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Decomposition of conditional probability for high-order symbolic Markov chains

S. S. Melnik and O. V. Usatenko
A. Ya. Usikov Institute for Radiophysics and Electronics Ukrainian Academy of Science, 12 Proskura Street, 61805 Kharkov, Ukraine

(Received 30 March 2017; revised manuscript received 9 June 2017; published 31 July 2017)

The main goal of this paper is to develop an estimate for the conditional probability function of random
stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a
decomposition procedure for the conditional probability function of sequences considered to be high-order
Markov chains. We represent the conditional probability function as the sum of multilinear memory function
monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov
chain models and to construct artificial sequences via a method of successive iterations, taking into account at
each step increasingly high correlations among random elements. At weak correlations, the memory functions
are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the
gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained
results may have applications for sequential approximation of artificial neural network training.
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I. INTRODUCTION

Natural sequences with a nontrivial information content
have been the focus of a large number of studies in different
fields of science for the past several decades. Such random
sequences are a subject of study in the areas of algorithmic
(Kolmogorov-Solomonoff-Chaitin) complexity, information
theory, compressibility of digital data, the statistical infer-
ence problem, computability, data compression [1], natural
language processing [2], and artificial intelligence [3]. In
addition, many aspects of these sequences can be applied as a
creative tool for designing devices and appliances with random
components in their structure (e.g., different wave filters,
diffraction gratings, artificial materials, antennas, converters,
delay lines, etc. [4]).

Random sequences with a finite state space exist as natural
sequences (e.g., DNA or natural language texts), or they arise
as a result of coarse-grained mapping of the evolution of a
chaotic dynamical system into a string of symbols [5–7]. The
sequence items can also be phonemes, syllables, words, or
DNA base pairs, depending on the application.

A standard method of understanding and describing the
statistical properties of a given random symbolic sequence of
data requires an estimation of the joint probability function of
L words (subsequences of length L). Reliable estimations for
the probability can be achieved only for small L because the
number mL (where m is the finite-alphabet length) of different
words of length L has to be much less than the total number of
words, mL � M − L, in the whole sequence of length M .
This is a crucial point, because the correlation lengths of
natural sequences of interest are usually of the same order
as the sequence length, whereas the last inequality can only be
fulfilled for the maximal lengths of the words, Lmax � 10.

The main purpose and results of this paper can be described
as follows: We elaborate on a decomposition procedure for the
conditional probability function of sequences considered to
be high-order Markov chains. We represent the conditional
probability function as the sum of multilinear monomials of
different orders (from zero up to the chain order). At weak
correlations, the memory functions are uniquely expressed in
terms of high-order symbolic correlation functions. Finally,

we reveal a close connection between our analytical Markov
chain approach and artificial neuron network models.

II. SYMBOLIC MARKOV CHAINS

Consider a semi-infinite random stationary ergodic se-
quence S of symbols (letters, characters) ai ,

S = a0,a1,a2, . . . (1)

taken from the finite alphabet

A = {α1,α2, . . . ,αm}, ai ∈ A, i ∈ N+ = {0,1,2, . . . }. (2)

We use the notation ai to indicate a position i of the symbol
a in the chain, and the unified notation αk to stress the value
of the symbol a ∈ A. We also use the personified notation for
the symbols a of the same alphabet, A = {α,β, . . . ,ω}.

We suppose that the symbolic sequence S is a high-order
Markov chain. The sequenceS is a Markov chain if it possesses
the following property: the probability of symbol ai to have
a certain value αk ∈ A under the condition that all previous
symbols are fixed depends only on N previous symbols,

P (ai = αk| . . . ,ai−2,ai−1)

= P (ai = αk|ai−N, . . . ,ai−2,ai−1). (3)

There are many other terms for such sequences. They
are also referred to as follows: categorical [8], higher-order
[9,10], and multi- or N -step [11–13] Markov chains. One
of the most important and interesting applications of the
symbolic sequences is the probabilistic language model, which
specializes in predicting the next item in a sequence by means
of N previous known symbols. Here the Markov chain is
known as the N -gram model.

As a rule, the statistical properties of random sequences
are determined using correlation functions. In contrast with
numeric correlation functions,

C(r1,r2, . . . ,rk−1)

= [a0 − a)][ar1 − a)] · · · [ar1+···+rk−1 − a], (4)
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symbolic correlation functions of kth order are given by the
following expression:

Cβ1,...βk
(r1,r2, . . . ,rk−1)

= [δ(a0,β1) − pβ1 ] · · · [δ(ar1+···+rk−1 ,βk) − pβk
]. (5)

The overline indicates a statistical average over an ensemble
of sequences. For numerical purposes, it can be replaced by
the average along the chain for ergodic sequences, or by the
arithmetic, Cesàro average. Note that in some sense, symbolic
correlation function matrices are a more general construction
than numeric correlation functions. They can describe in more
detail even numeric sequences.

