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Within the block spin renormalization group, we give a very simple derivation of the exact phase boundaries of
the XYZ spin chain. First, we identify the Ising order along x̂ or ŷ as attractive renormalization group fixed points
of the Kitaev chain. Then, in a global phase space composed of the anisotropy λ of the XY interaction and the
coupling � of the �σzσ z interaction, we find that the above fixed points remain attractive in the two-dimesional
parameter space. We therefore classify the gapped phases of the XYZ spin chain as: (1) either attracted to the
Ising limit of the Kitaev-chain, which in turn is characterized by winding number ±1, depending on whether the
Ising order parameter is along x̂ or ŷ directions; or (2) attracted to the charge density wave (CDW) phases of
the underlying Jordan-Wigner fermions, which is characterized by zero winding number. We therefore establish
that the exact phase boundaries of the XYZ model in Baxter’s solution indeed correspond to topological phase
transitions. The topological nature of the phase transitions of the XYZ model justifies why our analytical solution
of the three-site problem that is at the core of the present renormalization group treatment is able to produce the
exact phase boundaries of Baxter’s solution. We argue that the distribution of the winding numbers between the
three Ising phases is a matter of choice of the coordinate system, and therefore the CDW-Ising phase is entitled to
host appropriate form of zero modes. We further observe that in the Kitaev-chain the renormalization group flow
can be cast into a geometric progression of a properly identified parameter. We show that this new parameter is
actually the size of the (Majorana) zero modes.
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I. INTRODUCTION

The XYZ spin chain is the most anisotropic form of the
Heisenberg spin chain where the coupling between x, y, and
z components of adjacent spins are generically different,

HXYZ =
∑

j

(J + λ)σx
j σ x

j+1 +
∑

j

(J − λ)σy

j σ
y

j+1

+�
∑

j

σ z
j σ z

j+1. (1)

Baxter was able to solve the eight-vertex model [1,2] from
which the exact solution of the XYZ model follows [3,4].
Recent progress in the off-diagonal Bethe ansatz has also
enabled exact solutions for arbitrary boundary field [5,6]. The
limit � = 0 is exactly solvable in terms of Jordan-Wigner (JW)
fermions [7], where the coupling J translates into the hopping
amplitude of the JW fermions, and the coupling λ, the deviation
from isotropic limit induces p-wave superconducting pairing
between the resulting spin-less JW fermions [8]. In this limit,
this model and even generalizations of this model [9–11] can
be exactly solved where the nontrivial topology is encoded
in a nonzero winding number nw (of the ensuing Anderson
pseudovector) and manifests itself as Majorana zero modes
localized at the chain ends, which is best pictured in terms of
the Kitaev chain [12].

When written in terms of the JW fermions, which are
particle excitations of the XY limit [7], the coupling � will
correspond to density interaction between the fermions and
hence introduces further many-body effects into the problem
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[13]. Luther noticed that the above JW mapping translates the
XYZ model into the lattice version of the massive Thirring
model [14]. This enabled a Bethe ansatz solution for the
massive Thirring model [15]. The equivalence between the
massive Thirring model and the sine-Gordon (bosonic) theory
has its own rich literature [13,16,17].

In the λ = 0 limit, we are dealing with a liquid of JW
fermions interacting through � term, which corresponds to
the massless Thirring model. In this limit, if the coupling
� is below a certain critical value �c, then the system
remains gapless, but if it is stronger than �c, then the
system enters the CDW insulating phase and becomes gapped.
The picture in the λ = 0 is therefore that of a critical line
that ends at a Berezinskii-Kosterlitz-Thouless (BKT) point
�c and the algebraic correlations of the gapless phase are
rendered exponential with a correlation length determined by
the spectral gap. The field theory value of �c is πJ/2, while
the exact solution gives �c = J [13]. The XXZ limit that
would correspond to the massless Thirring model has been
analyzed from spin systems and entanglement points of view
[18,19], where the critical value is obtained to be �c = J .
In the λ = 0 situation, a Dzyaloshinskii-Moriya interaction
of strength D can be added to the above XXZ form, which
results in a gapless line separating the spin-fluid phase from
ferromagnetic (FM) and/or antiferromagnetic (AFM) Ising
phases, depending on the sign of � [18]. The XXZ model in
external magnetic field [20] was found to posses a critical line
separating the saturated magnetized phase from the partially
magnetized phase [21].

When both the pairing gap λ and the interaction parameter
� compete with each other, in the limit where � dominates
we expect a gapped phase that corresponds to the CDW
insulating phase of the corresponding Thirring model. When
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� is negligible the parameter λ being a pairing strength of
the JW fermions, gives rise to a (p-wave) pairing gap. The
above gapped phases must be separated by a gapless line in
the plane of (�,λ) [22,23]. Indeed, Ercolessi and coworkers
using the exact solution of Baxter [1–3] calculated the Renyi
entropy and identified lines of essential singularity [24] ending
at tricritical points where the lines join. They find that two of
the tricritical points are conformally invariant [24,25].

An earlier attempt using block-spin renormalization group
(BSRG) was undertaken by Langari [26] who used a two-site
cluster to study the phase diagram of the model in the presence
of a transverse field. However, clusters with an even number
of sites are not able to provide a true Kramers doublet
(degenerate) ground states. Therefore, the two low-energy
states used in the above work consists in one singlet and one
triplet (split by the Zeeman coupling), which are not connected
by the time reversal operation. These states, one being singlet
and the other being triplet, obviously have opposite parities,
which by parity selection rules for even operators erroneously
gives zero matrix elements. To fix these fundamental issues, it
is necessary to go for three sites. In this work, by introducing
a conserved charge and making use of the mirror symmetry,
we are able to break the Hilbert space of the XYZ model in
the three-site problem into blocks of maximum dimension, 3,
which can then be analytically diagonalized. Such an analytical
solution of the three-site cluster of the XYZ model enables
us to construct a phase portrait of the XYZ model when
both � and λ are present. Before discussing the result, let
us note that in the Ising limit, FM and AFM Ising chains
are related by a simple unitary transformation at alternating
sites. We therefore colloquially use the term “Ising order”
(IO) to refer to both magnetization of the FM Ising case and
the staggered magnetization in the AFM Ising case. Now let us
summarize the outcome of our BSRG: (1) First, within the XY

model (i.e., � = 0 case) we are able to identify Ising limits
corresponding to IO along x̂ or ŷ as two attractive RG fixed
points of the Kitaev chain. This therefore attaches topological
significance to IO along x̂ or ŷ which are characterized with
a winding number ±1, respectively. (2) When we turn on the
coupling � for a region that � dominates again we have an
attractive Ising fixed point for very large �, which is, however,
characterized with a zero winding number. To emphasize the
nonzero winding number, we call states with IO along x̂ and ŷ

the Kitaev-Ising (KI) fixed points, and the state with IO along ẑ

direction, the CDW-Ising (CDWI) fixed point. (3) The gapless
lines that separate regions with winding numbers of 0,±1
within our BSRG treatment using three-site cluster coincide
with the exact phase boundaries obtained from the Baxter’s
exact solution.

