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Time-reversal symmetry for systems in a constant external magnetic field
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The time-reversal properties of charged systems in a constant external magnetic field are reconsidered in this
paper. We show that the evolution equations of the system are invariant under a new symmetry operation that
implies a new signature property for time-correlation functions under time reversal. We then show how these
findings can be combined with a previously identified symmetry to determine, for example, null components of
the correlation functions of velocities and currents and of the associated transport coefficients. These theoretical
predictions are illustrated by molecular dynamics simulations of superionic AgI.
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I. INTRODUCTION

The common view on charged systems in an external mag-
netic field is that the symmetry properties of their correlation
functions require special treatment because the equations of
motion violate standard time-reversal invariance. Indeed, given
the observables � and � (functions of phase space) and
the symmetry operation TB(r,p,t ; B) = (r, − p,−t ; −B), the
work by Kubo [1–3] in the context of linear response theory
in the 1950s, established that in the stationary state

〈�(0)�(t)〉B = ε�ε�〈�(0)�(−t)〉−B = ε�ε�〈�(t)�(0)〉−B.

(1)

Above, the angular brackets indicate an average with respect
to the equilibrium probability distribution and, when it exists,
ε�,� is the signature of the observable with respect to TB . Note
that, since the magnetic field in Eq. (1) appears with opposite
sign in the first and in the subsequent terms, this relationship
involves two distinct physical systems subject to different
magnetic fields. This limits, to some extent, its conceptual
interest and hinders its usefulness in interpreting the results of
experiments and computer simulations, which usually occur
in a single magnetic field. The symmetry operation TB is
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used frequently, for example to derive fluctuation relations
for particles in a magnetic field [4–7].

In this paper, we note that the evolution equations for a
system in constant magnetic field are invariant under a new
generalized time-reversal operation. As discussed in Sec. II,
combining this new symmetry with a previously identified
time-reversal operation [8], makes it possible to predict
analytically symmetry properties of physical observables such
as the diffusion or conductivity tensor. In Sec. III, we verify that
these predictions are indeed verified by molecular dynamics
simulations of an interesting condensed phase system, AgI in
the superionic phase.

II. THEORY

In the following, we shall consider N point particles of
charge qi and mass mi interacting via the potential V , and
in the presence of an external magnetic field B, of constant
intensity B0 and directed along the z axis. This setup is often
adopted to discuss the unusual behavior of systems in external
magnetic field under time reversal (see, for example, [7,9,10]),
and it has both theoretical and experimental interest. We also
note that, since the wavelength of magnetic fields of practical
interest are several orders of magnitude larger than the typical
dimensions of simulation boxes, the assumption of a, spatially,
uniform field is usually well justified in simulations [11].
Finally, although generalizing our considerations to a spatially
uniform but time-dependent field may be possible, the notion
of time-reversal invariance for nonautonomous equations of
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motion is nontrivial and requires a treatment beyond the scope
of this work.

Indicating with � ≡ {ri ,pi}i=1,...,N a point in phase space,
the Hamiltonian of the system is

H(�) =
N∑

i=1

[pi − qiA(ri)]2

2mi

+ 1

2

∑
i �=j

V (rij ), (2)

where A(r)T ≡ B0(−y,x,0)/2 is the vector potential, and
the interaction between the particles is assumed pairwise
and dependent only on rij = |ri − rj |, the magnitude of the
distance between the pairs of particles. The evolution equations
for this system are

ẋi = px
i

mi

+ ωiyi,

ẏi = p
y

i

mi

− ωixi,

żi = pz
i

mi

, (3)

ṗx
i = Fx

i + ωi(p
y

i − miωixi),

ṗ
y

i = F
y

i − ωi(p
x
i + miωiyi),

ṗz
i = Fz

i ,

where i = 1, . . . ,N , ωi = qiB0/2mi is the cyclotron fre-
quency, and Fα

i is the force on particle i and direction α due to
the pairwise potential. Direct inspection of the equations above
shows that they are not invariant under standard time reversal,
T (r,p,t) = (r,−p,−t), and that the additional inversion of the
magnetic field in TB is necessary to restore invariance. This
originates the opposite signs of the field in Eq. (1).

