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We report a new effect of a cascade replication of dissipative solitons from a single one. It is discussed
in the framework of a common model based on the one-dimensional cubic-quintic complex Ginzburg-Landau
equation in which an additional linear term is introduced to account the perturbation from a particular potential of
externally applied force. The effect is demonstrated on the light beams propagating through a planar waveguide.
The waveguide consists of a nonlinear layer able to guide dissipative solitons and a magneto-optic substrate.
In the waveguide an externally applied force is considered to be an inhomogeneous magnetic field which is
induced by modulated electric currents flowing along a set of conducting wires adjusted on the top of the
waveguide.
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Dissipative solitons are stable localized structures existing
in nonlinear nonequilibrium systems, and they arise due to
balance between incoming and outcoming flows of energy
or matter within the structures [1]. In contrast to classical
solitons in integrable systems, dissipative solitons exhibit
entirely new behavior; they evolve without any constraints
on energy or momentum conservation. The nonconservative
nature of dissipative solitons involves bifurcations, complex
oscillations, and self-organization mechanisms considered
over several decades [2]. It has continuously been developed
to explain the appearance and nontrivial evolution of self-
organized soliton-like structures in hydrodynamical, optical,
condensed matter, and biological systems far from equilibrium
[1–3].

A wide range of dissipative solitons existing in systems
with inertialess nonlinearity can be effectively described in
the framework of the complex Ginzburg-Landau equation
(CGLE). This model covers phenomena of diverse nature
in mode-locked and fiber lasers, semiconductor devices,
Bose-Einstein condensates, systems with fluid and electro-
convection, chemical reactions, etc. [4]. Being a nonintegrable
dynamical system near a subcritical bifurcation and having
importance for applications, the CGLE has attracted much
attention [5–8]. As a result of intense studies a variety of
stable localized solutions of the CGLE has been found. They
include different forms of stationary and moving solitons
[5,9–11], periodically and quasiperiodically pulsating solitons
with simple or more complicated behaviors [8,12], chaotic
solitons [8,12], and exploding solitons, which periodically
manifest explosive instabilities returning to their original
waveforms after each explosion [11–14]. Remarkably, all the
forms of dissipative solitons exist indefinitely in time as long
as parameters of the system remain constant, whereas in some
range of system parameters the different forms of dissipative
solitons can coexist with each other [10–12].

An externally applied force upon dissipative solitons influ-
ences their waveforms and can be used to control the soliton
formation, evolution, and existence. The related techniques
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of soliton management in nonlinear optics and Bose-Einstein
condensates are comprehensively presented in Ref. [15].
Diffusion-induced turbulence in distributed dynamical sys-
tems near a supercritical Hopf bifurcation can be modeled
by the CGLE with an additional term accounting for a spatial
average of the complex amplitude [16] or a gradient force
[17]. In optics, spatial solitons governed by the nonlinear
Schrödinger equation can be split into two and more solitons
due to the soliton scattering on a longitudinal defect [18],
an external delta potential [19], and a longitudinal potential
barrier [20]. Moreover, various scenarios of the dynamics of
dissipative solitons interacting with a sharp potential barrier in
the cubic-quintic CGLE are analyzed in Ref. [21]. Similarly,
evolution of dissipative solitons in an active bulk medium has
been studied in the framework of the two-dimensional CGLE
with an umbrella-shaped [22] as well as a radial-azimuthal
[23] potentials. The use of an external magnetic field as a
driving force to gain control over propagation of solitary waves
through magneto-optic systems is another prominent example
[24–29]. In fact, significant benefits of utilizing a spatially
inhomogeneous external magnetic field to acquire different
propagation conditions of light dissipative solitons in magneto-
optic waveguides have been demonstrated in Refs. [30,31].
Moreover, a robust mechanism to perform a selective lateral
shift within a group of stable dissipative solitons propagating
through a magneto-optic planar structure has been proposed
in Ref. [32].

In the present paper, having considered the classical
electromagnetic field in a particular magneto-optic planar
nonlinear waveguide being under an action of the external
magnetic field, we report, for the first time to the best of
our knowledge, a remarkable effect of the cascade replication
of dissipative solitons. However, we stress that the discussed
effect is a direct property of any physical system which can
be described by means of the one-dimensional cubic-quintic
CGLE with a linear potential term.

