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We report results of systematic analysis of various modes in the flatband lattice, based on the diamond-chain
model with the on-site cubic nonlinearity, and its double version with the linear on-site mixing between the
two lattice fields. In the single-chain system, a full analysis is presented, first, for the single nonlinear cell,
making it possible to find all stationary states, viz., antisymmetric, symmetric, and asymmetric ones, including
an exactly investigated symmetry-breaking bifurcation of the subcritical type. In the nonlinear infinite single-
component chain, compact localized states (CLSs) are found in an exact form too, as an extension of known
compact eigenstates of the linear diamond chain. Their stability is studied by means of analytical and numerical
methods, revealing a nontrivial stability boundary. In addition to the CLSs, various species of extended states
and exponentially localized lattice solitons of symmetric and asymmetric types are also studied, by means of
numerical calculations and variational approximation. As a result, existence and stability areas are identified for
these modes. Finally, the linear version of the double diamond chain is solved in an exact form, producing two
split flatbands in the system’s spectrum.
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I. INTRODUCTION

The behavior of dynamical lattices, which model a vast
variety of physical systems, is determined by the interplay
of their linear-excitation spectra and local nonlinearity [1–5].
An essential peculiarity of many lattices is the presence of
at least one flatband (FB), i.e., a dispersionless branch in the
spectrum [6]. Interest in FBs was drawn by their discovery
in the Hubbard [7] and Su-Schrieffer-Heeger models, where
they underlie the existence of a stable ferromagnetic phase. It
was also demonstrated that the FB may cause insulator-metal
transitions in the underlying lattices [8]. Further, quantum-Hall
and topological-insulator states were predicted in FB systems
[9]. Lattices can support FBs in diverse physical settings, in-
cluding arrayed optical wave guides [10,11], exciton-polariton
condensates in semiconductor microcavities with lattice pat-
terns etched into them [12,13], and atomic Bose-Einstein
condensates (BECs) loaded into an appropriately designed
optical lattice [14,15].

A remarkable property of linear dynamical lattices featuring
the FB spectrum is that, in addition to the usual dispersive
“phonon” excitations, they support exact eigenmodes in the
form of compact localized states (CLSs), which include a finite
number of lattice sites with nonzero amplitudes [6,16,17]. In
particular, these states may be robust against the presence
of disorder in the system [18]. A local resonant mechanism,
which is similar to the Fano resonance [19], may hybridize the
CLS with the phonon modes, thus giving rise to new varieties
of lattice excitations [16]. Experimentally, the existence of
CLSs has been demonstrated in the above-mentioned settings
which admit the realization of the FB spectra, viz., optical
wave-guiding arrays [20–24], exciton-polariton condensates
[13], and atomic BECs [15].

Unlike the self-trapped discrete solitons in nonlinear lattices
[1,5], the localization of CLSs does not require the presence

of nonlinearity. On the other hand, nonlinearities, represented
by the Kerr term in optics and collisional term in BECs,
are naturally present in physical settings which admit the
realization of FBs and CLSs. This fact suggests exploration
of the existence and dynamics of CLSs in nonlinear lattices
and their possible relations to exponentially localized (but
not compact) discrete solitons, which are generic modes in
nonlinear lattices. In recent works, it was demonstrated that
the nonlinearity may produce various effects in FB systems,
such as stabilization or destabilization of the compact states,
detuning of their frequencies, interactions between CLSs, and
coexistence and interactions between CLSs and lattice solitons
[16,25–30].

The purpose of this paper is twofold. First, we aim to
develop a nonlinear version of the FB system based on the
known configuration in the form of the “diamond chain” [16]
(see Fig. 1), by adding the on-site cubic nonlinearity to it.
Working in this direction, we aim to construct CLSs and usual
(exponentially localized, but not compact) discrete solitons
in this chain and analyze their stability. Results obtained
for the CLSs demonstrate a specific extension of this type
of modes into the realm of the nonlinearity: they continue
to exist as compact states, featuring a nontrivial stability
boundary inside their family, which is a manifestation of
the nonlinearity. Stability boundaries for families of expo-
nentially localized discrete solitons are found too. Second,
we introduce a double diamond chain, with on-site linear
coupling between two components. It can also be readily
implemented in optics, considering arrays of double-core wave
guides [31], and in BECs, as a binary condensate whose
components are Rabi-coupled by a resonant electromagnetic
field [32].

Analytical results for the nonlinear one-chain model are
reported in Sec. II. They present a full exact solution for
the single nonlinear diamond cell (rather than in the chain),
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FIG. 1. (a) The single-component diamond chain. (b) The respective dispersion relation.

including both symmetric and asymmetric states, and an exact
solution for the CLS in the infinite nonlinear chain, including
a partial analysis of its stability. Numerical findings for the
single nonlinear chain are presented in Sec. III. These include
extended modes, which may be considered as fragments of
continuous-wave (CW) states, symmetric and asymmetric
exponentially localized lattice solitons, and the full analysis
of the stability of the nonlinear CLS. Further, in Sec. IV we
present analytical results for the lattice solitons in the nonlinear
chain, obtained by means of the variational approximation
(VA), which compare well to their numerical counterparts. In
Sec. V, an exact solution is given for the linear version of the
double diamond chain, which features two separated flatbands.
Finally, Sec. VI concludes the paper.

II. THE SINGLE-COMPONENT MODEL:
ANALYTICAL RESULTS

A. The formulation

We consider the quasi-one-dimensional lattice in the form
of the “diamond chain” with the on-site cubic nonlinearity,
which is shown in Fig. 1(a). The band structure of the chain’s
linear version, plotted in Fig. 1(b), is produced by Eq. (8);
see below. The spectrum contains two dispersive bands which
intersect with the third, flat band, at edges of the Brillouin zone.
The intersections create Dirac points with conical dispersion
around them.