Direct inspection of the evolution equations, however, also
shows that the dynamics is invariant under the time-reversal
transformation

M̃(x,y,z,px,py,pz,t ; B) = (−x,y,z,px,−py,−pz,−t ; B)

(4)

which (see Sec. II A) implies

〈�(0)�(t)〉B = η̃�η̃�〈�(0)�(−t)〉B = η̃�η̃�〈�(t)�(0)〉B,

(5)

where, for example, η̃� is the signature of � under M̃.
Exploiting the analogy of the magnetic dynamical system,

Eqs. (3), with the so-called Sllod equations for a system
subject to shear [12,13], in [8] we also noted that the
time-reversal transformation

M(x,y,z,px,py,pz,t ; B) = (x,−y,z,−px,py,−pz,−t ; B)
(6)

preserves the Hamiltonian and hence the evolution equations
(3). This symmetry leads to the following property for
equilibrium time-correlation functions

〈�(0)�(t)〉B = η�η�〈�(0)�(−t)〉B = η�η�〈�(t)�(0)〉B,

(7)

where η� and η� denote the signature of observable � and
�, respectively, under M.

At variance with the Kubo relation, Eq. (1), the relationships
in Eqs. (5) and (7) refer to a single value of the constant mag-
netic field, and therefore to the statistics of a single physical
system. The symmetry of the system under the transformations
defined in Eqs. (4) and (6) is a direct consequence of the form
of the Lorentz force for the geometry considered in this work
and reflect the essential equivalence of the x and y directions
on the plane perpendicular to the magnetic field.

A. Proof of Eqs. (5) and (7)

The time-reversal properties of the correlation functions
defined in Eqs. (5) and (7) can be proved using two different
points of view. The first, adopted in [8], focuses on the effect of
the generalized time-reversal symmetries on the evolution of
the phase-space points, i.e. on the microscopic state of the sys-
tem (see, for example, Ref. [14]). The second, considers as the
fundamental object of interest in statistical mechanics the func-
tions of phase space associated with the physical observables,
and identifies the properties of their evolution under the sym-
metry operations. In the following, we summarize the proof of
the time-reversal symmetry of the correlation function using
the second perspective. To simplify the notation, we refer to the
symmetry M.

We start by discussing some general properties of the
time evolution of the observables. We shall restrict our
considerations to the properties of the dynamical system
described by Eqs. (3), but the discussion can be gen-
eralized to the time-reversal properties of other systems.
Let us indicate with Ut the time evolution operator on
the space of the functions of � endowed with the scalar
product

〈�,�〉 =
∫

d� ρ(�)�∗(�)�(�), (8)

where ρ(�) is the equilibrium probability density of the system
and ∗ indicates the complex conjugate. We have [15]

Ut�(�)
.= �(Ut�), (9)

where Ut is the evolution operator corresponding to Eqs. (3).
Similarly, we define

M��(�)
.= �(M��) (10)

with M�(x,y,z,px,py,pz) = (x,−y,z,−px,py,−pz). Given
that M2

� = 1, we have trivially M−1
� = M� . This operator is

also Hermitian, i.e., 〈�,M��〉 = 〈M��,�〉. To prove it, let
us consider

〈�,M��〉 =
∫

d� ρ(�)�∗(�)[M��(�)]

=
∫

d� ρ(�)�∗(�)�(M��). (11)

We now perform the change of variables X = M��, so � =
M−1

� X = M�X to obtain

〈�,M��〉 =
∫

dX ρ(X)�∗(M−1
� X)�(X)

=
∫

dX ρ(X)[M−1
� �∗(X)]�(X)
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=
∫

dX ρ(X)[M��∗(X)]�(X)

= 〈M��,�〉 (12)

which completes the proof, noting that

M�ρ(X) = ρ(X) (13)

since the Hamiltonian, as defined in Eq. (2), is invariant under
this transformation, M�H(X) = H(X), and the probability
density is a function of the Hamiltonian.