The main message of this paper will be that the XYZ model
has essentially three different gapped phases characterized by
winding numbers nw = 0,±1. The phase portrait of the model
can be described by BKT repellers and Ising attractors. In the
JW representation, the nw = 0 phase corresponds to a CDW
insulating phases, while the other two correspond to p-wave
superconducting states. While the CDW phase of JW fermions
corresponds to IO order along ẑ, the topologically nontrivial
superconducting phase will correspond to IO along x̂ or ŷ.
The winding number of the gapped phases changes between
the above three values upon crossing the critical (gapless)

lines. The essential significance of the topology is that the
topological charges are not sensitive to many details, including
the size of the cluster as long as it does not miss the essential
symmetries of the Hamiltonian. This explains why a three-site
problem that correctly embeds the Kramers doublet structure
of the ground states is capable of capturing the exact phase
diagram of the model.

The organization of the paper is as follows: In Sec. II we
formulate the problem and give a pedagogical review of the
BSRG method for spin models. We emphasize the usefulness
of a conserved charge that facilitates the diagonalization
process. In Sec. III we discuss the picture of the XY (Kitaev-
chain) and XXZ model within the BSRG method. In Sec. IV
we obtain the exact phase diagram of the XYZ model within
the BSRG method. In Sec. V we end with a summary and
discussion.

II. FORMULATION

Let us start by stating a simple but very important property
of the XYZ model. For the XYZ Hamiltonian, the quantity
ζ = ∏N

i=1 σ z
i is a constant of motion. This is straightforward to

see: Assume any arbitrary state with some arrangements of ↑
and ↓ spins. Operating with the XYZ Hamiltonian on it since
there are two consecutive σx or two consecutive σy operations
on the spins of the system, the total number of spin flips is even
and hence either two ↑ are turned into two ↓ (or vice versa)
or the ↑↓ is turned into ↓↑, which does not change the value
of ζ . This observation indeed will allow us to analytically nail
down the three-site problem and write down its ground-state
properties in the closed form. Two possible ζ = ±1 values
correspond to number parity of JW fermions. Indeed, the JW
transformation [8],

σ z
j = 1 − 2c

†
j cj , σ x

j = eiφj (cj+c
†
j ), σ

y

j = −ieiφj (cj−c
†
j ),

(2)

where φj is the phase string defined as φj = π
∑

i<j c
†
i ci

converts the above Hamiltonian to

H = 2
∑

j

(Jc
†
j cj+1 + λcj cj+1 + H.c.)

+�
∑

j

(2nj − 1)(2nj+1 − 1). (3)

The XY part of the above Hamiltonian (� = 0) when rewritten
in terms of the following Majorana fermions aj = cj + c

†
j and

bj = i(cj − c
†
j ) becomes

H = i
∑

j

(J + λ)ajbj+1 + (λ − J )bjaj+1. (4)

In the Ising limit J = +(−)λ, the above Hamiltonian couples
every Majorana fermion (MF) a with a Majorana fermion b to
its right (left), leaving a b MF at the left (right) of the chain,
and one a MF at the right (left) of the chain [10,12,27], as
depicted in the inset of Fig. 1 [see also discussion following
Eq. (17)].
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TABLE I. Multiplication table summarizing the effect of various
operators on two-spin states of a bond.

|s1s2〉 σ x
1 σ x

2 σ
y

1 σ
y

2 σ z
1 σ z

2 σ x
1 σ

y

2 − σ
y

1 σ x
2 σ z

1 σ z
2

↑↑ ↓↓ −↓ ↓ +↑ ↑ 0 +↑ ↑
↓↓ ↑↑ −↑ ↑ +↓ ↓ 0 + ↓↓
↑↓ ↓↑ +↓ ↑ −↑ ↓ −2i ↓↑ −↑ ↓
↓↑ ↑↓ +↑ ↓ −↓ ↑ +2i ↑↓ −↓ ↑

A. Three-site problem

Consider three sites labeled by j = 0,1,2 for which we
would like to construct the matrix representation of the
Hamiltonian Eq. (1) in the σ z basis, which is an eight-
dimensional space. Conservation of ζ breaks the Hilbert space
into two four-dimensional blocks. At every site j the ↑ spin
configuration corresponds to σ z

j = +1 and hence c
†
j cj = 0. In

the ζ = +1 sector, there are four states, |↑↑↑〉, |↓↑↓〉, |↓↓↑〉,
and |↑↓↓〉. The first two are even with respect to reflection
with respect to the middle site. Therefore, the last two better be
combined into even and odd combinations to give the following
symmetry adopted basis in ζ = +1 sector:

|1〉+ = |↑↑↑〉, |2〉+ = |↓↑↓〉,
|3〉+ = (|↓↓↑〉 + |↑↓↓〉)/

√
2,

|4〉+ = (|↓↓↑〉 − |↑↓↓〉)/
√

2,

where now the first three are even with respect to reflection
to the middle site, while the last one is odd with respect to
this reflection. Similarly for the ζ = −1 sector all we need
is to replace ↑ and ↓ spins. The Hamiltonian being invariant
under reflection with respect to the middle site does not mix
even and odd-parity states and hence |4〉+ is already an eigen
state. Straightforward application of the multiplication Table I
to all bonds on the above state reveals the energy of |4〉+
eigen state to be zero. Using this table we can operate with
the Hamiltonian in the three-dimensional space of even states,
which (for both ζ = ±1 sectors) gives

H = 2

⎡
⎢⎣

� 0
√

2λ

0 −�
√

2J√
2λ

√
2J 0

⎤
⎥⎦. (5)

The above form is suggestive as it corresponds to two levels at
±2� coupled by “hybridization” of strengths 2

√
2λ and 2

√
2J

to a third level at energy 0. The observation at the three-site
level is that the transformation � → −� accompanied by
λ ↔ J does not change the spectrum. However, this simple
observation helps us to identify a general symmetry of the
XYZ spin chain, which is valid for any size. Indeed, in Eq. (1)
this comes from the unitary transformation σx

j → σx
j , σ

y

j →
(−1)j σ y

j , σ z
j → (−)j σ z

j , which preserves the SU (2) algebra.
The above transformation when translated into the language
of JW fermions is actually a particle-hole transformation only
in one sublattice, which induces the change in the role of λ

and J .