The dynamics of the diamond lattice is governed by
equations for complex amplitudes at sites labeled a, b, and
c in Fig. 1(a):

i
dan

dz
+ (bn + bn+1) + β|an|2an = 0,

i
dbn

dz
+ (an + an−1 + cn + cn−1) + β|bn|2bn = 0,

i
dcn

dz
+ (bn + bn+1) + β|cn|2cn = 0. (1)

Here evolution variable z is the propagation distance,
if the lattice is realized as an array of optical wave
guides [10,11,20–24], n is the cell’s number in the chain,
the intersite coupling constant is scaled to be 1, and β is the
strength of the on-site nonlinearity. The propagation equations

can be derived from the corresponding Hamiltonian,

H =
∑

n

(
[(a∗

n + c∗
n)(bn + bn+1) + c.c.]

+ β

2
(|an|4 + |bn|4 + |cn|4)

)
, (2)

where both the asterisk and c.c. stand for the complex-
conjugate expression. The Hamiltonian is a dynamical invari-
ant of system (1), along with the total norm,

N =
∑

n

(|an|2 + |bn|2 + |cn|2). (3)

Here we assume that β is positive. Then, using the scaling
invariance of the system, one can fix β = 1, while N will
play the role of a parameter of families of stationary states
(in the analytical part of the work, we do not fix β = 1, since
keeping β > 0 as a free coefficient does not make analytical
results cumbersome). In Eq. (17) with β < 0, the sign of the
nonlinearity coefficient can be reversed by changing bn →
−bn and replacing the equations by their complex-conjugate
version.

Eigenmodes of system (1) with real propagation constant
E are looked for as

{an(z),bn(z),cn(z)} = {An,Bn,Cn}eiEz, (4)

with stationary amplitudes {An,Bn,Cn} satisfying the follow-
ing equations:

−EAn + (Bn + Bn+1) + β|An|2An = 0, (5)

−EBn + (An + An−1 + Cn + Cn−1) + β|Bn|2Bn = 0, (6)

−ECn + (Bn + Bn+1) + β|Cn|2Cn = 0. (7)

The spectrum of the linearized version of (5)–(7) contains three
branches,

E(k) = 0,±2
√

2 cos(k/2), (8)

which are shown above in Fig. 1(b). Obviously, E(k) = 0
represents the FB. The branches were derived by substituting,
in the linearized equations, the continuous-wave (CW) ansatz,
{An,Bn,Cn} = {A,B,C}eikn, with real wave number k, which
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takes values in the first Brillouin zone, −π � k � +π . The
eigenmodes corresponding to the flat (“0”) and dispersive
(“±”) branches (8) amount, respectively, to the following sets
of constant amplitudes:

{A,B,C}0 = 1√
2

(1,0,−1),

{A,B,C}± = 1

2
(1,±

√
2e−ik/2,1). (9)

The CLSs are produced by the exact solution in the form
of Eq. (4) with E = 0 (and zero group velocity), which is
completely localized in a single unit cell, centered at an
arbitrary position, n = N0:

{An,Bn,Cn} = 1√
2
δn,N0 (1,0,−1), (10)

where δm,n is the Kronecker’s symbol [6,16]. This solution
exists due to the destructive interference (cancellation of the
field) at site b [see Fig. 1(a)], which is provided by the π phase
difference between the a and c sites. In contrast, eigenmodes
(9) corresponding to the dispersive bands are completely
delocalized plane waves. Because CLSs are degenerate modes
in the linear system, with respect to their placement in the
lattice, their arbitrary combinations are exact solutions too
[17,20,21]. In this way, one can easily construct extended states
(fragments of CWs) localized on several adjacent cells of the
lattice.

As mentioned above, experimental realization of flat
bands and CLSs was reported in Refs. [20,23,24], while
counterparts of CLSs in nonlinear lattices were discussed in
Refs. [16,25–29]. In this work, we aim to develop the analysis
of CLSs and lattice solitons coexisting with them in the
nonlinear diamond-chain system.

B. Reduced problem: One cell of the single nonlinear chain

1. The setting

We begin the analysis of the nonlinear diamond chain by
consideration of the simplest case of the system truncated to a
single cell, which is drawn in Fig. 2. It contains single “A” and
“C” sites, which communicate with each other via two “B”
sites (the structure of the system implies that two fields at the
B sites are identical).

FIG. 2. The truncated single-cell nonlinear system.

The truncated system is based on the following system
of equations, in which the on-site nonlinearity coefficient is
scaled to be β ≡ 1 (if β is negative, its sign can be inverted by
means of a simple transformation, b → −b, z → −z):

i
da

dz
+ 2b + |a|2a = 0, (11)

i
dc

dz
+ 2b + |c|2c = 0. (12)

i
db

dz
+ a + c + |b|2b = 0. (13)

This system with three degrees of freedom conserves two
dynamical invariants: the Hamiltonian,

H = 1
2 (|a|4 + |c|4 + 2|b|4) + 2[b(a∗ + c∗) + b∗(a + c)]

(14)

[cf. Eq. (2)], and the norm,

N = |a|2 + |c|2 + 2|b|2 (15)

[cf. Eq. (3)]. The Hamiltonian representation of Eqs. (11)–
(13) (i.e., the corresponding Poisson brackets or symplectic
structure) is based on equations

da

dz
= i

∂H

∂a∗ ,
dc

dz
= i

∂H

∂c∗ ,
db

dz
= i

2

∂H

∂b∗ . (16)

Although the present model with three degrees of freedom
seems very simple, to the best of our knowledge it was not
explored before. Below, we report a full analysis of exact
stationary solutions of this system and their stability, which
can be easily realized in the experiment.

2. Antisymmetric and symmetric stationary solutions

Stationary solutions to Eqs. (11)–(13) with a real propaga-
tion constant, E, are looked for as

{a(z),b(z),c(z)} = {A,B,C}eiEz (17)

[cf. Eq. (4)], with amplitudes {A,B,C} determined by the
algebraic equations:

− EA + 2B + A3 = 0, (18a)

−EC + 2B + C3 = 0, (18b)

−EB + A + C + B3 = 0. (18c)

These equations have an obvious antisymmetric solution,

B = 0, A = −C =
√

E, (19)

which exists at E � 0 (all the solutions can be defined as those
with A > 0; obviously, there is also a solution with opposite
signs in front of all the amplitudes).