A. Likelihood estimation

If the sequence, the statistical properties of which we would
like to analyze, is given, then the conditional probability
function (CPF) of N th order can be found using a standard
method known as the likelihood estimation,

P (ai = α|ai−N, . . . ,ai−1) = P (ai−N, . . . ,ai−1,α)

P (ai−N, . . . ,ai−1)
, (6)

where P (ai−N, . . . ,ai−1,α) and P (ai−N, . . . ,ai−1) are the
probabilities that the (N + 1)-subsequence ai−N, . . . ,ai−1,α

and the N -subsequence ai−N, . . . ,ai−1 will occur, respectively.
Hereafter, we often drop the superscript k from αk to simplify
the notations.

The conditional probability function completely determines
all the statistical properties of the random chain and the
method of its generation. Equation (6) shows that the CPF
is determined if we know the probability that (N + 1) words
will occur, with the words containing (N + 1) symbols without
omissions among their indexes. Obviously, the average number
of some word a1, . . . ,aL occurring in the whole sequence
decreases exponentially with its length L. Let us evaluate the
length Lmax of a word that occurs on average one time. For
a given length M of a weakly correlated sequence with fixed
dimension m of the alphabet, this length, evidently, is equal to
Lmax ≈ ln M/ ln m.

To make this evaluation more precise, we should take
into account that the correlations decrease the number of
typical words that one can encounter in the sequence, and this
phenomenon increases the length Lmax. From the famous result
of the information theory, known as the Shennon-McMillan-
Breiman theorem [14], it follows that

Lmax ∼ log2 M

H
, (7)

where H is the conditional entropy per letter of the sequence
under the condition that all correlations are taken into account.

The words of length L � Lmax are well represented in the
sequence, thus one can use the statistical approach for these
objects and calculate the probabilities of their occurrence in the
chain. By contrast, the statistics of longer words, L � Lmax,
is insufficient, and the whole sequence for such words is no
longer a probabilistic object. Many papers devoted to this topic
call into question even the possibility of the existence of a
“finite random sequence” [15,16].

Therefore, if the correlation length Rc of a sequence is
less than Lmax, then the random sequence under consideration

should be deemed quasiergodic because the words of length
L < Rc < Lmax provide statistically meaningful information
for reconstructing the conditional probability function of the
sequence.

We encounter a completely different situation when Lmax <

Rc. In that case, the statistical properties of the studied
sequence can be reconstructed only up to the length of
order L � Lmax. Statistically important information on the
property of the sequence in the interval Lmax < L < Rc is
inaccessible in the framework of the discussed likelihood
estimation method.

For the sake of simplicity, let us fix our attention on the pair
correlation function C2(r) only. If we know the statistics of
(N + 1) words, we also know C2(r) for r � N . Nevertheless,
at the same time, for the given sequence of length M , we
can calculate C2(r) at r , which is of order M . For a weakly
correlated sequence, the probability P (ai = α,ai+r = β) that
the pair of letters α and β will be separated by a distance r is
equal to pαpβ . This quantity determines the number of pairs
in the hole sequence. The number is a decreasing function of
r . As above, we can evaluate the distance rmax between the
pair of letters that occurs on average one time. Thus, we have
rmax ∼ M − 1/(pαpβ). It is clear that rmax can be much greater
than Lmax.

For k-order correlation functions or k-words, the estimation
is r (k)

max ∼ M − 1/(pα1 , . . . ,pαk
).

Let us note that in the frameworks of both methods,
we cannot take into account the correlation functions of
order higher than Lmax. This quantity determines both the
maximal length of words, without or with the omission
of symbols among them in the sequence (in mathematics,
such sets are known as cylinder sets), and the maximal
order of correlation functions, which can be used to describe
the statistical properties of the sequence. In the method of
likelihood estimation, this length limits the differences among
the arguments of the correlation functions. In the general
case, the differences among the arguments of the correlation
functions are limited by r (k)

max. This information about the region
Lmax � L � min(Rc,rmax) is presented for consideration by
means of the memory functions, which are expressed through
the correlation functions; see Eqs. (10), (25), and (26).

A method that allows us to use the information on the
symbols separated by a distance r � min(Rc,rmax), not only
in the narrower region with r � Lmax, is connected with the
high-order additive Markov chains, a construction proposed
in Refs. [17,18]. In this paper, we develop this method and
introduce the family of multilinear high-order Markov chains.