B. Block spin renormalization group transformations

When we are dealing with odd number of sites the ground
state will belong to a Kramers doublet. In the language of JW
fermions this correspond to odd number-parity of JW fermions
which has a chance to produce Majorana fermions. In the case
of XYZ model where the quantity ζ is conserved, the two
degenerate ground states correspond to ζ = ±1. The basic
idea of block-spin RG is to construct the matrix elements
of the operator O = σx

j ,σ
y

j ,σ z
j in the space of these doublet

{|φζ 〉}, ζ = ± as

[〈φ+|O|φ+〉 〈φ+|O|φ−〉
〈φ−|O|φ+〉 〈φ−|O|φ−〉

]
, (6)

which being 2 × 2 matrix can again be rewritten in terms
of Pauli matrices σ ′a,a = x,y,z. This can be interpreted
as new spin-half degrees of freedom on a coarse-grained
lattice [21]. The relation between the new couplings and
the old couplings is the BSRG transformation. The BSRG
method for small clusters can capture the flow of gap and
entanglement parameters, but due to severe size limitations
fails to capture the behavior of correlation functions. There
are errors associated with the finite size of the block itself,
which can be variationally improved by appropriate projection
known as contractor renormalization group [28].

In the following two sections, we proceed with implemen-
tation of this RG program, first for the limiting cases from
which we learn about topology of the attractors, and next for
a general case.

III. LIMITING CASES: XY AND XXZ CHAINS

Before considering the solution of the problem in the most
general case λ 
= 0,� 
= 0, it is instructive to consider the
special case to establish the Ising limit of the Kitaev-chain
Hamiltonian as a renormalization group fixed point. We
provide analytic solutions for the RG flow and identify a
geometric progression in terms of a length scale associated
with the MFs. Then we will proceed to construct the global
picture of the phase diagram.

A. The XY limit: λ �= 0 and � = 0

This limit is exactly solvable by the JW transformation
giving a half-filled chain of JW fermions hopping with
amplitude J and with p-wave superconducting pairing of
strength λ between them [12]. This superconductor belongs to
BDI [10] class of topological superconductors characterized
by a winding number. Changing the sign of λ amounts to
changing the winding number. For any nonzero λ we have a
topologically nontrivial gapped (superconducting) phase. The
gapped phases corresponding to positive and negative values
of λ are separated by a gap closing at λ = 0. To set the stages
for the general case of the XYZ spin chain, first of all, let
us see how can the above picture be reproduced in the BSRG
language.

In the XY limit where � = 0, three eigenvalues are given
by

ωm = m2
√

2
√

J 2 + λ2, m = 0,±1,
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with corresponding eigen-states in ζ = ±1 sectors,

|ψ0〉ζ = 1√
J 2 + λ2

(−λ|1〉ζ + J |2〉ζ ),

|ψ±〉ζ = 1√
2
√

J 2 + λ2
(J |1〉ζ + λ|2〉ζ ) + ±1√

2
|3〉ζ .

Obviously, the Kramers doublet of ground states is given by
|φζ 〉 = |ψ−〉ζ for ζ = ±1, which explicitly reads [29]

|φ+〉 = ā|↑↑↑〉 + b̄|↓↑↓〉 − 0.5|↑↓↓〉 − 0.5|↓↓↑〉, (7)

|φ−〉 = ā|↓↓↓〉 + b̄|↑↓↑〉 − 0.5|↓↑↑〉 − 0.5|↑↑↓〉, (8)

ā = λ√
2(J 2 + λ2)

, b̄ = J√
2(J 2 + λ2)

. (9)

Evaluating the matrix elements of the original spin variables
linking the adjacent blocks gives

σx
0,2 = (−ā − b̄)σ ′x, (10)

σ
y

0,2 = (−ā + b̄)σ ′y, (11)

where we only need the sites 0 and 2 at the boundary of three
site cluster. The �σ ′ denotes the coarse-grained Pauli matrices
for a given block, which describe the fluctuations within the
ground state of Kramers doublets |φζ 〉. These coarse-grained
Pauli matrices are mutually connected to neighboring blocks
only through sites 0 and 2. Note that it is not surprising that
the spin variables at sites 0 and 2 of the cluster transform
identically under coarse-graining, as the three site cluster has
a reflection symmetry with respect to the middle site, which
is nicely manifested in the Kramers doublet ground states
Eqs. (7) and (8). Therefore, the interaction terms connecting
neighboring blocks are transformed as

(J + λ)σx
0 σx

2 → (J + λ)(−ā − b̄)2σ ′x
n σ ′x

n+1, (12)

(J − λ)σy

0 σ
y

2 → (J − λ)(−ā + b̄)2σ ′y
n σ

′y
n+1. (13)

Using Eq. (9) allows us to identify the coarse-grained cou-
plings J ′ and λ′ as

J ′ ± λ′ = − (J ± λ)3

2(J 2 + λ2)
, (14)

or equivalently,

J ′ = J

2

J 2 + 3λ2

J 2 + λ2
, λ′ = λ

2

λ2 + 3J 2

λ2 + J 2
. (15)

These equations are invariant under J ↔ λ, which is actually
due to symmetry operation discussed under Eq. (5). Since the
physics of XY Hamiltonian is given only by the ratio of the
above parameters, dividing the above flow equations gives

y ′ = y
3 + y2

1 + 3y2
, y = λ

J
. (16)

Note that the above flow equation is invariant under y → y−1.
This is natural since the above transformation is the same as
λ ↔ J . Obviously y∗ = 0 is a fixed point, which then due
to this symmetry implies that it is equivalent to y∗ = ∞ fixed

FIG. 1. Fixed points of the Kitaev (XY ) chain: Phase portrait
of the flow Eq. (16) is characterized by repulsive fixed points at 0
and ±∞ and two attractive fixed points at y∗ = ±1 that are related
by λ → −λ transformation. The direction of arrows correspond to
the sign of the right-hand side of the difference Eq. (17). The two
attractive fixed points at y∗ = +1 (magenta) corresponds to J∞ =
λ∞ while y∗ = −1 (blue) corresponds to J∞ = −λ∞. The arrows
represent that way MF of type a is combined with a neighboring
MF of type b which then leaves a pair of spatially separated MF
end modes. The Kitaev-Ising fixed point denoted by magenta (blue)
correspond to IO along x̂ (ŷ) direction.

point. The invariance of fixed points under y∗ → 1/y∗ implies
that there could be fixed points at y∗ = ±1 as well. This can
be explicitly obtained by constructing the difference equation
[30] for the variable y that reads

yn+1 − yn = 2yn

1 − y2
n

1 + 3y2
n

. (17)

The zeros of the right-hand side give the fixed points [30]
y∗ = ±1, which are both attractive fixed points along with a
repulsive fixed point at y∗ = 0. The invariance of the flow
equations under y → 1/y imply that the infinity is also a
repulsive fixed point. Under this symmetry operation, the
attractive fixed points at y∗ = ±1 map to themselves. This
has been plotted in Fig. 1.