Therefore, further, we consider light beams (dissipative
solitons) propagating through a planar waveguide, which
consists of a nonlinear guiding layer disposed on a magneto-
optic substrate (Fig. 1). The waveguide is infinitely extended
along the x and z axes, while along the y-axis optical fields
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FIG. 1. Sketch of a planar waveguide. It consists of a nonlinear
layer supporting dissipative solitons, and a magneto-optic substrate.
Spatially inhomogeneous magnetization �M0 = �x0Q(x,z) is induced
by longitudinally modulated electric currents Ji(z) flowing along a
set of conducting wires.

are restrained by the boundary conditions on the interfaces of
the nonlinear layer. Light beams propagate along the positive
direction of the z axis. The external magnetic field is induced
by the electric currents Ji(z) that flow through a set of N direct
conducting wires (orange straight lines in Fig. 1) arranged
on the top of the guiding layer. Each current is modulated
along the z axis, and its magnitude has a particular piecewise
constant profile (zigzag red lines in Fig. 1). Thus, the resultant
inhomogeneous magnetic field induced by such system of
currents acts as an external force which influences upon the
dissipative solitions.

Since the wires are extended along the z axis, the magnetic
field component that creates the magnetization is a vector
quantity. It is tangential to circles in the x y plane, centered on
each wire. Hence there are components of the magnetization
parallel to the x and y axes, but only that parallel to the x

axis is important because the components along the y axis
give rise to a polar magnetic effect [30,31]. The latter causes
transverse electric-magnetic (TE-TM) coupling, but since the
phase matching condition is not satisfied in this type of guide,
the polar effect is negligible.

Therefore, the spatially inhomogeneous distribution of the
magnetic field is considered to vary in transverse x and
longitudinal z directions only, which is accounted by the
scalar magnetization function Q(x,z). It is expressed in the
form [32]

Q(x,z) = 2
N∑

i=1

tanh

[
Ji(z)

47.74π
√

(x − xi)2 + 1

]
, (1)

where xi is the x coordinate of the ith current, and the piecewise
constant profile function Ji(z) defines the ith current that flows
along the corresponding wire. Note, the choice of the potential
profile (1) is related to the particular design of magneto-optic
waveguide, while for another physical system it may require
involving an appropriate potential. However, for the discussed
effect it is important that this potential appears in the form of
the relatively deep potential wells.

In the chosen structure geometry the magnetic field in-
fluences only the TM modes of the dielectric planar waveg-
uide. Therefore, the evolution of each TM mode within the

nonlinear layer can be described in the framework of the
following one-dimensional cubic-quintic complex Ginzburg-
Landau equation supplemented by the linear potential term
[30,31]:

i
∂�

∂z
+ iδ� +

(
1

2
− iβ

)
∂2�

∂x2
+ (1 − iε)|�|2�

−(ν − iμ)|�|4� + Q(x,z)� = 0, (2)

where the transverse and longitudinal coordinates x and z

are normalized on the beam width and the Rayleigh length,
respectively, �(x,z) is a scaled slowly varying electric field
envelop, δ is a linear absorption, β is a linear diffusion, ε is a
nonlinear cubic gain, ν accounts the self-defocusing effect
due to the negative sign, and μ defines quintic nonlinear
losses.

In order to simulate the propagation of dissipative solitons
in the planar waveguide under study, we apply the exponential
time differentiating method of the second order [33] to solve
Eq. (2). Since the dissipative solitons are objects localized in
space we assume that all waveforms arise within the finite
interval [−Lx/2,Lx/2]. In our numerical calculations, we set
Lx = 80 and typically sample the computational interval with
212 discretization points. The distance along the z axis we
sample using the step 10−2. The parameters of Eq. (2) are
chosen so as to ensure that the so-called “plane pulse” and
“composite pulse” solitons are admitted (characteristics of
these different pulses; see Ref. [10]). These parameters are
β = 0.5, δ = 0.5, ν = 0.1, μ = 1.0, and ε = 2.52. In order to
launch a stable dissipative soliton into the system, an arbitrary
function whose shape is close to the soliton waveform, can
be used as an initial condition. Thus, in all our calculations
we excite the “plane pulse” soliton using the following profile
�(x,0) = sech(x).