There are also symmetric solutions, with A = C, B �= 0.
Four different solutions of this type can be identified. The first
is

A = C = B = √
E − 2, (20)

which exists at E � 2, and there is another solution, with

A = C = −B = √
E + 2, (21)
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FIG. 3. The bifurcation diagram for the weakly subcritical transi-
tion from symmetric to asymmetric stationary states in the nonlinear
single-cell system. The asymmetry parameter, defined as per Eq. (38),
is shown versus propagation constant E of the stationary solutions.
Stable and unstable branches of asymmetric solutions are shown by
solid and dashed curves, respectively.

which exists at E � −2. Finally, there are two additional
symmetric solutions, which correspond to the ± signs in
Eq. (22), and exist at E � 4:

A = C =
√

1

2
(E ±

√
E2 − 16),

B = 2

A
≡

√
1

2
(E ∓

√
E2 − 16). (22)

3. Bifurcation points

The symmetric solutions undergo a symmetry-breaking
bifurcation (SBB), which gives rise to nontrivial asymmetric
solutions, with A �= C. The analysis of the transition from
symmetric states to asymmetric ones is an issue of general in-
terest [33,34], including the present model. Bifurcation points

(there are two such critical points) can be found analytically.
To this end, replacing Eqs. (18a) and (18b) by their sum and
difference, and canceling in the latter one a common factor,
A − C �= 0, the system of algebraic equations (18a)–(18c)
is replaced by the following one:

E = A2 + C2 + AC, (23a)

−E(A + C) + 4B + A3 + C3 = 0, (23b)

−EB + A + C + B3 = 0. (23c)

Exactly at the SBB point, Eqs. (23a)–(23b) must have a
solution with A = C. It is easy to find that this is possible
at two points (as mentioned above):

E = 3, A = C = B = 1 (24)

and

E = 3
√

2, A = C = 21/4, B = 23/4. (25)

Obviously, the bifurcation point (24) pertains to symmetric
solution (20), while point (25) pertains to symmetric solution
(22) with the minus sign chosen for ±.

The similar analysis for the antisymmetric solution read-
ily demonstrates that it never undergoes an antisymmetry-
breaking bifurcation (formally, the bifurcation occurs at an
unphysical point, with E2 = −2).

4. The analysis of the bifurcations

To identify the character of the SBB at point (24), we
consider solutions of Eqs. (23a)–(23c) in an infinitesimal
vicinity of the bifurcation, setting

E = 3 − ε,0 < ε � 1, (26)

A = 1 − αε + γ
√

ε, (27)

C = 1 − αε − γ
√

ε, (28)

B = 1 − βε. (29)
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FIG. 4. Amplitudes of symmetric CW states versus E. (a) The stable CW family, and two unstable families (b, c). Stable and unstable
solutions are shown by continuous and dashed lines, respectively.
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FIG. 5. Amplitudes A = −C and B of the antisymmetric CW as
functions of E.

In Eq. (26), term ∼ε is defined with sign minus in front of it in
the anticipation of the fact that the SBB will be subcritical
[33] at this point. The substitution of Eqs. (26)–(29) into
Eqs. (23a)–(23c) and expanding the result up to order ε easily
yields the following results:

γ 2 = 2, (30)

α = 1/2, β = 7/2. (31)

The conclusion is that the SBB at point (24) is indeed subcrit-
ical: the asymmetric solutions originally move backward (in
the direction of decreasing E), as unstable ones, after emerging
at the bifurcation point. Later, they turn forward, passing the
respective turning point, where they undergo stabilization [33].

Furthermore, it is relevant to check if Eqs. (23a)–(23c)
would admit a regular extension of the solutions from point
(24) (i.e., built in terms of ε, rather than

√
ε), instead of the

bifurcation. This implies looking for a solution in the form of
the following expansion, instead of Eqs. (27)–(29):

A = 1 − aε, C = 1 − cε, B = 1 − bε. (32)

Then the substitution of this into Eq. (23a) yields a + c =
1/3, while the substitution into Eq. (23c) yields a + c = 1.
This contradiction implies that regular expansion (32) cannot
produce a solution, the bifurcation being the only possibility.

Similarly, in a vicinity of bifurcation point (25) we seek for
a solution to Eqs. (23a)–(23c) in the form

E = 3
√

2 − ε,|ε| � 1, (33)

A = 21/4 − αε + γ
√

ε, (34)

C = 21/4 − αε − γ
√

ε, (35)

B = 23/4 − βε. (36)

The same procedure as the one outlined above for the
SBB at point (24) yields γ 2 = −1/7, α = (1/7)×2−1/4, β =
(4/7)×2−3/4. The formal result with γ 2 < 0 means that the
bifurcation at point (25) actually does not take place. Thus, the
actual SBB takes place solely at point (24).

5. Asymmetric solutions

The asymmetric solutions produced by the SBB can be
easily found in the asymptotic form at E → +∞ directly from
Eqs. (18a)–(18b):

A ≈
√

E, B ≈ A/E ≈ 1/
√

E, C ≈ 2B/E ≈ 2/E3/2.

(37)

The existence of the single solution in the asymptotic form (37)
agrees with the conclusion made in the previous subsection,
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FIG. 6. Amplitudes A, B, and C as functions of E, for two families of asymmetric CW states. Due to the axes’ scale in panel (a), amplitude
A seems to be represented by a single (formally stable) curve, whereas it is actually composed of two close curves, originating from a common
initial point at E = 5.66, with a completely unstable lower branch, and the upper one being stable at E > 13.95, A > 3.99.