The interpretation of this flow diagram is as follows: first of
all, λ = 0 corresponding to gapless phase of the filled Fermi
sea of JW fermions is a repulsive (unstable) fixed point. In the
language of the JW fermions this is nothing but the instability
of a Fermi system with respect to the superconducting pairing
interactions (i.e., λ). Any positive (negative) λ flows ultimately
to the +J (−J ) fixed point. In terms of Jx,y = J ± λ it means
that the smaller of Jx , Jy is renormalized to zero, and the fixed
point is an Ising chain polarized along x̂ or ŷ direction. In such
an Ising ground state, every MF of a given type is paired with
a MF of opposite type in either right (magenta, fixed point
λ/J = +1) or left (blue, fixed point λ/J = −1). To clarify
this let us repeat the analysis of Kitaev [12]: For the fixed
point at y∗ = 1 denoted by magenta in Fig. 1 the Majorana
representation of the Hamiltonian is

HFP,y∗=+1 = 4iJ∞
∑

j

ajbj+1.
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In terms of new fermions denoted by magenta links in the
inset of Fig. 1, i.e., f

†
j = aj + ibj+1, the above Hamiltonian

is simply 2J
∑N−1

j=0 f
†
j fj , which does not include the a0 nor

bN−1, which are denoted as unpaired circles in the inset of
Fig. 1. Similarly the other fixed point at y∗ = −1 corresponds
to a Kitaev chain where every MF of type a is paired with
the b MF to its left, leaving again two unpaired MFs at the
chain end [31]. The two fixed points y∗ = ±1 are related by
the λ → −λ transformation, which in the language of original
spins amounts to a rotation around ẑ axis of the spins, σx → σy

and σy → −σx .
Therefore, the KI fixed points at y∗ = ±1 with their non-

trivial topology that ultimately spawn two sharply localized
Majorana zero modes at the two ends of the chain are the
fixed points of the XY (Kitaev) chain. This interpretation can
be understood intuitively; e.g., for the y = y∗ = 1 point, the
resulting MFs are sharply (Dirac δ) localized at the two ends of
the chain. If one solves the zero mode eigenvalue problem with
a simple Z-transform method [10], one finds that away from
the fixed point, one still has the MFs at the two ends, but this
time they are exponentially decaying instead of being Dirac δ

localized [see Eq. (21)]. Take any chain with y away from y∗
with its exponentially localized pair of MFs at the chain ends
and look at the MFs at larger length scales: After every scale
transformation the MF wave function will be more and more
localized. This means that at very large length scales the MF
will look like a Dirac δ localized MF. This is the meaning of
flowing toward Dirac δ localization—i.e., the y = y∗—point.

Let us now show that the flow Eqs. (16) can be explicitly
solved. Let us change the variable y to variable u as

yn = tanh un = eun − e−un

eun + e−un
, (18)

which after a little algebra renders the recursive Eq. (16) to a
simple geometric progression for the new variable u,

yn+1 ≡ tanh(un+1) = e3un − e−3un

e3un + e−3un
= tanh(3un), (19)

whose solution un = 3nu0 implies

yn = tanh[3n arctanh(y0)], (20)

where the system size at the nth RG level, �n = 3n appears
quite naturally in this solution.

The relation un = �nu0 suggests that u must be some sort
of length scale. The question is, what kind of length scale
is it? The answer to this question is surprisingly simple and
physical: Assume that Eq. (4) has a zero mode solution of the
form which has amplitude ψ

(b)
j at every site j of the lattice.

Then it will satisfy the recursive relation,

(1 + y)ψ (b)
j+1 + (1 − y)ψ (b)

j−1 = 0. (21)

This equation is solved by the exponentially decaying ansatz,
ψ

(b)
j = exp(−j/u), where

u = 1

2
ln

(
y + 1

y − 1

)
. (22)

This is nothing but the transformation Eq. (18) in disguise.
This relation enables us to interpret the quantity u as the
length scale associated with the zero modes. The fact that the

length scale of Majorana zero modes under RG transforms as
a geometric progression has strong resemblance to a similar
geometric progression of the parameters labeling irreducible
representation of q-deformed version SUq(2) of the spin
rotation group [32].

This solution enables us to figure out the flow of the energy
gap per site (un = �nu0),

Eg,n = 2
√

2

3
Jn

√
1 + y2

n = 2
√

2

3
Jn

√
cosh(2un)

cosh(un)
. (23)

The symmetry of the problem under λ → −λ is reflected at
this stage in a symmetric functional dependence on u0. For
y0 = tanh u0 = 0, the above equation gives Eg,n = 2

√
2Jn.

On the other hand, the flow Eq. (15) for J will become Jn+1 =
Jn/2, which gives Jn = J0(1/2)n vanishing for n → ∞ and
hence giving a gapless system, in agreement with the exact
solution of the XY model [10]. For any nonzero value of y0,
with the behavior of gap for u0 ∼ y0 → 0 in mind, the ratio
of cosh terms in the above expression for large enough length
scales is always close to 1 and therefore the essential factor
that determines the behavior of gap is the behavior of Jn at
large length scales. Therefore we need to solve the recursive
relation Eq. (15) for J , which is

Jn+1 = Jn

(
1 − 1

e2un + e−2un

)
, (24)

where un is a geometric progression corresponding to the size
of MF. The solution to the above equation is

Jn = J0

n∏
i=1

(
1 − 1

e2ui + e−2ui

)
,

≈ J0

nconv∏
i=1

(
1 − 1

e2ui + e−2ui

)
, (25)

where we have used the fact that due to geometric progression
nature of un, the e−un rapidly converges to zero in nconv ∼
−(ln u0/ ln 3) steps. This causes the terms in parentheses to
come close to 1, which prevents vanishing of the J in large
length scales. A lower bound for the J in large n limit is
obtained for very small u0 by setting u0 = 0 in all the nconv

terms in the parentheses, which gives the lower bound for J

and hence Eg at large length scales as

Eg >

(
1

2

)nconv

= u
ln 2/ ln 3
0 ∼ y0.63093

0 . (26)

Numerical evaluation of the iterative equation quickly
converges and results in plots represented in Fig. 2. The trends
of the gap curves as function of the initial gap parameter y0 are
indicated by arrows in both panels. In the right panel we have
magnified the range of y0 < 0.1 to which the limiting (blue)
curve given by Efit

g = 1.4076y0.631
0 gives a perfect fit. Indeed,

zooming in by a further order of magnitude does not change the
exponent up to third decimal point, which indicates the quality
of the fit. It is remarkable that the above exponent is so close
to the lower bond estimated in Eq. (26). The exact solution
from the JW transformation gives a superconducting state with
pairing potential proportional to y0 and hence the exact gap
exponent is actually 1. However, the value of ln 2/ln 3 obtained
above gives the finite-size value of the gap exponent.
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FIG. 2. Flow of the energy gap (per site) as a function of y0. The
blue curve is the fit to the numerical data obtained from iteration of
Eq. (23), which gives 1.4076y0.631

0 .