B. Additive high-order Markov chains

For an additive high-order Markov chain, the conditional
probability function takes on a specific, simplified, “linear
form” with respect to the random variables ai ,

Padd = P (1)(ai = α|ai−N, . . . ,ai−2,ai−1)

= pα +
N∑

r=1

∑
β∈A

Fαβ(r)[δ(ai−r ,β) − pβ]. (8)
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Here pβ is the relative number of symbols β in the chain, or
their probabilities of occurrence,

pβ = δ(ai,β). (9)

The Kronecker delta δ(.,.) plays the role of the characteristic
function of the random variable ai , and it converts symbols to
numbers. The additivity of the chain means that the “previous”
symbols ai−N, . . . ,ai−2,ai−1 ≡ ai−1

i−N exert an independent
effect on the probability that the “final” generated symbol ai =
α will occur. The first term on the right-hand side of Eq. (8)
is responsible for the correct reproduction of the statistical
properties of uncorrelated sequences, while the second one
takes into account and correctly reproduces the correlation
properties of the chain up to second order. The higher-order
correlation functions are not independent anymore. We cannot
control them and reproduce correctly by means of the memory
function F (r).

There were two methods suggested for finding the memory
functions Fαβ(r) of a sequence with known pair correlation
functions. The first one is a completely probabilistic straight-
forward calculation analogous to that presented in [17]. Its
modification is used below while obtaining Eqs. (25) and (26).
For any values of α,β ∈ A and r ≥ 1, the relationship between
the correlation and memory functions was obtained,

Cαβ(r) =
N∑

r ′=1

∑
γ∈A

Cαγ (r − r ′)Fβγ (r ′). (10)

Here the two-point (binary, pair) symbolic correlation
function is the particular case of definition (5),

Cαβ(r) = [δ(ai,α) − pα][δ(ai+r ,β) − pβ]. (11)

The second method [18] for deriving Eq. (10) is based on
the minimization of the “distance” between the conditional
probability function, containing the sought-after memory
function, and the given sequence S of symbols with the known
correlation functions,

Dist = [
δ(ai,α) − P

(
ai = α

∣∣ai−1
i−N

)]2
. (12)

It is difficult to make a final conclusion about the rela-
tionship between these two methods and the cause of their
coincidence. The principle of distance minimization may be
considered as the ansatz, which finds its probabilistic confir-
mation. However, this second method also has an independent
interest, both theoretical and practical. The first one explains
that the memory function provides the minimization of some
characteristics, e.g., the distance between the original and
artificial sequences; the practical utility may consist in the use
of numerical simulations for finding the unknown memory
functions.

Let us note that in the considered case, the two-point
quantities—the memory and correlation functions—are not
obliged to satisfy the strong inequality L � Lmax. In other
words, the additive Markov chain determined by Eq. (8)
can describe and predict the two-point statistical properties
of random sequences at distances longer than that based on
Eq. (4). At the same time, the model of random sequences
based on the likelihood estimation works better at short
distances; see, e.g., the result of the DNA entropy estimation

[19,20], where the discrepancy between the two theories is
evident. The next step to improve the prediction quality of
symbols in a random chain, which we present here, is based
on the k-linear conditional probability function, which should
close the above-mentioned gap and, probably, explain the
very astonishing question of why binary correlations are so
important and so long. The additive Markov chains are, in some
sense, analogous to the chains described by autoregressive
models [7,9,21].

III. DECOMPOSITION OF THE CONDITIONAL
PROBABILITY FUNCTION

Equation (8) can be considered as an approximate model
expression simplifying the general form of the conditional
probability function. As a matter of fact, the conditional
probability (6) of the symbolic sequence of random variables
ai ∈ A can be represented exactly as a finite polynomial series
containing N Kronecker δ symbols: a specific decomposed
form of the CPF, which expresses some “independence” of the
random variables a and spatial coordinates i,

P (.|.) = P
(
ai = α

∣∣ai−1
i−N

)
=

∑
β1,...,βN ∈A

Fα;β1,...,βN
(1, . . . ,N)

N∏
s=0

δ
(
ai−rs

,βs

)
. (13)

Here the arguments 1, . . . ,N of the function
Fα;β1,...,βN

(1, . . . ,N) indicate the distances between the
final “generated” symbol ai = α and symbols ai−1, . . . ,ai−N .
It is clear that there is a one-to-one correspondence between
P (ai = α|ai−1

i−N ) and the function Fα;β1,...,βN
(1, . . . ,N), which

is referred to as the generalized memory function. The
characteristic functions δ(ai−rs

,βs) play the role of a basis,
and the generalized memory functions are coordinates of
the CPF. We hope the reader paid attention to the difference
between αk, k ∈ (1, . . . ,m) and αs , where the subscript
s, s ∈ (1, . . . ,N) enumerates different sets of letters.