The last term in Eq. (2) accounting for the externally
applied force acts as either attractive or repulsive potential
corresponding to the positive or negative sign of the function
Q(x,z), respectively. Concerning the soliton propagation in
magneto-optic waveguides, this action appears as either focus-
ing or defocusing effect influenced by an external magnetic
field. Indeed, as pointed out in Refs. [30,31], a light beam
propagating through a planar magneto-optic waveguide can
be focused (defocused) if the beam propagates in the same
(opposite) direction as a direct electric current inducing
the magnetic field. The focusing effect has already been
used to gain a control over the lateral shift of dissipative
solitons propagating in the magneto-optic waveguide [32].
Here we employ this nonreciprocal effect to demonstrate
a new mechanism of magnetic control over the waveform
transitions of dissipative solitons resulting in their cascade
replication.

Two particular manifestations of such a cascade replication
of dissipative solitons in the waveguide structure under study
are presented in Fig. 2 and the Supplemental Material [34],
where, for instance, three and five light beams are replicated
from a single launched beam. The cascade replication appears
due to influence of the spatially inhomogeneous magnetic field
induced by the electric currents with particular profiles Ji(z).
The distribution of the magnetization Q(x,z) is presented in
the corresponding color maps situated on the upper edge of
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FIG. 2. Waveform transitions and cascade replication of a dis-
sipative soliton in a magneto-optic planar waveguide: (a) three and
(b) five dissipative solitons are produced from a single launched beam
due to utilizing the inhomogeneous magnetic field induced by three
and five piecewise constant currents modulated along the z axis,
respectively. Corresponding parameters of currents, see in Tables I
and II.

each plot, where the conducting wires are drawn as orange
straight lines. In the inserts on the left side of each plot
the cross-section profiles of this magnetization are depicted
with blue solid lines, while in the main parts of the figures
red solid lines represent three-dimensional intensity plots of
solitons.

In order to explain the particular manifestation of the
cascade replication shown in Fig. 2(a) overall waveform
transitions can be described within five stages. These stages
are listed in Table I and outlined in Fig. 3(a), where they are
denoted by Roman numerals. At Stage I, a stable “plain pulse”
soliton arises from the initial beam �(x,0) launched into the
waveguide. At Stage II three currents with certain magnitudes
are switched on to spread the soliton waveform transversely.
Along the left and right wires the currents J1 and J3 flow
with equal positive magnitudes attracting the soliton, whereas

TABLE I. Parameters of three piecewise constant currents flow-
ing through wires adjusted at positions {−15,0,15} on the x-axis
scale.

Stage Domain, z Current magnitudes, Ji(z)

I [0,100) {0,0,0}
II [100,239.5) {300,−30,300}
III [239.5,450) {0,0,0}
IV [450,500) {30,300,30}
V [500,600) {0,0,0}
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FIG. 3. Intensity distribution of a dissipative soliton propagating
through a magneto-optic planar waveguide: (a) stages of soliton
waveform transition; (b) periodical pulsations; areas shaded in light
green correspond to zones suitable for replication; green dashed line
indicates transition between Stage II and Stage III; (c) waveform
of periodically pulsating soliton at the waveguide cross section
zc = 239.5 that is used for replication. Corresponding parameters
of currents; see Table I.

012206-3



BOGDAN A. KOCHETOV AND VLADIMIR R. TUZ PHYSICAL REVIEW E 96, 012206 (2017)

TABLE II. Parameters of five piecewise constant currents flowing
through wires adjusted at positions {−30,−15,0,15,30} on the x-axis
scale.

Stage Domain, z Current magnitudes, Ji(z)

I [0,100) {0,0,0,0,0}
II [100,239.5) {0,300,−30,300,0}
III [239.5,280) {0,0,0,0,0}
IV [280,400) {300,0,30,0,300}
V [400,503.3) {300,300,−30,300,300}
VI [503.3,650) {0,0,0,0,0}
VII [650,700) {30,30,300,30,30}
VIII [700,800) {0,0,0,0,0}

along the middle wire the current J2 has a negative magnitude
forming a repulsive potential. Such a current distribution leads
to monotonic spreading soliton waveform at early phase, then
the short transient mediate phase takes place, which is replaced
by the final nonstationary phase, where the soliton waveform
changes its profile periodically. The periodical pulsations are
disrupted by switching off the currents J1 − J3, which initiates
Stage III. At Stage III the replication of the single primary
soliton into three noninteracting stable ones is fixed. The
central soliton has a form of “composite pulse”, whereas the
remaining two are “plain pulse” stationary solitons. Then,
using the focusing mechanism [32], at Stage IV the central
“composite pulse” soliton is transformed into the “plain pulse”
soliton. It is achieved by switching on the current of high
magnitude to realize the waveform transition of the central
beam, whereas the positions and waveforms of the remaining
two beams are held by currents of low magnitude. At the
final Stage V all currents are switched off, and three exact
copies of the primary soliton beam start propagating through
the waveguide.