A final note is that the behavior of flow Eq. (16) near the
critical point y∗ = 0 (where the gap is zero) is given by yn+1 =
3yn. Assuming a divergent correlations length ξ (y) ∼ |y|−ν

and demanding 3ξ (yn+1) = ξ (yn) gives the correlation length
exponent for the XY model as ν = 1.

B. XXZ limit: λ = 0 and � �= 0

This limit indeed has been studied much in its spin,
fermionic (massless Thirring model), and bosonic disguise
(Sine-Gordon model). To slightly generalize it, let us add a
Dzyaloshinskii-Moriya (DM) interaction [18] and on every
link we consider the operators,

Jσx
j σ x

j+1 + Jσ
y

j σ
y

j+1 + �σz
j σ z

j+1 + D(�σj × �σj+1)z. (27)

The Hamiltonian Eq. (27) not only conserves the fermion
number parity ζ = ∏

j σ z
j = ±1, but it also is invariant with

respect to rotation around the z axis, and hence the total σ z

is also conserved. To search for our Kramers doublets we are
interested in a sector with total σ z equal to ±1. In the ζ = −1
sector we define the following states:

|1〉 = |↓↑↑〉, |2〉 = |↑↓↑〉, |3〉 = |↑↑↓〉. (28)

The ζ = +1 space is similarly obtained by flipping every spin.
With respect to the DM interaction as can be seen from Table I,
an imaginary factor i in the combined form of iD is involved.
In this case, changing the sign of ζ amounts to i → −i, i.e.,
the complex conjugation. A formal way to see this in general
is that ζ is the eigenvalue of the operator Z = ∏

j σ z
j . The ζ

label of a state with odd number of sites changes if the operator
X = ∏

j σ x
j acts on it. It is readily seen that X commutes with∑

i σ
x
i σ x

i+1 and
∑

i σ
y

i σ
y

i+1 terms while it anticommutes with
DM terms of the

∑
i σ

x
i σ

y

i+1 type. Therefore, for any state
|ψ〉, there exists a state |ψ ′〉 = X|ψ〉 whose values of D are
negative of each other, and hence in the ζ = −1 sector, instead
of J + iD, one has J − iD. More compactly for any sector ζ ,
the DM interaction upgrades J to J + iζD.

The effect of each individual term of the above Hamiltonian
on a two-spin state is summarized in Table I. For the ζ = −1
sector, the effect of the above Hamiltonian on various states
can be easily seen to be

H |1〉 = 2(J + iD)|2〉,
H |2〉 = 2(J − iD)|1〉 − 2�|2〉 + 2(J + iD)|3〉,
H |3〉 = 2(J − iD)|2〉,

which gives the matrix representation,

HXXZDM
3−site = 2

⎡
⎣0 ξ ∗ 0

ξ −� ξ ∗

0 ξ 0

⎤
⎦, (29)

where as emphasized, ξ = J + iD ≡ r exp iθ combines J,D

into a single complex parameter. The eigenvalues of the above
matrix for the ζ = −1 and σ z = 1 sector are

εm = −|m|� + m
√

�2 + 8r2, m = 0,±1. (30)

For both negative and positive values of �, the ground state
corresponds to m = −1, and asymptotically approaches the
first excited state at 0 for � → −∞ but never touches it.
Therefore, the ground-state doublet is given by

|φ+〉 = b̃|↑↓↑〉 + c̃e−iθ |↓↑↑〉 + c̃e+iθ |↑↑↓〉, (31)

|φ−〉 = b̃|↓↑↓〉 + c̃e+iθ |↑↓↓〉 + c̃e−iθ |↓↓↑〉, (32)

b̃ = 4r

N , c̃ = ε + 2�

N , ε = −� −
√

�2 + 8r2, (33)

N 2 = 4
√

�2 + 8r2(
√

�2 + 8r2 − �). (34)

We have used the fact that switching between ζ = ±1 is
equivalent to complex conjugation, which replaces eiθ and
e−iθ . Let us emphasize again that as far as the multiplication
Table I is concerned the effect of introducing the DM
interaction is to replace J → ξ = J + iD ≡ r exp(iθ ). This
looks like a global gauge transformation by an angle θ when
expressed in terms of the JW fermions that modulates the
hopping. Let us see how does it show up in the RG language.

The matrix elements of �σ0 operator in the Kramers doublet
space is summarized as

σ
x,y

0 = σ ′x,y2b̃c̃ exp(−iθ ), σ z
0 = σ ′zb̃2,

σ
x,y

2 = σ ′x,y2b̃c̃ exp(+iθ ), σ z
2 = σ ′zb̃2.

Note that as expected from Eqs. (31) and (32), the sites 0 and 2
at two ends of the three site cluster are related by e−iθ → eiθ .
The above matrices give the couplings between the coarse-
grained spin variables as

J ′ = 4J b̃2c̃2, D′ = 4Db̃2c̃2, �′ = �b̃4. (35)

Since the spin at site 0 of a given cluster is connected to spin at
site 2 of the neighboring cluster, which leads to cancellation of
the DM phases θ , thereby making the flow of J and D identical.
The above equation in terms of the combined complex variable
ξ = J + iD becomes

ξ ′ = 4ξ b̃2c̃2, �′ = �b̃4, (36)

where b and c are real and incorporate no phase to ξ through
the RG scaling. The above equation is remarkable in that it
implies that the magnitude r = √

J 2 + D2 scales the same
way as J , but the phase θ does not change:

r ′ = 4rb̃2c̃2, θ ′ = θ, �′ = �b̃4. (37)

The fact that in the one-dimensional version of the DM
interaction, the θ does not change as the length scale is changed
is actually a manifestation of the fact that the nonzero θ is
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FIG. 3. Fixed points of the flow equations for XXZ model. The
(noninteracting) fixed point at v∗ = 0 is attractive, while the BKT
fixed point corresponding to v∗ = ln

√
2 is repulsive.

basically a global gauge transformation of the θ = 0 limit.
As in the rest of the paper we wish to compare the results of the
XXZ model against the XYZ, let us fix θ = 0 (corresponding
to D = 0).