012204-5



ZEGADLO, DROR, VIET HUNG, TRIPPENBACH, AND MALOMED PHYSICAL REVIEW E 96, 012204 (2017)

−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

A, C

B

{A
,B

,C
}

n
−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

A, C

B

{A
,B

,C
}

n
−30 −20 −10 0 10 20

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A, C

B

{A
,B

,C
}

n

(a) (b) (c)

FIG. 7. Examples of the discrete symmetric solitons corresponding to the marked points in Fig. 8. Panels (a), (b), and (c) refer to points a
(E = 10, the stable lower branch), b (E = 10, the unstable upper branch), and c (E = 2.90, the bifurcation point), respectively. Amplitudes
An = Cn and Bn are denoted, severally, by green and blue lines.

where it was found that only one bifurcation point, given by
Eq. (24), is a real one. In the general case, the asymmetry of
the solutions is defined by

	 ≡ A2 − C2

A2 + C2
. (38)

Next, we aim to address asymmetric solutions emerging
from the point of the subcritical SBB. The system of three
coupled cubic algebraic equations (18a), (18c), and (18b) has
27 roots, which makes it impossible to present them in an
explicit analytical form. Most roots are complex, hence they
are unphysical. One root remains real at E > 3, i.e., above
the SBB point (24). This solution describes the stable part of
the asymmetric-solution branch where it goes forward, after
passing the turning point (see the continuous lines in Fig. 3).
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0
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30

40

50

60

a

b

c

N

E

FIG. 8. The stability of the first two families of symmetric discrete
solitons, shown by means of the respective N (E) curves. The marked
points correspond to the solitons displayed in Fig. 7.

On the other hand, there also exists another solution which
remains real in a very narrow range: 2.994 � E � 3. It
represents the initial short backward-going unstable segment
of the asymmetric branch, which is shown by dashed lines in
Fig. 3.

C. The single infinite chain: Nonlinear compact localized
states (CLSs) and their stability

Some simple but essential analytical results can be obtained
also for the infinite diamond chain based on nonlinear
equations (1) and (5)–(7) (here we keep the nonlinearity
coefficient β as a free parameter). It admits an obvious solution
for E > 0, which is a nonlinear extension of the CLS (10)
obtained for E = 0 in the linear lattice:

A0 = −C0 =
√

E/β, all other An,Cn,Bn = 0 (39)

[cf. an equivalent single-cell state given by Eq. (19)]. It is
relevant to consider, in an analytical form, the stability of
this exact antisymmetric solution (with A0 = −C0) against
antisymmetry-breaking perturbations, or, in other words, a
possibility of a bifurcation breaking the antisymmetric form
of this state (recall that such a bifurcation does not occur in
the single-cell system, as shown above).

To this end, we consider a small perturbation in an originally
empty semi-infinite lattice, starting from cite b0 at n = 0,
which is followed by sites a0 and c0 and then by the lattice
at sites with n � 1. If the respective field is B at n = 0, the
solution of linearized equations (5)–(7) at n � 1, which is
localized, exponentially decaying at n → ∞, can be easily
found:

Bn = Be−λn, An = Cn = αBe−λn, (40)

α = 1

4
(E −

√
E2 − 8), (41)

e−λ = 4

E2 − 4 + E
√

E2 − 8
< 1. (42)

This solution exists for E >
√

8.
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FIG. 9. A typical example of the evolution of an unstable symmetric discrete soliton, belonging to the unstable upper branch in Fig. 8, with
E = 10. The stationary version of this soliton is shown in Fig. 7(b).
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FIG. 10. Two additional families of symmetric localized solitons, displayed by means of N (E) curves.
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and (b) correspond to points marked on the lower branches in Figs. 10(a) and 10(b), respectively, both with E = 15.
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FIG. 12. An example for the evolution of an unstable mode that belongs to the partially stable family in Fig. 10(a), with E = 15 [Fig. 11(a)
shows the unperturbed shape of this discrete soliton].

012204-8



SINGLE AND DOUBLE LINEAR AND NONLINEAR . . . PHYSICAL REVIEW E 96, 012204 (2017)

−5 0 5
−4

−3

−2

−1

0

1

2

3

4

A

B

C

{A
,B

,C
}

n
−5 0 5

−4

−3

−2

−1

0

1

2

3

4

A

B

C

{A
,B

,C
}

n
(a) (b)

FIG. 13. Compact antisymmetric states extending to one cell (a) and three cells (b). Amplitudes A, B, and C are denoted by black, blue,
and green lines, respectively.
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FIG. 14. The evolution of an unstable compact antisymmetric discrete solution, whose stationary form is given by Eq. (46), with a single
cell (n = 1) and E = 5.
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Then, taking into account the coupling of the two sites
b0 to the semi-infinite chains originating from them, and to
amplitudes A and C at adjacent sites belonging to the cell at
n = 0, Eqs. (6) and (23b) yield

(A + C) + 2αB + B3 = EB. (43)

(A2 + C2 − AC − E)(A + C) = −4B. (44)

Finally, the linearization of Eqs. (43) and (44) for small
antisymmetry-breaking perturbations, (A + C) and B, leads
to the condition for the onset of the respective instability:

E2 + E
√

E2 − 8 + 4 = 0. (45)

An elementary consideration of Eq. (45) demonstrates that
its only solution is an unphysical one, E2 = −1 (recall in
the single-cell model the analysis has predicted the for-
mal antisymmetry-breaking bifurcation at another unphysical
point, E2 = −2). Thus, the nonlinear CLS (39) is stable
against the antisymmetry-breaking perturbations. However, in

a part of their parameter space these modes may be destabilized
by other perturbations, as shown below.

