1 dB. Following the same
steps leads to the results which agree with those obtained from
the noise-free signal. Comparing Figs. 2(b) and 2(f) reveals that
noise has minimum effects on the identification of ωo. This is
important form a practical point of view, as the fundamental
frequency of unstable orbits is a critical piece of information in
many chaos control techniques [13,14]. Comparing Figs. 2(c)
and 2(g) indicates that the presence of noise has a negligible
effect on detection of τo. Figure 2(h) reveals that noise has

also slight effects on extraction of the frequency components
of the unstable orbit, due to the filtering properties of Eq. (14).
In fact, this equation reduces the effect of noise by filtering
out the undesirable frequencies from the components of the
synchronized system. In contrast to noise-free data, Eq. (14)
reveals that a larger truncation limit N does not necessarily
lead to a more accurate result, as the higher order components
capture the effect of noise in distorting the signal rather than
improve the quality of the results. In practice, an optimal
value of N is a limit beyond which the depth of the notches
stops following a descending pattern as the truncation limit
increases. Following this criterion leads to N = 9 for the noisy
time series. The results presented in Fig. 2 agree with those
reported in the literature [16].

To evaluate the accuracy of the results, the detected
orbits are used to control chaotic behavior of the system
using the classical proportional feedback controller [17]. Note
that the intensity of the error signal in the feedback loop reflects
the quality of the extracted orbits. Figure 3 plots the error signal
in the control process of periodic orbit of period 2π

ω
= 11.76s.

As illustrated in Fig. 3(a), the noise-free data leads to a
practically vanishing error reflecting the accuracy of the
extracted orbit. Figure 3(b) shows that the noise contaminated
data leads to small oscillations of the error around zero. It
indicates slight deviations of the extracted orbit from the UPO
embedded in the attractor. Figure 4 illustrates the dependence
of the error in the control process to the level of the noise in
the time series for N = 9. It plots the root mean square of
the error over one period of the target orbit ERMS for different
signal-to-noise ratios (SNR). The random nature of the noise
leads to slightly different time series even for the same level
of noise. The results presented in Fig. 4 are obtained based
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FIG. 3. The error signal obtained from (a) noise-free data and
(b) noisy data. xmax denotes the maximum of xp1 in one period of
the detected orbit. The control is switched on at t = 150, and is
applied to the first component of the vector field through the feedback
κp(xp1 − x1) of gain κp = 0.5.

on the average of ERMS for 10 noisy time series with the
same signal-to-noise ratio. It shows that the detected orbit in
Gaussian white noise contaminated data approaches to the
orbit detected in the noise free data as the signal-to-noise ratio
increases.

B. Mackey-Glass equation

The Mackey-Glass equation has been known as a paradig-
matic model for studying high-dimensional chaos, which
can be described by the following functional differential
equation:

ẋ = 2x(t − 2)

1 + x(t − 2)9.65
− x. (16)

This system exhibits a chaotic behavior for the parameters
of Eq. (16). The dynamics of this time delay system takes
place in an infinite dimensional function space, which makes
identification of the UPOs embedded in its chaotic attractor
particularly challenging. The results of this section show

FIG. 4. Dependence of the root mean square of the error in the
control loop to the level of noise for N = 9. The dashed line indicates
the error associated with the noise free data.

FIG. 5. Detecting the periods of UPOs from the x(t) component
of the Mackey-Glass equation for α = 0 (solid line), α = 1 (dashed
line), and α = 2 (dotted line).

that the proposed method of this paper can accurately
detect UPOs in time series of such a high-dimensional
system.