In terms of z = 1√
8

�
J

, the flow Eqs. (37) become

z′ = z

2
(
√

z2 + 1 + z)2, J ′ = J

2

1

1 + z2
. (38)

This naturally suggests to define

z = sinh v, (39)

in terms of which the flow Eqs. (38) are simplified to

sinh v′ = 1

2
sinh ve2v, J ′ = J

2 cosh2 v
. (40)

In terms of z, the energy gap per site can be written as 3Eg =
� + √

�2 + 8J 2 = 2
√

2J (z + √
z2 + 1) or equivalently,

Eg

2
√

2J
= ev

3
. (41)

The difference equation describing the flow of v is

vn+1 − vn = arcsinh
[

1
2 sinh vn e2vn

] − vn, (42)

which has been plotted in Fig. 3. The above equation has a
repulsive fixed point at v∗ = ln

√
2, which corresponds to the

BKT point z∗ = 1/(2
√

2) or � = J .
We have numerically evaluated the flow Eq. (40) and have

used it to generate a flow for the gap of the XXZ model,
Eq. (41) in Fig. 4. The flow of the energy gap for the left (right)
of BKT point v∗ = ln

√
2 has been plotted in blue (magenta).

For clarity of presentation we have normalized the blue plots
to J , while the magenta plots are normalized to �, which is
the dominant and natural energy scale on the right side of the
BKT point. The direction of the flow has been indicated by
gray arrows. To the left of the BKT point v∗ = ln

√
2, every

thing flows to v = 0 (corresponding to z ∼ �/J = 0), and
hence the relevant energy scale is J , which sets the scale of
the energy gap. But on the other hand, since for every v one
always has cosh2 v > 1, the second of Eq. (40) indicates that
J flows faster than the geometric progression Jn+1 = Jn/2,
which implies that the energy scale J in the large n (long
length) limit approaches to zero and therefore the left of the
BKT point (blue) lines is a gapless phase. Indeed, one can do
a formal expansion around the noninteracting attractive fixed

FIG. 4. The evolution of gap function on two sides of the phase
transition. The BKT point J = � corresponds to v∗ = ln

√
2. For

clarity at every length scale the gap is normalized to the exchange J

(blue) and the � (magenta) of the same length scale for the liquid and
CDW sides, respectively. The gray arrows indicate the direction of
RG flow. Note that in the liquid (blue) side the J itself very quickly
approaches zero at large length scales, and hence the blue side is
gapless. The gapless phase ends at the BKT point.

point at v∗ = 0, which gives

vn+1 =
(

1

2

)
vn ⇒ vn =

(
1

2

)n

v0

⇒ Eg = 2
√

2

3
evn = 2

√
2

3
(ev0ε), ε = exp(−n ln 2),

(43)

where for large n, the quantity ε is exponentially small at large
length scales. With this the behavior of gap function for the
left of BKT point can be understood and it can be seen why
all the blue curves settle on the Eg/J = 2

√
2/3 line.

Now let us move to the right of BKT point in Fig. 4 that
corresponds to the CDW phase. Expanding around the BKT
repulsive fixed point v∗ = ln

√
2, we can write

evn = ev∗
exp[κn(v0 − v∗)], (44)

Jn = exp[−3κn(v0 − v∗)], n � 1, (45)

Eg

�
= evn

3 sinh(vn)
, (46)

where κ = 5/3 and we have used e2v∗ = 2 along with the fact
that for large n, κn − 1 ≈ κn. The first of the above equations
shows that in the large v limit where �/J ∼ z = sinh v ∼
ev/2 diverges, the relevant energy scale is �. The second
equation indicates how does the scale J fade away at large
length scales, and the third equation shows why in the n → ∞
where v → ∞, the ratio of energy gap per site Eg and �

approaches the 2/3 in agreement with Fig. 4. However, since
the energy scale � in the right of BKT point is not renormalized
to zero, the right of BKT point v∗ = ln

√
2 is actually a gapped

phase corresponding to the CDW phase of the underlying JW
fermions.

Figure 4 nicely shows that for every 0 < v < ln
√

2 cor-
responding to 0 < � < J , the gap settles on 2

√
2J/3, which

eventually approaches to zero as does J in the long length
limit. The closer � is to zero, earlier in RG steps the gap
reaches the zero. For values of � < J that are closer to J , a
larger RG iteration, i.e., a longer length is required to attain
the zero gap. But eventually for long enough length scales, all
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Hamiltonians with 0 < � < J end up in a gapless state. This
gapless state terminates at the BKT point � = J .

A further hallmark of the BKT transition is the behavior
of the gap to the right of BKT point. In the CDWI phase the
gap is essentially given by the 2�/3 at every length scale. The
closer the � is to the right of BKT, it takes a longer length to
settle the gap to 2�/3 asymptote. Combining the asymptotic
behavior of Eqs. (44), (45), and (46), we obtain

ln Eg ∼ ln � = −3�1/ν(v0 − v∗),

= −3

(
�

ξ (v0)

)1/ν

,

ν = ln 3/ ln κ = 2.150, (47)

where ν is the correlation length exponent ξ (v) ∝ |v − v∗|−ν

which satisfies ξ (vn+1) = ξ (vn)/3. This algebraic behavior of
the logarithm of the gap is the three-site BSRG version of the
BKT behavior [13,22],

Eg(v) = exp

(
− const√

v0 − v∗

)
. (48)

Equipped with block-spin RG interpretation of the phase
transitions of XY and XXZ models, we are now prepared
to construct a global phase diagram of the XYZ model.

IV. PHASE DIAGRAM OF THE XYZ SPIN CHAIN

The role of λ 
= 0 for � = 0 is to open up a topologically
nontrivial bulk-gap. The role of � 
= 0 when λ = 0 on the
other hands is to open up an Ising gap, or in the language of the
massive Thirring model to open up a CDW gap. To distinguish
this Ising limit from the Ising limit of the XY model, we
call the former CDW-Ising gap, while for the gapped state
due to p-wave pairing of JW fermions we use the term KI gap.
Now it is desirable to have both these gap opening mechanisms
together, and to study the critical (gapless) line separating these
regions. For this purpose we need to analytically diagonalize
the three-site Hamiltonian Eq. (5), which gives the following
equation for the eigenvalues ω:

ω3 − 4(�2 + 2J 2 + 2λ2)ω − 16�(λ2 − J 2) = 0. (49)

This is already in its canonical form ω3 − 12P 2ω + 16Q = 0,
which admits three trigonometric solutions,

ωm = −4P cos

[
1

3
arccos

(
Q

P 3

)
− 2πm

3

]
, (50)

where m = 0,1,2. In the CDWI limit where hybridizations
λ and J vanish, the roots of the cubic equation given by
trigonometric formula Eq. (50) reduce to

ω0 → −2�, ω1 → 0, ω2 → 2�. (51)