Let us decouple the memory function Fα;β1,...,βN
(1, . . . ,N)

and present it in the form of the sum of memory functions of
kth order, F (k) = Fα;βi1 ,...,βik

(ri1 , . . . ,rik ),

Fα;β1,...,βN
(1, . . . ,N) =

N∑
k=0

Fα;βi1 ,...,βik
(ri1, . . . ,rik ), (14)

where all symbols ri on the right-hand side (RHS) of Eq. (14)
are different, ordered,

1 � ri1 < ri2 < · · · < rik � N, (15)

and contain all different subsets {ri1, . . . ,rik } picked out from
the set {1, . . . ,N}. The coordinates rik of the memory function
Fα;βi1 ,...,βik

(ri1 , . . . ,rik ) indicate the positions of elements βik ,
except the function Fα;β1,...,βN

(1, . . . ,N), for which all symbols
β1, . . . ,βN have the prescribed coordinates 1, . . . ,N .

Inserting (14) in (13) and summing over the subset
{ri1 , . . . ,rik } variables satisfying Eq. (15), we get

P
(
ai = α

∣∣ai−1
i−N

) =
N∑

k=0

Q(k)
(
ai = α

∣∣ai−1
i−N

)
(16)
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with the following definitions of Q(0) and Q(1), see Eqs. (8):

Q(0)(ai = α
∣∣ai−1

i−N

) = pα (17)

and

Q(1)(α|.) =
∑
β∈A

N∑
r=1

Fαβ(r)[δ(ai−r ,β) − pβ]. (18)

The general term of kth order, referred to in multilinear algebra as a k-linear form, is

Q(k)(.|.) =
∑

β1,...,βk∈A

∑
1�r1<···<rk�N

Fα;β1,...,βk
(r1, . . . ,rk)

{
k∏

s=1

[
δ
(
ai−rs

,βs

) − pβs

] − Cβk,...,β1 (rk − rk−1, . . . ,rk − r1)

}
. (19)

In Eq. (19), we have added the term Cβ1,...,βk
to provide the equality Q(k)(.|.) = 0 for all k = 1,2, . . . ,N . With this property,

the ensemble-average value of the conditional probability function is always equal to pα .
Definition (5) is correct for ri > 0, i = 1, . . . ,k − 1. If some arguments of the correlation function in Eq. (5) are negative, one

should interpret it in the following way, which is referred [22] to as “collating”: we should order the arguments of the function
according to definition (5). For example,

Cαβγ δ(2,2, − 3) = [δ(a0,α) − pα][δ(a2,β) − pβ][δ(a4,γ ) − pγ ][δ(a1,δ) − pδ]

= [δ(a0,α) − pα][δ(a1,δ) − pδ][δ(a2,β) − pβ][δ(a4,γ ) − pγ ] = Cαδβγ (1,1,2). (20)

We used this method to represent the correlation function in Eq. (19) in the collating form.
The function Cα1,...,αk

depends on k arguments r , but the Markov chain under consideration is supposed to be homogeneous.
Then function Cα1,...,αk

depends on k − 1 arguments, the differences between the indexes, r1,r2, . . . ,rk−1, of neighbor symbols.
A trivial property of the function Cα1,...,αk

(r1, . . . ,rk−1) is∑
αm∈A

Cα1,...,αk
(r1, . . . ,rk−1) = 0, 1 � m � k. (21)

The last term Q(N) in Eq. (16) contains arguments rk = k.
For each fixed set of symbols α; β1, . . . ,βN there is just one
matrix constant Fα;β1,...,βN

(1, . . . ,N).
The k-linear conditional probability function P (k)(.|.) in

the form of Eqs. (16) and (19) can reproduce correctly the
correlations of the Markov chain up to (k + 1)th order. For
the value of k = N , the function P (N)(.|.) represents exactly
the function P (ai = α|ai−1

i−N ) [Eq. (6)].
Thus, the conditional probability function P (ai = αk|ai−1

i−N )
is presented as a decomposition of multilinear form into
k-linear subspaces. Earlier, a similar idea was presented by
Hosseinia, Leb, and Zideka [8], who proved rigorously that
the conditional probability function can be written as a linear
combination of the monomials of past process responses for
the Markov chain; see also Besag’s paper [23].

The utility of the decomposition procedure can be explained
in the following way. First, the partial terms Q(k) of the CPF are
mainly responsible for reproducing the correlation properties
of (k + 1)th order [see Eq. (33)], and second, they can be
considered as an asymptotic successive approximation for the
the CPF.

A. Bilinear CPF

The model of the additive high-order Markov chain is well
studied [12]. In this section, we examine high-order Markov
chains with a bilinear conditional probability function.