III. THE NONLINEAR INFINITE SINGLE CHAIN:
NUMERICAL RESULTS

All the stationary solutions described below were con-
structed by means of the imaginary-time method, or applying
the Newton-Raphson method for the corresponding nonlinear
boundary-value problem. The stability of the solutions was
identified by the analysis of linearized equations for small
perturbations, and using the linear Cranck-Nicholson scheme
for the calculation of the respective eigenvalues. The thus
predicted stability and instability was then verified through
direct simulations of the propagation of initially perturbed
modes, utilizing the Crank-Nicholson finite-difference algo-
rithm. In plots presented below, stable and unstable solutions
are indicated by continuous and dashed curves, respectively.
All the results reported below refer to β = 1, fixed by means
of rescaling.
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FIG. 15. The total norm versus the propagation constant, E, for the families of asymmetric-symmetric lattice solitons (a) and asymmetric-
antisymmetric ones (b) (see definitions in the text). The marked points correspond to the examples displayed in Fig. 16. (c, d): The same
families as in (a, b), but shown by means of the θ (E) curves, where the asymmetry ratio, θ , is defined in Eq. (50).
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FIG. 16. Examples of profiles of (a) asymmetric-symmetric lattice solitons, and (b) asymmetric-antisymmetric ones. Panels (a) and (b)
correspond to the marked points in the lower branches of the curves displayed in Fig. 15(a) (E = 5,N = 5.2) and 15(b) (E = 15,N = 49.04),
respectively.

A. Continuous-wave (CW) solutions

First, we have examined the existence and stability of
CW solutions for the system based on Eqs. (1) and (5)–(7).
Diagrams which show amplitudes A, B, and C as functions
of propagation constant E, for symmetric, antisymmetric, and
asymmetric CW states, are presented in Figs. 4, 5, and 6,
respectively.

For the symmetric case, with A = C, three CW families
were identified. The first one, which exists for all E > 0, and is
completely stable against modulational perturbations, is shown
in Fig. 4(a). The second family, which is present at E > 9.70
and features two coexisting branches [Fig. 4(b)], is entirely
unstable. The third family, presented in Fig. 4(c), exists at
E > 2.82 and is totally unstable too (although close to the
lower edge, namely, at 2.82 < E < 2.90, the modulational

instability of the CW is weak). Direct simulations (not shown
here in detail) demonstrate that unstable CWs are transformed
into chaotic spatiotemporal states.

Figure 5 introduces antisymmetric CW solutions, with
A = −C and B = 0. It is found to be partially stable,
namely, at E > 5.64, which corresponds to A = −C > 2.38.
In fact, the antisymmetric CW is a limit (delocalized) form
of compact antisymmetric solutions, which are presented in
Sec. III C.

Two families of asymmetric CWs were found too, both
exhibiting two distinct branches, meeting at E = 5.66. In
the case of the asymmetric CW family shown in Fig. 6(a),
a stability region is E > 13.95, A > 3.99, B < −3.96, and
C > −0.58. On the other hand, the family of asymmetric CWs
displayed in Fig. 6(b) is completely unstable.
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FIG. 17. Typical profiles of two asymmetric lattice solitons belonging to the two additional families, both with E = 15.
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FIG. 18. (a) An example of an extended confined asymmetric state, for E = 15. This mode is a combination of the localized asymmetric
one from Fig. 16(a) and an eight-cells segment of the asymmetric CW from Fig. 6(a). (b) The stability diagram for the family of these extended
confined asymmetric states. The marked point corresponds to the asymmetric state shown in panel (a).

B. Symmetric lattice solitons

As said above, it is natural to expect that the nonlinear
lattice supports, in addition to the exact CLSs (39), discrete
solitons, which may be subject, in particular, to the symmetry
constraint, an = cn, satisfied at all n. The discrete solitons
are not compact modes, but they feature a strong exponential
localization.

With the help of the numerical methods outlined above,
several basic families of symmetric solitons have been found.
The first two families are illustrated by Fig. 7. While in one case
[Fig. 7(a)] both amplitudes An and Cn have a maximum with
equal values at n = −1 and n = 0, the other solution [Fig. 7(b)]
has a double maximum in terms of the B amplitude. As
concerns the stability, the family demonstrated in Fig. 7(a) was
found to be stable, while the one shown in Fig. 7(b) is unstable.
A systematic numerical analysis has shown that the family of
the solitons with the double maximum in the An = Cn fields
bifurcates from the one characterized by the double maximum
in Bn, through a typical supercritical bifurcation; see Fig. 8.
Before the bifurcation occurs, i.e., at E < 2.90, the solution is
stable. Past the bifurcation, the upper branch, represented by
the solitons shown in Fig. 7(b), destabilizes, while the lower
one [see an example in Fig. 7(a)] remains stable. An example
for the evolution of unstable solitons from the upper branch is
presented in Fig. 9. It is seen that the unstable soliton actually
remains a localized mode, which features randomized intrinsic
dynamics and emission of weak phonon waves. Figure 9
demonstrates that the strongly unstable solution is oscillating
around a stable solution belonging to the lower branch, shown
in Fig. 8. The oscillating unstable soliton emits spatially
asymmetric radiation, due to asymmetric interference between
the unstable and stable modes.

As E decreases, the shape of the discrete solitons becomes
Gaussian-like, i.e., quasicontinuous. This peculiarity can be
seen in Fig. 7(c), for E = 2.90, taken at the bifurcation point.

Two additional types of symmetric discrete solitons, found
in the same model, are presented in Figs. 10 and 11. Both
feature stability diagrams that consist of upper and lower

branches merging into one, as shown in Fig. 10. The family
exhibited in Figs. 10(a) and 11(a) is stable in the region of
E > 15.46, N > 69.87 (the lower branch). An example of
the evolution of an unstable soliton is shown in Fig. 12. It
can be concluded that in this case too, the unstable discrete
soliton remains an effectively localized mode with chaotic
intrinsic dynamics, emitting small-amplitude phonon waves
into the lattice. On the other hand, the second additional family,
presented in Figs. 10(b) and 11(b), is completely unstable.