In the CDWI limit, the ground state is the root that starts at −2�

and always remains the ground state, except for the special
point J = 0,λ = �, where the first excited state touches the
ground state. This is shown in Fig. 5. This indicates that ω0

always remains the ground state. Therefore, the ground-state

FIG. 5. The evolution of roots as functions of J and λ. All three
axes in this figure are in units of �. The lowest root (orange)
correspond to m = 0 and the highest root (green) correspond to
m = 2.

wave function corresponding to this energy is

|φ+〉 = a|↑↑↑〉 + b|↓↑↓〉 + c(|↑↓↓〉 + |↓↓↑〉)/
√

2, (52)

|φ−〉 = a|↓↓↓〉 + b|↑↓↑〉 + c(|↓↑↑〉 + |↑↑↓〉)/
√

2,

a = 2
√

2λ(ω0 + 2�)/d2, b = 2
√

2J (ω0 − 2�)/d2,

c = (
ω2

0 − 4�2
)
/d2,

d2 =
√

8λ2(ω0 + 2�)2 + 8J 2(ω0 − 2�)2 + (
ω2

0 − 4�2
)2

,

(53)

where the naming d2 is chosen such that d will have the
dimension of energy. Note that the above ground state is
nondegenerate as long as (J,λ) 
= (0,�). On the boundary of
each cluster only the spin variables �σ0 and �σ2 are living, which
might be connected to neighboring blocks. The symmetry
under exchange of site indices 0 and 2 in the cluster is manifest
in the above Kramers doublet ground states. So we only need
to compute the transformation of one of them, e.g., �σ0. The
computation is straightforward noting that every operation
σx,y changes the conserved quantity ζ and hence only has
off-diagonal components between the two ground states with
ζ = ±1. For the same reason, operator σ z does not change the
charge ζ (fermion parity in the language of JW fermions) and
hence only has diagonal components. This gives

σx
0 →

√
2c(a + b)σ ′x, σ

y

0 →
√

2c(a − b)σ ′y,

σ z
0 → (a2 − b2)σ ′z,

which result in the flow equations,

J ′ + λ′ = 2(J + λ)c2(a + b)2, (54)

J ′ − λ′ = 2(J − λ)c2(a − b)2, (55)

�′ = �(a2 − b2)2. (56)

To proceed further, let us define the dimensionless version
of � and λ in units of J with � = xJ,λ = yJ . Then the

012159-8



EXACT PHASE BOUNDARIES AND TOPOLOGICAL PHASE . . . PHYSICAL REVIEW E 96, 012159 (2017)

FIG. 6. The phase portrait for the XYZ model in one dimension.
The horizontal and vertical axes are x = �/J and y = λ/J ,
respectively. The flow profile is symmetric with respect to the y

axis. The two attractive fixed points at (0,±1) are Kitaev-Ising fixed
points. The fixed points at x → ±∞ are CDW-Ising fixed points. The
repulsive fixed point at (1,0) are Kosterlitz-Thouless transition of the
XXZ model which are now turned into tricritical points.

dimensionless version of the flow equations become

p =
√

x2 + 2 + 2y2

3
, q = x(1 − y2),

ε = −4p cos

[
1

3
arccos

q

p3

]
,

η =
√

8y2(ε + 2x)2 + 8(ε − 2x)2 + (ε2 − 4x2)2,

α = 2
√

2y(ε + 2x)/η, β = 2
√

2(ε − 2x)/η,

γ = (ε2 − 4x2)/η, x ′ = x(α2 − β2)2

2γ 2[(α2 + β2) + 2αβy]
, (57)

y ′ = 2αβ + y(α2 + β2)

α2 + β2 + 2αβy
, (58)

where ε is the dimensionless ground-state energy defined by
ε = ω0/J . Let us check the limit, x → 0 of the XY model
where we obtain ε → −2

√
2
√

1 + y2, which implies α →
y/

√
2(1 + y2), β → 1/

√
2(1 + y2), γ → −1/

√
2, whereby

the flow equations give x ′ = 0, y ′ = y(y2 + 3)/(1 + 3y2),
which is the same as Eq. (16).

The phase portrait of the above set of flow equations is
shown in Fig. 6, where the horizontal axis denotes x = �/J

and the vertical axis represents y = λ/J . In the language
of Jordan-Wigner fermions, the x is a measure of many-
body interaction between the JW fermions, and y controls
the p-wave superconducting interaction between these spin-
less fermions. We colloquially use the term IO to refer to
staggered magnetization in the case of AFM Ising point and to
magnetization in the case of FM Ising point. Since these two
are related by a canonical transformation, we do not distinguish
them and only refer to them as Ising order. For definiteness, let
us assume that J > 0 and spell out the phase diagram obtained
by the block-spin RG method.

The phase portrait of the XYZ model in Fig. 6 is
characterized by Ising attractors at (x,y) = (0,±1), which
are denoted as KI and (x,y) = (±∞,0)—not shown in the
figure—and repellers at six BKT points two of which are
denoted by letter b and the other four are along the asymptotes
|y| = |x| − 1. Therefore, there is a total of six BKT points that
when joined together determine the phase boundary depicted
as a blue line in this figure. The BKT points at (x,y) = (±1,0)
are tricritical points [25].

This blue line coincides with the exact phase boundary
extracted from the solution of Baxter [22]. There are four
saddle points at (x,y) = (±2,±1) that guide the flow lines. The
blue gapless lines divide the plane of x = �/J and y = λ/J

into four regions. The Ising attractors at far right (left) of
the x = �/J axis correspond to AFM (FM) Ising order. For
J > 0 (J < 0), the KI attractors at (x,y) = (0,±1) correspond
to AFM (FM) Ising order along x̂ and ŷ directions. As we saw
in Sec. III A, the KI points are characterized with a winding
number corresponding to which a pair of MFs are spawn at the
two ends of the spin chain. Now the KI attractors with their
nontrivial topology have turned into global attractors in the
plane of � and λ.

The equation of the gapless phase boundaries (blue lines)
of the phase portrait in Fig. 6 are given by |y| = f (x), where

f (x) = (|x| − 1)�(|x| − 1), (59)

which agrees with the exact solution [22,24] and should be
compared, e.g., with Fig. 3 of den Nijs [22]. The entire region
y > f (x) is attracted to the KI point at (x,y) = (0,+1) with
winding number nw = +1 and IO along x̂ direction. The
entire region y < −f (x) is attracted to the other KI point
at (x,y) = (0,−1) with winding number nw = −1 and IO
along ŷ direction. The rest of the plane for |x| > |y| + 1 is
attracted to the CDWI fixed point with winding number nw = 0
and IO along ẑ direction. In the language of JW fermions,
it means that when a p-wave superconducting bulk gap is
opened by a nonzero λ, turning on the interaction � between
the JW fermions is not capable to close the gap and change
the topological charge from nw = ±1 of the KI point to the
nw = 0 of the CDWI phase, unless the interaction � is larger
enough to satisfy |�| > |J | + |λ|.