The right-hand side of Eq. (8) contains two first terms of the
asymptotic expression of the exact form, Eq. (13). The next

term Q(2) is

Q(2)(.|.) = Q(2)(ai = α
∣∣ai−1

i−N

)
=

∑
β,γ∈A

∑
1�r1<r2�N

Fα;βγ (r1,r2)

×{[δ(ai−r1 ,β) − pβ][δ(ai−r2 ,γ ) − pγ ]

−Cγβ(r2 − r1)}. (22)

The conditional probability function, which contains the
linear term Padd = P (1)(.|.) and the bilinear function Q(2) [see
Eqs. (8) and (22)], defines the bilinear Markov chain,

Pbilin(.|.) = P (2)(.|.) = P (1)(.|.) + Q(2)(.|.). (23)

It is possible to find the recurrence relations for the
correlation functions of the N -step bilinear Markov chain.
For this purpose, first of all we should calculate explicitly the
average value of symbol ar1+···+rk−1 in Eq. (5). Taking into
account the equation P (a = α|·) + P (a 	= α|·) = 1, we can
rewrite Eq. (5) for arbitrary k ≥ 2 in the form

[δ(a0,β1) − pβ1 ] · · · [δ(ar1+···+rk−1 ,βk) − pβk
]

= [δ(a0,β1) − pβ1 ] · · · [P (ar1+···+rk−1 = βk|·) − pβk
], (24)

where the CPF P (ar1+···+rk−1 = αk|·) is given by Eq. (16). In
that way, we can obtain the fundamental recurrence relation
connecting the correlation functions of different orders k. Here
we restrict ourselves by presenting these equations for the
correlation functions Cαβ(r) and Cαβγ (r1,r2) and the bilinear
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CPF, Eq. (23),

Cαβ(r) =
N∑

r1=1

∑
γ∈A

Cαγ (r − r1)Fβγ (r1)

+
∑

γ,ε∈A

∑
1�r1<r2�N

Cαεγ (r − r2,r2 − r1)Fβ;γ ε(r1,r2).

(25)

The equation for Cαβγ (r1,r2) reads

Cαβγ (r1,r2) =
∑
η∈A

N∑
r ′

1=1

Cαβη(r1,r2 − r ′
1)Fγη(r ′

1)

+
∑

η,ε∈A

∑
1�r ′

1<r ′
2�N

Fγ ;ηε(r ′
1,r

′
2)

×[Cαβεη(r1,r2 − r ′
2,r

′
2 − r ′

1)

−Cαβ(r1)Cεη(r ′
2 − r ′

1)]. (26)

The other way to get Eqs. (25) and (26) is based on the
minimization of the “distance,” Eq. (12).

The system of equations (26) allows us to find the unknown
memory functions Fαβ(r) and Fαβγ (r1,r2) for consecutive
construction of a representative random sequence with given
correlation functions of second and third order. The memory
functions should be expressed by means of the probability pα

and the correlation functions Cαβ(r) and Cαβγ (r1,r2), which
can be found numerically by means of an analysis of a given
random chain.

Equations (25) and (26) enable us to understand that
higher-order correlators C(k) (k > 3) and all correlation
properties of higher order are not independent anymore. We
cannot control them and reproduce correctly by means of the
memory function Fαβ(r) and Fγ ;ηε(r1,r2) because the latter is
completely determined by the pair and third-order correlation
functions.

We can make a similar conclusion about kth-order memory
functions. The N -step Markov chain with a k-linear memory
function allows us to reproduce correctly the chains up to the
correlation function of (k + 1)th order.

B. Approximate solution of equations

Equations (25) and (26) can be solved analytically only
in some particular cases: for one- or two-step chains, for
the Markov chain with a stepwise memory function, and so
on. Here we give their approximate solution supposing that
correlations in the sequence are not too strong (in amplitude,
but not in length), and the alphabet A contains many letters.
To formulate these conditions, we introduce the normalized
symbolic correlation function defined by

Kαβ(r) = Cαβ(r)

Cαβ(0)
, Cαβ(0) = pαδ(α,β) − pαpβ. (27)

If correlations in the random chain are not strong, it is
plausible to suppose that all the components of the normalized
correlation function with r 	= 0 are small with respect to
Kαβ(0) = 1.

Neglecting the second term on the right-hand side of
Eq. (25) [the correctness of this approximation is explained
below, after Eq. (34)], we get Eq. (10). The solution of this
equation can be written in the form

Fαβ(r) = 1

pβ

Cβα(r) (28)

if in definition (27) of Cαβ(0) we can neglect the term pαpβ

with respect to pα . This is possible if the dimension |A| of
alphabet A satisfies the condition

|A| = m 
 1, (29)

so that all probabilities pα are small.
It is easy to see that after substituting Eq. (28) into (8),

we can rewrite the additive conditional probability in the
intuitively clear form

P (1)
(
ai = α

∣∣ai−1
i−N

) = pα +
N∑

r=1

[P (ai = α|ai−r ) − pα], (30)

which explains the probabilistic meaning of Eq. (28)—in this
approximation, each symbol ai−r , 1 � r � N , has its own,
independent effect on the probability to generate ai .