C. Extended compact antisymmetric states

Extended, but nevertheless compact, antisymmetric states,
defined by condition An = −Cn, can be constructed as
juxtapositions of the elementary CLS solution (39), with
nonvanishing amplitudes in a finite set of lattice cells, where
it has

An =
√

E = −Cn, (46)

FIG. 19. Comparison between predictions of the VA based on
ansatz I with n0 = 1 (solid curves) and numerical results (dashed
curves with small cicles). Here N = 3, and the results are presented
for symmetric lattice solitons. The respective values of the parameters
are EVA = 3.014, Enum = 3.072, and HVA = 8.665, Hnum = 8.715.
The blue curves represent Bn, while the black and green ones
correspond to An and Cn, respectively.
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and zero in all others, with all Bn = 0. The total norm (3) of
this extended state is given by an obvious expression,

N = 2nE, (47)

where n denotes a number of cells with nonvanishing ampli-
tudes An and Cn. Examples for n = 1 and n = 3 are shown
in Fig. 13. As mentioned in Sec. III A, the antisymmetric CW
solution may be considered as a limit case of this family, in
the case when n comprises the entire domain.

These compact antisymmetric states are only partially
stable. Systematic numerical analysis has shown that, for
smaller values of propagation constant E (and N ), all solutions
of this type are unstable. Specifically, for n = 1 the solutions
are stable at

E > 6.18, N > 12.36, (48)

and for n = 3 the stability region is

E > 6.74, N > 13.48. (49)

In fact, Eqs. (48) and (49) define a nontrivial stability border
for the compact modes in the nonlinear chain. A representative
example of the dynamics of an unstable compact mode with
n = 1 and E = 5 is displayed in Fig. 14, which shows that the
instability destroys it.

D. Asymmetric lattice solitons

Numerous families of discrete asymmetric lattice states,
with |An| �= |Cn|, were discovered in the course of the numer-
ical investigation. Two such fundamental families, which were
found to be partially stable, are presented in Figs. 15(a)–15(b)
(the full stability diagrams) and in Fig. 16 (shape examples).
Additionally, Figs. 15(c) and 15(d) present the asymmetry
ratio, θ , defined here as

θ =
∑+∞

−∞
(
A2

n − C2
n

)
∑+∞

−∞
(
A2

n + C2
n

) , (50)

as a function of E; cf. the above definition for the single cell,
given by Eq. (38).

In particular, the solutions displayed in Fig. 16(a), which
may be referred to as asymmetric-symmetric modes, as they
feature sign(An) = sign(Cn), are stable in the region E >

4.14, N > 4.7 [the lower N (E) branch]. The second family,
which we name the asymmetric-antisymmetric solutions, with
sign(An) = −sign(Cn), shown in Fig. 16(b), is stable at E >

12.58, N > 41.8 (the lower branch).
Other asymmetric lattice solitons were also found, two of

which are presented in Fig. 17. While the family demonstrated
in Fig. 17(a) is entirely unstable, the one displayed in Fig. 17(b)
does have a stability region (not shown here explicitly).

Additional varieties of both symmetric and asymmetric
localized states can be built by combining the lattice solitons
found above (in particular, taking any of the four types of
the asymmetric solitons mentioned here) and, accordingly,
symmetric or asymmetric CW segments, taken from the CW
states obtained in Sec. III A, with an arbitrary number of
lattice cells. An example of a thus built extended confined
asymmetric lattice mode is given in Fig. 18. This solution is a
combination of the asymmetric-antisymmetric one, presented
in Figs. 15(b), 15(d) and 16(b), and an eight-cell section of the

FIG. 20. The same as in Fig. 19, but for an asymmetric state
with N = 8 and EVA = 7.976, HVA = 34.09, Enum = 7.966, Hnum =
34.12.

asymmetric CW state, taken from Fig. 6(a). It can be checked
that, for the stability of this combined solution, both its building
blocks must be stable. In particular, for the combined mode
shown here, the stability region is E > 13.88, N > 300.10, as
its ingredients are stable in the same interval.

IV. THE VARIATIONAL APPROXIMATION FOR LATTICE
SOLITONS IN THE SINGLE INFINITE CHAIN

A. The formulation

A possibility to produce results for solitons in an analytical
form, even if it is an approximate one, is obviously relevant. In
this section we aim to develop a variational approximation
(VA) for lattice solitons, and compare the so produced
approximate analytical results to their numerical counterparts
reported in the previous section. To this end, we note that the
Lagrangian corresponding to Hamiltonian (14) is

L = i

2

∑
n

(
a∗

n

dan

dz
− an

da∗
n

dz

)

+ i

2

∑
n

(
b∗

n

dbn

dz
− bn

db∗
n

dz

)

+ i

2

∑
n

(
c∗
n

dcn

dz
− cn

dc∗
n

dz

)
− H

≡ −EN − H, (51)

FIG. 21. The same as in Fig. 19, but for the variational predictions
based on ansatz II with n0 = −1 and N = 3, for symmetric lattice
solitons. The parameters are EVA =3.095, Enum =3.107, HVA =8.703,
and Hnum = 8.726.
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FIG. 22. The same as in Fig. 21, but with n0 = 0, N = 6 and
EVA = 5.979 and HVA = 22.059, Enum = 5.979, Hnum = 22.059.

from which underlying equations (1) can be derived as standard
Euler-Lagrange equations, with E playing the role of the
Lagrangian multiplier.

We apply the VA to stationary lattice solitons, following
the general lines of Ref. [35], where the VA was developed for
solitons in the discrete nonlinear Schrödinger equation. The
stability of stationary solutions can be tested by checking if
they realize a local minimum of the Hamiltonian. The VA
is based on the following two simplest ansätze applicable
to discrete solitons, which differ by assuming the double
maximum in components bn or (an,cn):

I :

⎧⎪⎨
⎪⎩

an(z) = Ae−η|n−n0|eiEz,

bn(z) = Be−η|n−n0− 1
2 |eiEz,

cn(z) = Ce−η|n−n0|eiEz;

(52)

II :

⎧⎪⎨
⎪⎩

an(z) = Ae−η|n−n0+ 1
2 |eiEz,

bn(z) = Be−η|n−n0|eiEz,

cn(z) = Ce−η|n−n0+ 1
2 |eiEz,

(53)

where n0 is an arbitrary integer coordinate of the soliton’s
center. The ansätze contain four variational parameters: three
amplitudes, A, B, C, and inverse width η.