The repulsive fixed point at (� = J,λ = 0) corresponds to
the BKT transition from critical (gapless) phase to the massive
CDWI phase. The field theory treatment in terms of sine-
Gordon theory gives a critical value �c = πJ/2 [13], while
the exact solution gives �c = J [3]. As discussed in previous
sections, the fixed points at (� = 0,λ = ±J ) correspond to
Ising fixed points of the Kitaev chain which have now turned
into globally attractive fixed points. These points are gapped
Ising phases; however, to distinguish them from the CDW-
Ising phase, it is appropriate to call them Kitaev-Ising points.
The present picture means that the KI fixed points obtained
from the XY limit that corresponds to Ising magnets polarized
in x̂ or ŷ directions and is entitled to a nonzero winding number,
remain attractive fixed points in a broader parameter range
where the interaction between JW fermions (�) is also present.
For interacting XYZ chain, the x̂ or ŷ polarized KI fixed points
remain the flow destination as long as the pairing interaction
λ ∼ y is strong enough to satisfy |y| > |x| − 1. Otherwise, the
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CDW-Ising fixed point that polarizes the system along the ẑ

axis will win.

V. DISCUSSIONS AND SUMMARY

We have analyzed the phase diagram of the XYZ model.
In the limiting case of the XY spin chain that corresponds to
the Kitaev chain model of spinless JW fermions paired with
p-wave superconducting interaction λ, we find that the Ising
limit of the Kitaev chain that leaves a pair of sharply localized
Majorana fermions in the two ends of the chain is actually
a RG fixed point. In the XY limit, we were further able to
analytically solve the flow equation. This allowed us to identify
a geometric progression inherent in the RG flow as a length
scale associated with zero modes of the system, namely the size
of Majorana fermions. This has strong resemblance to a similar
progression arising from tensor product of representations of
SUq(2) group [32]. The Kitaev-Ising fixed points of the XY

limit are characterized by a nonzero winding number. We
further find that within the three-site cluster employed in our
analysis the—superconducting—gap at nonzero values of λ

develops as λln 2/ ln 3.
The other extreme limit is that of the XXZ chain, where

the exact BKT point at � = J is obtained from a block spin
RG based on the three site problem. We analytically obtain
the asymptotic behavior of the RG flow, which enables us
to establish the � > J region is gapped and flows to the
CDW-Ising fixed point. Then we considered the effect of
nonzero λ and �, which in the language of JW fermions
corresponds to the massive Thirring model. In this general
case, we find that the ground state of the XYZ model is
essentially gapped. The phase portrait is specified by Ising
attractors and BKT repellers. The gapless (blue) lines in Fig. 6
is essentially the exact result of Baxter. But the new insight
of the present analysis is that our phase portrait attaches
topological significance to the Baxter’s exact solution. Indeed
in the y > f (x) the KI fixed point with winding number
nw = +1, which corresponds to Ising order along x̂ direction
is a global attractor, while in the y < −f (x) region the KI
fixed point with winding number nw = −1 is a global attractor
in the space of parameters �,λ. For very strong |�|, the
CDW-Ising attractor takes over which is characterized by a
winding number nw = 0. Therefore, the blue lines in Fig. 6
divide the parameters space of the XYZ model into regions
where across the (blue) border a winding number changes,
and hence the transition from one gapped (Ising ordered)
state to another gapped state is actually a topological phase
transition. The underlying topology explains why a simple
three-site problem is able to capture the exact phase diagram
of the model.

The KI fixed points spawn a pair of Majorana fermions
sharply localized in the chain ends. Going from the KI
fixed point, e.g., at (x,y) = (0,+1) to the other one cor-
responds to changing the polarization direction from x̂ to
ŷ direction. This in the language of Majorana fermions
corresponds to exchanging the two Majorana fermions of type
a and b in the opposite ends of the chain which requires
the change of topology. Therefore, the Ising degeneracy is

tantamount to a topological degeneracy of underlying JW
fermions and manifests itself as localized Majorana zero
modes [10].

The picture presented so far relies on the σ z basis used
in our analysis. Indeed thinking in terms of the couplings
Jx = J + λ, Jy = J − λ, Jz = �, the three Ising limits can be
mapped to each other by coordinate transformation. Therefore
assigning the three winding numbers nw = ±1 to IO along x̂

and ŷ and nw = 0 to IO along ẑ is a matter of choice. The
reason is that the JW fermions and their associated MFs are
constructed from the transverse spin variables σx,σ y . To that
extent even the CDW-Ising phase at large � can be thought of a
KI point when expressed in terms of JW fermions constructed
from, e.g., σ z,σ x variables. Hence, the CDW phase of the
Thirring model is entitled to have zero modes and hence is
topologically nontrivial. Indeed, in one-dimensional helical
liquids a topologically nontrivial gap can be opened by two-
particle interactions [33]. To see how the above symmetry with
respect to choice of the coordinate system is reflected in the
phase diagram of Fig. 6, let us consider a portion of the blue
phase boundary that connects the two BKT points marked as
b in the figure. Equation of this phase is Jx = Jy,|Jz| < |Jx |.
Changing the coordinate system the equation of the boundary
line would be Jx,y = Jz, which means J ± λ = �, which then
gives x ∓ y = 1 that is nothing but the equation of the portion
of the blue line emanating from the BKT point (x,y) = (1,0)
to the up-right and down-right of the figure.

It has been recently found that the ground state of the XYZ

chain has nontrivial multifractality spectrum [34,35], which
is entirely different from the type of multifractal behavior in
(disordering) Anderson transition and might have to do with
the many-body localization [36,37]. It is therefore desirable
to develop an understanding of the XYZ model from the
perspective of topology which can also shed light on the
role of topology in the corresponding problem of interacting
fermions or bosons. It would be interesting to examine the role
of topology—that can be diagnosed by the bipartite charge
fluctuation [37]—in the multifractal behavior of the ground
state.

In the XYZ model, it may be interesting to reduce the
amount of entanglement between a block and its environment
by appropriate unitary transformations at boundary known as
disentanglers between any two successive BSRG steps. This
procedure known as entanglement renormalization [38] leaves
the critical point scale invariant and further allows to study the
evolution of entanglement across the length scales.

To summarize, we have obtained the exact phase boundaries
of the XYZ spin chain. The gapless lines correspond to
topological phase transitions through which the appropri-
ate Majorana zero modes are exchanged across the chain
ends.
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