Figure 5 plots f̄ (ω) obtained from the x(t) component of
the system for N = 20. A time series of 30 000 data points
sampled at 20 Sps is processed. Nine notches can be identified
clearly in the desirable range of frequency, each of which may
correspond to a distinct UPO. It can be observed that the first,
second, and fourth notches of Fig. 5 are very close to the first,
second, and third multiples of 2π

ω
= 5.252s. This suggests that

they may correspond to a single UPO of period 2π
ω

= 5.252s,
around which the chaotic trajectory spends one, two, and three
times of this period, respectively. To verify the validity of this
possibility, the power of the coupling signal at each frequency
needs to be analyzed in the time domain. Figure 6 plots the
power of the coupling signal at the detected frequencies.
The separation between the minima in each case is smaller
that the period 2π

ω
= 5.252s. This result reveals that all the

three notches belong to a single UPO of period 2π
ω

= 5.252s.
Note that a similar condition is observed throughout the entire
time series when this UPO is detected. It can be verified that

FIG. 6. Power of the coupling signal for 2π

ω
= 5.25s (solid line),

2π

ω
= 10.55s (dashed line), and 2π

ω
= 15.85s (dotted line).
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FIG. 7. Detecting UPO of period 2π

ω
= 22.83s from the x(t)

component of the Mackey-Glass equation (a) power of the coupling
signal and (b) detected periodic motion.

the remaining notches correspond to distinct UPOs embedded
in the chaotic attractor.

Once the periods of UPOs are extracted, the moment at
which the system starts approaching to an unstable orbit can
be detected at the notches of the power of the coupling signal.
Figure 7 illustrates the result of detecting periodic orbits of
period 2π

ωo
= 22.83s. Figure 7(a) shows that the system visits

this periodic orbit several times during its temporal evolution
on the attractor. The unstable orbit can be identified best at
t = 649.79s, as the power of the coupling signal has a lower
minimum. Figure 7(b) plots the x(t) component of the detected
orbit. Following a similar approach allows detecting the rest of
the UPOs that correspond to the notches of Fig. 5, as plotted
in Fig. 8. The orbits presented with dots correspond to the
controlled orbit through the proportional feedback controller.
Small deviations of the controlled orbit from the detected one

indicate the capabilities of the proposed method in extracting
UPOs from time series of high-dimensional chaotic systems.

IV. CONCLUSION

This paper utilizes the concept of synchronization to
develop a method of detecting UPOs embedded in chaotic
times series. It reveals that UPOs can be detected at the
intervals in which the power of the coupling drops towards
zero in the form of a notch. The depth of the notch reflects
the deviation of the chaotic trajectory from the unstable orbit.
In this paper, the dominant notch with the lowest minimum
is used to extract the coordinates of the UPO. The current
scheme can be extended to incorporate the information from
several notches emerging from frequent visits of the chaotic
trajectory and the UPO to improve the quality of the detected
orbit. The proposed approach detects UPOs using a single state
of the system under a simple coupling condition. Therefore, it
is appealing in experimental situations. When the real time
detection of UPOs is concerned, the simple and efficient
integration algorithm described by Eq. (11) can be used in
real time implementation of the proposed method using digital
computers [13]. To do so, the frequency of the target orbit needs
to be extracted first using a recoded time history of the system
by following steps 1–4 of the proposed algorithm. Note that
this step can be avoided when dealing with nonautonomous
systems as the frequency of the UPOs are explicitly known as
integer submultiples of the frequency of the external force. An
alternative approach is to build a set of linear oscillators using
electrical components for each extracted frequency to facilitate
real time detection of the target UPOs in fast chaotic systems.
The application of this method can be extended to analyze
the behavior of chaotic systems, as the underlying dynamics
is characterized by the set of UPOs embedded in the chaotic
attractor.

FIG. 8. Two-dimensional projection of (a) chaotic attractor, detected UPOs (solid line), and controlled orbit (dotted line) of the Mackey-
Glass equation with periods (b) 2π

ωo
= 5.255s, (c) 2π

ωo
= 11.97s, (d) 2π

ωo
= 18.48s, (e) 2π

ωo
= 22.83s, (f) 2π

ωo
= 28.48, (g) 2π

ωo
= 29.49s, and

(h) 2π

ωo
= 33.69s. The control is applied through the feedback κp(xp − x) of gain κp = 1.5.
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