As mentioned above, ansatz (52) can be used to describe
stationary localized states with sharp An,Cn, and flat-top Bn

profiles [see Figs. 7(b), 7(c) and 16(a)], while ansatz (53)
pertains to sharp Bn and flat-top {An,Cn} profiles; see Fig. 7(a).
We substitute these ansätze into the Hamiltonian (14) and
Lagrangian (51) and perform the summation analytically,
which yields

HI = −2B(A + C)

sinh (η/2)
− B4 + (A4 + C4) cosh (2η)

2 sinh (2η)
, (54)

LI = −E[B2 + (A2 + C2) cosh(η)]

sinh (η)
− HI; (55)

HII = −2B(A + C)

sinh (η/2)
− A4 + C4 + B4 cosh (2η)

2 sinh (2η)
, (56)

LII = −E[A2 + C2 + B2 cosh(η)]

sinh (η)
− HII. (57)

The stationary states are predicted by numerically solving the
corresponding Euler-Lagrange equations,

∂LI,II

∂A
= ∂LI,II

∂B
= ∂LI,II

∂C
= ∂LI,II

∂η
= 0. (58)

B. Comparison between variational and numerical
results for the infinite chain

In Figs. 19 and 20 we compare the VA predictions and
their numerical counterparts for stationary modes with sharp
{An,Cn} and flat-top Bn shapes, which are approximated by
ansatz I [Eq. (52)] with norms N = 3 and N = 8, respectively.
The VA predicts both symmetric and asymmetric solutions.
One can conclude that the agreement is better for larger N .
This conclusion is natural, as larger N correspond to more
self-compressed solitons, for which the simple exponential
ansätze are more appropriate.

The second type of stationary solutions has flat {An,Cn}
and sharp Bn profiles, which can be approximated by ansatz
II. In Figs. 21 and 22 we present the comparisons between the

FIG. 23. (a) The dependences N (E) for lattice solitons, as predicted by the VA. The same dependences are compared to their numerically
found counterparts in (b). Dashed pink curves in (a) and (b) represent unstable asymmetric solutions based on ansatz I. Solutions of the same
type but found numerically are represented by small pink stars in panel (b). Dotted black curves in (a) and (b) show unstable symmetric
solutions based on ansatz I. The corresponding numerical solutions are shown by black triangles in (b). Thin solid red curves in (a) and (b)
indicate stable symmetric solutions produced by ansatz II, while their numerical counterparts are shown by red squares in (b). Thick solid blue
curves correspond to stable asymmetric solutions, produced by ansatz I, whose numerical counterparts are displayed by bold blue dots in (b).
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FIG. 24. The asymmetry parameters, θ (E), of lattice solitons. The
solid blue curve is the branch of stable asymmetric solutions predicted
by the VA, while the dashed pink curve corresponds to unstable ones.
The corresponding numerical solutions are represented by dots and
stars of the same colors.

corresponding VA predictions and numerical results. We again
conclude that a larger norm provides better agreement.

Results of the systematic comparison of the variational
and numerical results are summarized in Figs. 23 and 24.
In particular, the VA-predicted N (E) curves are shown in
Fig. 23(a) for families of symmetric and asymmetric lattice
solitons. The solid and dashed curves again correspond to
stable and unstable ones. Further, these curves are compared
to their numerically found counterparts in Fig. 23(b). One can
see that the VA predictions agree well with the numerical data
taken from Figs. 8 and 15(a). As before, a larger propagation
constant E provides for better agreement.

Finally, in Fig. 24 we compare dependences θ (E) for
the asymmetry parameter of the lattice solitons, defined as
per Eq. (50). The respective numerical data are taken from
Fig. 15(c).

V. THE LINEAR DOUBLE-CHAIN MODEL

A natural generalization of the model based on Eq. (1)
is the double system, with each on-site amplitude an,bn,cn

replaced by the double set, {a(1)
n ,a(2)

n },{b(1)
n ,b(2)

n },{c(1)
n ,c(2)

n },
and linear mixing (Rabi coupling) applied at each site. Thus,
Eqs. (11)–(12) are replaced by the double system,

i
da(1,2)

n

dz
+ (

b(1,2)
n + b

(1,2)
n+1

) + β
[∣∣a(1,2)

n

∣∣2 + γ
∣∣a(2,1)

n

∣∣2]

× a(1,2)
n + κaca

(2,1)
n = 0, (59)

i
db(1,2)

n

dz
+ (

a(1,2)
n + a

(1,2)
n−1 + c(1,2)

n + c
(1,2)
n−1

)

+ β
[∣∣b(1,2)

n

∣∣2 + γ
∣∣b(2,1)

n

∣∣2]
b(1,2)

n + κbb
(2,1)
n = 0, (60)

i
dc(1,2)

n

dz
+ (

b(1,2)
n + b

(1,2)
n+1

)

+ β
[∣∣c(1,2)

n

∣∣2 + γ
∣∣c(2,1)

n

∣∣2]
c(1,2)
n + κacc

(2,1)
n = 0, (61)

where γ � 0 is the relative strength of the on-site XPM
interaction.