In fact, the soliton replication occurs at the certain mo-
ment of transition from Stage II to Stage III, when soliton
pulsations get broken abruptly by switching off the currents.
This important transition between Stage II and Stage III is
highlighted in Fig. 3(b), where three last periodical waveform
pulsations and the start of Stage III are zoomed in. One can
see that the periodical pulsations arise and persist as long
as the currents magnitudes remain unchanged. Switching off
the currents turns the periodically pulsating soliton waveform
back to the stationary one. However, depending on the phase
of periodical pulsations when the currents are switched off,
the soliton has an alternative to turn back either to one “com-
posite pulse” or to three noninteracting solitons. In the latter
case two “plane pulse” and one “composite pulse” solitons
arise.

Thus, the ability of soliton replication depends critically on
the waveform profile that exists within the soliton pulsation
period at which the currents need to be switched off. Three
periodical zones containing the waveform profiles suitable
for replication along the waveguide length are outlined and
shaded with light green in Fig. 3(b). Within the outlined
zones, switching off the currents results in transition of the

pulsating soliton into two “plane pulse” and one “composite
pulse” solitons, which are suitable for subsequent manip-
ulations. Switching off the current outside these zones is
inappropriate, since only a single “composite pulse” soliton
appears in this case. Such an occurrence of two different
scenarios is explained by the fact that both the “plane
pulse” and “composite pulse” solitons can coexist in the
given system under the chosen set of equation parameters.
The waveform of pulsating soliton used for replication is
presented in Fig. 3(c). It is fixed at the waveguide cross section
zc = 239.5, which is indicated by the green dashed line in
Fig. 3(b).

The cascade replication of dissipative solitons can be
performed repeatedly to generate more light beams within
the waveguide. This ability is presented in Fig. 2(b), where
the cascade replication has been achieved two times in a
row. The simulation parameters are summarized in Table II.
This cascade replication is performed in eight stages. The first
three stages I–III repeat the current manipulations described
above. Stage IV is intended to shift the replicated “plain pulse”
solitons away from the central “composite pulse” soliton. The
currents J1 and J5 of high magnitude induce focusing magnetic
field that shifts the corresponding solitons, while the current J3

of low magnitude is switched on to hold the central “composite
pulse” soliton on the way of its propagation. The manipulations
performed at stages V–VIII just repeat those of the stages II–V
for the cascade replication. As a result of these manipulations,
five exact copies of the primary beam are obtained in the
waveguide.

In conclusion, we considered the effect of cascade repli-
cation of dissipative solitons in a system with inertialess
nonlinearity governed by the one-dimensional cubic-quintic
CGLE with an additional linear term supplemented to account
for the influence of an externally applied force upon the
solitons. We found out that the replication is only possible
when a periodically pulsating soliton waveform caused by
an externally applied force starts the bifurcation transition to
a stationary one being within the periodical narrow zones.
The width and location of zones depend on a potential profile
and the equation parameters. Our numerous simulations for
different sets of the equation parameters let us to conclude that
the cascade replication is an inherent effect of the Ginzburg-
Landau dissipative solitons, which appears as a response on
the action of a strong external force. This effect is expected
to be observed among other dissipative solitons beyond the
CGLE model.

As a practical model, we studied the effect of cascade
replication of light dissipative solitons propagating through
a magneto-optic planar waveguide, where an inhomogeneous
magnetic field plays a role of the external force that influences
upon the light beams. As a result of particular manipulations
with the modulated currents that induce this magnetic field,
three and five exact copies of the primary beam are obtained.
This replication method can potentially be used to design
optical demultiplexers with a new architecture. In an exper-
imental setup we propose to arrange a corresponding set of
wires of fixed length on the top of waveguide to perform
a longitudinal modulation of electric currents used in the
model.
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