We define as time-reversal invariance the situation in which
the evolution backwards in time of any observable

d�

d(−t)
= iL�, (14)

where iL = {·,H} is the Poisson bracket of a function with
the Hamiltonian, is identical to the forward evolution of the
observable transformed under the symmetry operation M� ,

d[M��]

dt
= iL[M��]. (15)

Multiplying both sides of the equation by M−1
� = M� ,

d�

dt
= M�iLM�� (16)

and comparing Eq. (14) and Eq. (16), we obtain the following
relation for the generator of the dynamics

M�iLM� = −iL. (17)

Given that the operators on the observables act through
changes on the underlying phase space, we prove the rela-
tionship above operating on the phase-space substrate. To that
end, we apply the operators on the right and on the left of
Eq. (17) to � = (x,y,z,px,py,pz). Acting with the operator
on the right, we have

−iL� = −�̇(�), (18)

where �̇ is the vector of the time derivatives of positions and
momenta. The effect of the three operators on the left-hand
side of Eq. (17) can be obtained applying them from left to
right:

M�iLM�� = iL(�′)M�′�′ = M�̇′ �̇′(�′) = �̇′′(�′). (19)

In the equation above, �′ = (x,−y,z,−px,py,−pz), and �̇′′ =
[ẋ(�′),−ẏ(�′),ż(�′),−ṗx(�′),ṗy(�′),−ṗz(�′)].

The equality of the results in Eqs. (18) and (19) under the
evolution induced by Eqs. (3) is verified by direct inspection.
Applying, for example, the left-hand side of Eq. (17) to p

y

i we
get

M�iLM�p
y

i = ṗ
y

i (x,−y,z,−px,py,−pz) (20)

and, from Eqs. (3), we have

ṗ
y

i (x,−y,z,−px,py,−pz)

= F
−y

i − ωi

[−px
i + miωi(−yi)

]
= −[

F
y

i − ωi

(
px

i + miωiyi

)]
, (21)

where we have used the fact that the force, given by the
derivative of the (even) potential with respect to y, is an odd

function under the symmetry. On the other hand, applying the
right-hand side of Eq. (17), we have

−iLp
y

i = −ṗ
y

i (x,y,z,px,py,pz) (22)

and, using again Eqs. (3),

−ṗ
y

i (x,y,z,px,py,pz) = −[
F

y

i − ωi

(
px

i + miωiyi

)]
. (23)

Comparing Eqs. (21) and (23), we see that Eq. (17) is indeed
verified.

Note that, repeating the steps above for

M̃�iLM̃� = −iL, (24)

whereM̃�(x,y,z,px,py,pz) = (−x,y,z,px,−py,−pz) shows
that M̃ is also a time-reversal symmetry for the dy-
namical system, Eqs. (3). Using the same procedure,
it can also be verified that, when B0 �= 0, the stan-
dard time-reversal transformation T�(x,y,z,px,py,pz) =
(x,y,z,−px,−py,−pz) is not a time-reversal symmetry for
the system.

From Eq. (17), it also follows

M�UtM� = U−t . (25)

The relation above can be inverted to give

Ut = M�U−tM�. (26)

We can now make use of this result to prove the time-reversal
properties stated in Eq. (7). The time-correlation function is
defined as

〈�(0)�(t)〉B =
∫

d� ρ(�)�∗(�)[Ut�(�)].

Using Eq. (26), we can write

〈�(0)�(t)〉B =
∫

d� ρ(�)�∗(�)[M�U−tM��(�)].

Using the definition of the adjoint operator, the expression
above can be written as

〈�(0)�(t)〉B =
∫

d�[M�ρ(�)�∗(�)][U−tM��(�)]

=
∫

d� ρ(�)[M��∗(�)][U−tM��(�)]

= η�η�

∫
d� ρ(�)�∗(�)[U−t�(�)]

= η�η�〈�(0)�(−t)〉B = η�η�〈�(t)�(0)〉B,

(27)

where, in going from the first to the second line we have used
the invariance of the probability density under M� , and in the
third line we have recognized, for example, that M��(�) =
�(M��) = η��(�). Finally, the last equality follows from
time translational invariance.

Repeating the steps above withM̃� proves the relationships
in Eq. (5).

B. Consequences of Eqs. (5) and (7)

The simultaneous existence of the two generalized time-
reversal symmetries has a rather interesting implication.
Indeed, in order to fulfill simultaneously both relations at
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any given time, the correlation functions must either have the
same overall signature with respect to M and M̃ or be zero.
This translates immediately, via linear response theory, into
properties of the transport coefficients for the system.