In the BEC realization of the model, the on-site linear
mixing between two hyperfine atomic states may be induced
by a resonant GHz wave, hence in that case κac = κb ≡ κ .
In the BEC model, γ = 1 is the most relevant value. In the
optical realization, the two on-site modes may represent two
different polarizations of light in the same wave guide. In the
case of the linear polarizations, the linear mixing is imposed
by the wave guide’s twist, the most relevant respective value
of the XPM coefficient being γ = 2/3; in the case of two
circular polarizations, the mixing is imposed by an elliptic
deformation of the wave guide’s cross section, γ = 2 being
the most relevant XPM value [36]. Alternatively, this system
may correspond to the system of optical dual-core wave
guides [31], in which case γ = 0. In the optics model, it is
quite natural to have two different linear-mixing constants,
κac �= κb.
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FIG. 25. Exactly found dispersion branches corresponding to the symmetric modes (black lines) and antisymmetric ones (red lines) in the
double-diamond-chain system, plotted for (a) κac > κb (κac = 1,κb = 0.5) and (b) κac < κb (κac = 1,κb = 1.5). Flatband states are represented
by the horizontal lines, E = ±κac.
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For the double-chain model, the dispersion relation for modes ∼ exp (iEz + ikx) takes the following form:∣∣∣∣∣∣∣∣∣∣∣

−E (1 + eik) 0 κac 0 0
(1 + e−ik) −E (1 + e−ik) 0 κb 0

0 (1 + eik) −E 0 0 κac

κac 0 0 −E (1 + eik) 0
0 κb 0 (1 + e−ik) −E (1 + e−ik)
0 0 κac 0 (1 + eik) −E

∣∣∣∣∣∣∣∣∣∣∣
= 0, (62)

In the special case of κac = κb = κ , Eq. (62) can be easily
factorized:

(E2 − κ2)[E4 − 4(1 + eik)(1 + e−ik)(E2 + κ2)

−2κ2E2 + 4(1 + eik)2(1 + e−ik)2 + κ4] = 0. (63)

Then, two eigenvalues represent FBs, E = ±κ , with the
top and bottom signs corresponding to the symmetric and
antisymmetric modes:

(
a(1)

n ,b(1)
n ,c(1)

n

) = ±(
a(2)

n ,b(2)
n ,c(2)

n

)
, (64)

while other eigenvalues produce dispersive branches, E =
±κ ± 4 cos (k/2).

In the general case, with κac �= κb, the analysis of Eq. (62)
is facilitated by considering symmetric and antisymmetric
eigenstates, defined as per Eq. (64), which makes it possible
to reduce the 6×6 determinant in Eq. (62) to 3×3 ones. In this
general case, two eigenvalues corresponding to the split FBs
are found in an exact form:

E = ±κac, (65)

and four dispersive branches are found exactly too:

E = ± 1
2 (κac + κb) ± 1

2

√
(κac − κb)2 + 32 cos2 (k/2). (66)

In both cases, the ± sign before the first term identifies the
symmetric and antisymmetric eigenmodes, the ± sign in front
of the second term in Eq. (66) being an independent one.

For the flatband states corresponding to eigenvalues (65),
the eigenvectors can also be obtained in an exact form:

ψ (1)
n = ±ψ (2)

n = (1,0,−1)fn,

where fn is an arbitrary discrete function. In such a case,
the CLS, i.e., the single-cell excitation, corresponds to the
following eigenvectors:

ψ (1)
n = 1√

2
(1,0,−1)δn,n0 = ±ψ (2)

n

[cf. Eq. (9)].
All the bands corresponding to Eqs. (65) and (66) are plotted

in Fig. 25.
The linear system with broken symmetry between the top

and bottom sites, a and c, should also be mentioned. In that
case, there are three different coupling constants κa , κb, and,
κc and the respective dispersion equation takes the form

∣∣∣∣∣∣∣∣∣∣∣

−E (1 + eik) 0 κa 0 0
(1 + e−ik) −E (1 + e−ik) 0 κb 0

0 (1 + eik) −E 0 0 κc

κa 0 0 −E (1 + eik) 0
0 κb 0 (1 + e−ik) −E (1 + e−ik)
0 0 κc 0 (1 + eik) −E

∣∣∣∣∣∣∣∣∣∣∣
= 0 (67)

[cf. Eq. (62)]. The reduction based on Eq. (64) again allows one
to reduce the 6×6 determinant (67) to ones of size 3×3, but
the respective solutions turn out to be much more cumbersome
than above. The respective eigenvalues have been analytically
computed with the help of Mathematica but are not included
here. Effects of the on-site nonlinearity in the double-chain
system, and the respective nonlinear modes, will be considered
elsewhere.

VI. CONCLUSION

The objective of this work is to report the development of the
known FB (flatband) system, based on the “diamond chain”,
in two directions: adding the on-site cubic nonlinearity, which
is naturally present in the optical and matter-wave (BEC)
implementation of the FB lattices, and, on the other hand,

to introduce the double FB system, with two components
coupled by the Rabi mixing at each lattice site. First, we
have produced a full analytical solution for all stationary
states (antisymmetric, symmetric, and asymmetric ones) in
the system with three degrees of freedom, which represents
an isolated nonlinear cell of the lattice. The asymmet-
ric states emerge from their symmetric counterpart via a
spontaneous-symmetry-breaking bifurcation, whose character
is weakly subcritical. In the infinite nonlinear one-component
chain, antisymmetric CLSs (compact localized states) of
different lattice sizes, which are a hallmark of FB systems,
have been found in an exact form too. Their stability was
studied partly analytically (to demonstrate that they are
not subject to an antisymmetry-breaking bifurcation), and
partly numerically, revealing a nontrivial stability boundaries

012204-16



SINGLE AND DOUBLE LINEAR AND NONLINEAR . . . PHYSICAL REVIEW E 96, 012204 (2017)

for the compact modes, as given by Eqs. (48) and (49).
These stability boundaries are specific to the nonlinear
system. Along with the CLSs, various types of symmetric,
antisymmetric, and asymmetric CW (continuous-wave) states
and lattice solitons (which are exponentially localized, but not
compact modes) have been found too, in the numerical form
and by dint of the VA (variational approximation). The VA
for symmetric and asymmetric solitons demonstrates good
accuracy, in comparison with their numerically generated
shapes. It is found that different branches of the CW and
soliton families may be completely or partly stable, some of
them being fully unstable. Unstable lattice solitons typically
evolve into confined quasisoliton states, with randomized
inner evolution, that emit small-amplitude phonon waves.
Finally, an exact solution for eigenmodes of the linear double

diamond chain was produced, with two split FBs present in the
spectrum.
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