Our analysis of Eq. (26) shows that we can neglect
the first term on the RHS of Eq. (26) with respect to
the term Cαβγ (r1,r2) on the LHS because Fγη(r ′

1) contains
only a nondiagonal small component of Cηγ (r ′

1). For the
same reason, the term Cαβ(r1)Cεη(r ′

2 − r ′
1) is small with

respect to Cαβεη(r1,r2 − r ′
2,r

′
2 − r ′

1). The last statement follows
from estimation of the correlator Cαβεη(r1,r2 − r ′

2,r
′
2 − r ′

1).
Its largest unique component satisfying the conditions r ′

2 ≥
r ′

1 + 1,r ′
1 ≥ 1 is Cαβαβ(r1, − r1,r1) at r ′

1 = r2,r
′
2 = r1 + r2.

Thus, Eq. (26) reduces to

Cαβγ (r1,r2) = Fγ ;αβ(r2,r1 + r2)Cαβαβ(r1, − r1,r1). (31)

Taking into account Eq. (29) and neglecting correlations
while calculating Cαβαβ(r1, − r1,r1), we get

Fγ ;αβ(r1,r2) = 1

pαpβ

Cαβγ (r2 − r1,r1). (32)

Equation (13) for the conditional probability function of
the symbolic high-order Markov chain with a bilinear memory
function [in the first approximation with respect to the small
parameters |Cαβ(r)| � 1, r 	= 0 and a multiletter alphabet,
pα � 1] takes the form

P (2)
(
ai = α

∣∣ai−1
i−N

) � pα

+
∑
β∈A

N∑
r1=1

1

pβ

Cβα(r1)[δ(ai−r1 ,β) − pβ]

+
∑

β,γ∈A

∑
1�r1<r2�N

1

pβpγ

Cβγα(r2 − r1,r1)

×{[δ(ai−r1 ,β) − pβ][δ(ai−r2 ,γ ) − pγ ]

−Cγβ(r2 − r1)}. (33)

C. k-linear form of the CPF

Equations (28) and (32) show that we can hope to obtain
similar expressions for generalized memory functions of kth
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order expressed by means of a correlation function. The result
of such calculations can be presented in the form

Fα;α1,...,αk
(r1, . . . ,rk)

= 1

pα1 , . . . ,pαk

Cαk,...,α1α(rk − rk−1, . . . ,r2 − r1,r1). (34)

To obtain this result, let us summarize the main steps
of this procedure: (i) Calculate the correlation function
of (k + 1)th order, Cα1,...,αk+1 (r1, . . . ,rk), 1 � k � N . (ii)
While calculating, use P (.|.) = P (N)(.|.) = ∑N

k=0 Q(k)(.|.).
(iii) As a result, the correlation function is presented
as a sum of the memory functions of different order
from 1 to N with coefficients Cα′

1α
′
2···(r

′
1,r

′
k, . . . ).

(iv) In the main term of the sum containing∑
r ′,β Fαk+1;β1,...,βk

(r ′
1, . . . ,r

′
k)Cα1,...,αkβk,...,β1 (r1, . . . ,rk−1,rk −

r ′
k,r

′
k−1 − r ′

k−2,r
′
2 − r ′

1), find the maximal term
Cα1,...,β1 (r1, . . . ,r

′
2 − r ′

1). It is maximal if in two increasing

sequences 0,r1, . . . ,rk−1 and rk − r ′
k,r

′
k−1 − r ′

k−2,r
′
2 − r ′

1
(rewritten according to the collating procedure as
0,r1,r1 + r2, . . . ,r1 + r2 + · · · + rk−1 and r1 + · · · + rk −
r ′
k,r1 + · · · + rk − r ′

k−1, . . . ,r1 + · · · + rk − r ′
1), there is one-

to-one correspondence among their terms: r ′
1 = rk , r ′

2 = rk +
rk−1, and r ′

k = rk + · · · + r1. (v) Neglect correlations while
obtaining Cα1,...,β1 (r1, . . . ,r

′
2 − r ′

1) = ∏k
s=1 pαs

δ(αs,βs). (vi)
All other terms containing Fαs+1;β1,...,βs

(r ′
1, . . . ,r

′
s) with s 	= k

are small with respect to that taken into account; they contain
additional small factors pr,r ≥ 1.

Thus, the conditional probability function Eq. (13) for
the symbolic high-order Markov chain in the first approx-
imation with respect to the small parameters |Cαβ(r)| �
1, r 	= 0 and a multiletter alphabet, pα � 1, is expressed
by means of “experimentally” measured quantities, i.e., the
correlation functions. Taking into account property (21),∑

αm
Cα1,...,αk

(r1, . . . ,rk−1) = 0, it is convenient to present the
final main result of the paper in the form of a series [Eq. (16)],
where we should substitute Eq. (19) and replace the memory
function by Eq. (34),

P
(
ai = α

∣∣ai−1
i−N

) =
N∑

k=0

∑
β1,...,βk∈A

∑
1�r1<···<rk�N

k∏
s=1

p−1
βs

Cβk,...,β1α(rk − rk−1, . . . ,r2 − r1,r1)