Let us consider, as an example, the correlation function
of different components of the particle velocities. Equations
(3) show that vx

i = ẋi is odd (i.e., ηẋi
= −1), v

y

i = ẏi is even
(i.e., ηẏi

= 1), and vz
i = żi is odd (i.e., ηżi

= −1) under M.
This implies the following relations for the time-correlation
functions of the components of the velocities〈

vx
i (t)vy

i (0)
〉 = −〈

vx
i (0)vy

i (t)
〉
,〈

vx
i (t)vz

i (0)
〉 = 〈

vx
i (0)vz

i (t)
〉
,〈

v
y

i (t)vz
i (0)

〉 = −〈
v

y

i (0)vz
i (t)

〉
. (28)

On the other hand, see again Eqs. (3), vx
i = ẋi is even (i.e.,

η̃ẋi
= 1), v

y

i = ẏi is odd (i.e., η̃ẏi
= −1), and vz

i = żi is odd
(i.e., η̃żi

= −1) under M̃ so the relations〈
vx

i (t)vy

i (0)
〉 = −〈

vx
i (0)vy

i (t)
〉
,〈

vx
i (t)vz

i (0)
〉 = −〈

vx
i (0)vz

i (t)
〉
, (29)〈

v
y

i (t)vz
i (0)

〉 = 〈
v

y

i (0)vz
i (t)

〉
hold too. Comparing the right-hand sides of the second and
third lines of Eqs. (28) and (29) shows that these correlation
functions must be zero for all times. Considering the time
integrals of the correlation functions, this immediately implies
that some components of the diffusion tensor must be zero.
In particular, Dxz = Dzx = Dyz = Dzy = 0. Note that, since
the first lines of Eqs. (28) and (29) are equal, we can only
make the (weaker) statement that these correlation must be
zero at zero time, and that Dxy = −Dyx . Similarly, for the
diagonal components of the velocity correlation functions, all
even under both symmetries, no specific prediction can be
made.

The observations above can be trivially extended to the
correlation functions of the components of the current J =∑N

i=1 qivi . This, in turn, means that the only off-diagonal
components of the conductivity tensor that can be different
from zero are σxy = −σyx . In fact, a nonzero value of these
components of the conductivity tensor signals the onset of the
Hall effect in the system [16,17].

III. A NUMERICAL EXAMPLE

In this section, we illustrate the validity of the properties
of the time-correlation functions discussed above for an
interesting condensed phase system: the prototypical supe-
rionic conductor, AgI. Superionic conductors have attracted
considerable interest [18–24], most recently due to their
potential applications in clean batteries production [25,26].
They are characterized by a solid phase with a conductivity
comparable to that of the melt. In this phase, the dominant
charge transport is due to the motion of an ionic species
diffusing almost freely in the lattice formed by the counterions.
Superionic AgI exists at ambient pressures between 420 and
831 K. In this system, the conductivity is due primarily to
the motion of Ag+, while the I− form a bcc lattice. The unit

cell accommodates two Ag+ that are located preferentially at
the tetrahedral sites in the anion lattice and diffuse through
a hopping mechanism between them [19,27–29]. In [17],
the charge transport of AgI in the presence of an external
magnetic field was studied for the first time via molecular
dynamics. In that paper, it was shown in particular that the
Hall mobility of the system can indeed be computed and is in
good agreement with experiments over a significant range of
temperatures. Simulations also showed that the system exhibits
ionic magnetoresistence (i.e., a decrease of the diagonal
components of the conductivity tensor compared to the case of
the isolated system). Here, we reconsider the data to illustrate
the symmetry properties of the time correlations discussed in
the previous section.