×
{

k∏
t=1

[δ(ai−rt
,βt ) − pβt

] − Cβk,...,β1 (rk − rk−1, . . . ,rk − r1)

}
. (35)

Equation (35) provides a tool for constructing weak correlated
sequences with given, prescribed correlation functions. Note
that the i-independence of the function P (ai = α|ai−1

i−N )
provides homogeneity and stationarity of the sequence under
consideration. According to the Markov theorem (see, e.g.,
Ref. [24]), the finiteness of N together with the strict
inequalities

0 < P
(
ai+N = α

∣∣ai+N−1
i

)
< 1, i ∈ N+ = {0,1,2, . . . } (36)

provides ergodicity of the random sequence. Stationarity and
ergodicity are sufficient conditions for the formulation of the
asymptotic equipartition property (the Shannon-McMillan-
Breiman theorem) [14] and Kac’s lemma [25,26].

We see that if the correlations are weak, all terms of the
CPF are independent of each other. If, e.g., we generate a
sequence using the terms of zero order and the bilinear terms,
we find that all correlators are equal to zero except third order
correlators. In the general case, it is not correct. When, e.g., we
generate a sequence with an additive memory function, there
appear correlations of all orders, not only pair ones.

D. What to do if pα are not small

If the real sequence under study does not satisfy the condi-
tion pα � 1, as, for example, in nucleotide DNA sequences,
where all four probabilities p of the different nucleotide
occurring are of the order 1/4, we cannot apply Eq. (35) to
obtain the CPF by means of correlation functions. To make
this possible, we should decrease the probabilities p. For this
purpose, we could use the idea proposed by Jiménez-Montaño,

Ebeling, and others [27–29], who suggested coding schemes of
the nonsequential recursive pair substitution. Each successive
substitution is accompanied by a decrease in the probability
pα̃ , where α̃ belongs to a new extended alphabet.

IV. ARTIFICIAL NEURAL NETWORK

In the previous section, we presented the analytical method
of finding the memory functions Fα;β1,...,βN

(r1, . . . ,rN ), and
we expressed them in terms of correlation functions. In this
section, we expose briefly the numerical method of network
training, i.e., estimation of unknown parameters in a network.
The result of this procedure should be the values of the matrix
functions F (.).

According to the definition given in Ref. [30], artificial
neural networks (ANNs) are a family of connectionist models
used to estimate or approximate functions [in our case, it
is P (ai = α|ai−1

i−N )] that can depend on a large number of
generally unknown parameters. Artificial neural networks are
generally presented as systems of interconnected nodes or
“neurons.” The connections have numeric weights that can
be tuned based on experience, making neural nets adaptive to
inputs and capable of learning. These definitions correspond
to our goal of numerically estimating the unknown function
matrices Fα;β1,...,βN

(r1, . . . ,rN ) depending on a great number
of parameters, say N ∼ 105 or more.

We mentioned that the equations for the memory functions
Fα;β1,...,βN

(r1, . . . ,rN ) can be obtained analytically by means
of minimization of the distance (12) (known in the ANN
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theory as cost function or average system error) between
desired and actual neuron output values, the elements of a
real referent sequence, and the CPF. The same distance can
be used for purposes of numerically finding an unknown
quantity—generalized memory matrices F (.)—under the net-
work training.

The considered problem with a (potentially) given random
sequence falls within the paradigm of supervised learning,
which can be thought of as learning with a “teacher.” In
supervised learning, each example is a pair consisting of
an input vector object, ai

i−N , and a desired output value,
ai = α, or, more precisely, their conditional probabilities,
P (ai = α|ai−1

i−N ). A supervised learning algorithm analyzes the
training data and produces an inferred function, which can be
used for mapping new examples. An optimal scenario will
allow for the algorithm to correctly determine the class of
memory functions.

A commonly used mean-square error tries to minimize the
average squared error between the network’s output and the
target value over all the example pairs. When one tries to
minimize this cost using gradient descent for the class of
neural networks called multilayered perceptrons, one obtains
the common and well-known backpropagation algorithm for
training neural networks.

A number of supervised learning methods have been
introduced in the past two decades. In the paper of Caruana
and Niculescu-Mizil [31], the reader can find a large-scale em-
pirical comparison between ten supervised learning methods:
SVMs, neural nets, and so on.

V. NUMERICAL SIMULATIONS

In this section, to verify our analytical results, we give
examples of numerical generation of random sequences with
the state space of dimension |A| = 2 [the symbols (numbers)
of the sequence can only take on two values: 0 or 1]. Let us
note that for a binary sequence, there is no distinction between
symbolic and numeric approaches: all symbolic correlation
functions can be expressed by means of numeric ones and vice
versa. A more detailed explanation is outlined in the Appendix.