The simulation setup adopted in this paper is similar to
that in Ref. [30]. AgI is modeled via the pair potential
introduced by Shimojo and Kobayashi [31]. The simulation
box contains 250 Ag+ and 250 I−, and the number density

is ρ = 0.0306 Å
−3

. Trajectories for nonzero magnetic field
are obtained using the algorithm, derived in the Liouvillian
formalism, described in [16]. The field intensity is set to
B0 = 100 u (see below for units) based on the results in [17]
showing that, for this value, the Lorentz force is comparable to
the interatomic interactions, and that magnetic effects on the
correlation functions and transport coefficients are significant.
The correlation functions are calculated from a simulation at
constant (N,V,E) from initial conditions obtained from an
equilibrated constant (N,V,T ) run employing a generalized
Nose-Hoover thermostat [16], with temperature T = 573 K.
Long-range forces are treated via direct implementation of
the Ewald method [32]. The value of the thermostat mass
during equilibration is Q = 0.1 and the equilibration time is

FIG. 1. Time-correlation functions of the cross components of
the velocity of Ag in superionic AgI. Labels and symbols in the
figure are as indicated in the legend with, for example, xy referring
to 〈vx(0)vy(t)〉 = 1

NAg

∑NAg
i=1

1
T

∫ T
0 dτ vx

i (τ )vy

i (τ + t). The main plot
shows the nonzero components of the time-correlation function. In
the inset, we show the null components. Note that the scale of the
vertical axis in the inset is two orders of magnitude smaller than in the
main figure. All results are for B0 = 100 u except for those reported
in the green curve, which were obtained at B0 = 0 as a reference for
noise.
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FIG. 2. Time-correlation functions of the cross components of the
current. Labels and colors are as in Fig. 1. Also as in Fig. 1, the main
plot shows the nonzero components of the time-correlation function.
In the inset, we show the null components. In this case, the scale of
the vertical axis in the inset is one order of magnitude smaller than
in the main figure. The higher level of noise in the zero components
derives from the fact that the current is a collective (as opposed to
single particle) property.

20 ps, with a time step of 0.2 fs. Production runs for AgI are
800 ps and 120 ns long, for computing the velocity and current
time-correlation functions, respectively. In the system of units
adopted in this work, distances are measured in angstroms,
charges in units of the electron charge e, masses in atomic
mass unit, and energies in kJ/mol. The derived unit for the
magnetic field is 1.04 u = 104 T.

Figures 1 and 2 show the cross correlation functions of the
velocities and currents, respectively. The green curve shows
the value of the average of these quantities in the absence
of magnetic field to provide a reference on the noise of the
signals. Both figures show a clear difference between the x − y

cross correlations and the others. The correlation between
components on the plane orthogonal to the magnetic field
are zero at zero time, and opposite for finite t . The other
components are indistinguishable from zero based on the
comparison with the value at B0 = 0. Thus, the data verifies
the symmetries derived in the previous section.

IV. CONCLUSIONS

A new time-reversal symmetry operation that preserves
the evolution equations of a system of charged particles
in a constant external magnetic field was introduced. This
time-reversal symmetry entails a new signature property of
time-correlation functions. The simultaneous validity of the
symmetries M̃ and M presented in this paper makes it
possible to identify null time-correlation functions of some
relevant physical observables and the corresponding transport
coefficients. As an interesting numerical illustration, we have
shown that these symmetry predictions are indeed verified by
the velocity and current correlations of superionic AgI under
strong external magnetic field.

Note that the evolution equations in Eqs. (3) are formally
identical to those describing a system subject to constant shear
in the so-called Sllod evolution [33] (indeed, the generalized
time-reversal introduced in [8] was inspired by work on this
system), provided that the intensity of the magnetic field is
substituted by the viscosity. They are also formally identical
to the evolution equations of a body rotating uniformly around
a fixed axis, where the angular velocity plays the role of
the magnetic field. These observations indicate that the work
presented in this paper has broader applicability than that of
the specific case of the magnetic system considered here.

As a final remark, we point out that the results discussed
in this paper assume that the observables whose correlation is
measured have a definite signature under the transformations
M and/or M̃. Interestingly, not all observables that have a
signature under standard time reversal maintain this property
under the new symmetries. For example, in contrast with
the case of standard time reversal, the intermediate scattering
function, F (k,t) = 〈e−ik·reik·r(t)〉/N , does not have a signature
when B0 �= 0, since the components of the coordinates trans-
form with different signs under the new symmetries. Future
work will investigate measurable effects of this observation on
physical observables.
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