It is supposed that the modeled statistical properties of the
random chain are determined by the probability of the symbols
occurring, pα = 1/2, the additive part of the memory function:

F (r) =
⎧⎨⎩0.002r, 1 � r � 5,

0.02 − 0.002r, 5 < r � 10,

0, 10 < r,

(37)

and the exponential (with respect to both arguments) bilinear
part of the memory function:

F (r1,r2) = 0.5 exp(−0.5r1) exp(−0.5r2), (38)

with the truncated parameter N = 20 playing the role of the
memory length.

These memory functions allow us to calculate the con-
ditional probability function (13), consisting in this case of
three parts: the zero-order function, pα = 1/2, the first-order
additive function, Q(1), and the second-order bilinear function,
Q(2), where the last two terms are given by expressions (18)
and (22). Using pα and Eqs. (37) and (38), it is possible to build

FIG. 1. The pair correlation functions for three random sequences
constructed by means of the different conditional probability func-
tions taken in the form of a combination of the linear and bilinear
parts of memory functions (37) and (38). The lines are the correlation
functions obtained by solving the system of Eqs. (25) and (26).
The dots are direct calculations over generated sequences of binary
symbols. The length of the sequences is 108.

up four different CPFs. Taking, e.g., the zero-order function
only, we obtain an uncorrelated sequence.

We construct numerically three different random sequences
of length 108. The first one is generated by the additive
probability function Q(1) [Eq. (37)], the second is obtained
with the bilinear part [Eq. (38)] (but without the additive part),
and the third chain, the most general in our case, is obtained by
the CPF containing both terms (37) and (38). All these CPFs
contain, evidently, the zero-order term, pα .

Since the sequences are prepared, we can calculate their
correlation functions. In Fig. 1, the obtained correlators are
presented by the dots. At the same time, using memory
functions Eqs. (37) and (38) and solving iteratively the system
of Eqs. (25) and (26) with respect to Cαβ(r) and Cαβγ (r1,r2), we
obtain the correlation functions presented in Fig. 1 [Cαβ(r) =
C11(r) = C2(r)] by the curves.

The middle curve and dots correspond to the sequence
generated with the additive memory function. The bottom
curve and dots describe a sequence based on the bilinear part
of the memory function. The upper curve and dots present
C2 of the sequence obtained with the additive and bilinear
memory functions simultaneously. From Eqs. (25) and (26)
and numerical simulations, it follows that the correlation
functions are entangled and intricate. The additive part of
the memory function is responsible for more than just the
second-order correlation function, and the bilinear part of the
memory function affects more than just the ternary correlation
function—they are mixed up in the system (of equations):
each memory function affects all correlators. The additive and
bilinear parts of the memory function are mainly responsible
for the second-order and third-order correlation functions,
correspondingly, for a limiting case of small correlations
predominantly. Note that the “small” values of the correlation
functions C2 of order of 10−3 are really not small. We chose the
normalization coefficients of the memory functions (37) and
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FIG. 2. The third-order correlation function C(r1,r2) of the ran-
dom binary sequence constructed by means of the bilinear exponential
memory function (38).

(38) in such a way as to provide extremely strong persistent
correlations with the CPF P (2)(ai = α|ai−1

i−N ) [Eq. (23)].
In the case of a purely additive MF, the form of the correlator

is close to the shape of the memory function (middle curve
dots in Fig. 1), but it has a significant “tail” at a distance
10 � r � 15. We have already seen this phenomenon of “lag”
of a correlator with respect to a memory function in previous
studies [18]. In the absence of the additive MF (bottom curve
in Fig. 1), the pair additive correlator is not equal to zero, and
it has a shape defined by the solution of Eqs. (25) and (26). In
the case of simultaneous generation with additive and bilinear
MFs, the pair correlator becomes significantly different from
that in the previous cases.

The two-dimensional surface for the third-order correlator
C(r1,r2), obtained by a solution of Eqs. (25) and (26) with
the bilinear part of the memory function [Eq. (38)] only, is
shown in Fig. 2. A comparison of this function (line) and the
numerically found third-order correlation function C(r1,r2)
(dots) of the binary sequence for the fixed coordinate r1 = 1 is
presented in Fig. 3. A good agreement between the analytical
and numerical calculations of the correlation functions in all
cases gives us a reason to believe that the system of equations
and the generation procedure based on the bilinear form of the
CPF are well grounded.

VI. CONCLUSION

We obtained the decomposition procedure for the CPF of
symbolic random sequences [Eq. (16)], which were defined
as high-order Markov chains. We represented the conditional
probability function as the sum of multilinear memory function
monomials of different orders [Eq. (19)]. This allowed us to
build artificial sequences via a method of successive iterations,
taking into account at each step increasingly high correlations

FIG. 3. A comparison of the third-order correlation functions
C(r1,r2) of the binary sequence [taking into account the additive
(37) and bilinear (38) memory functions] prescribed by the memory
function (line) and numerically found (dots) for the fixed coordinate
r1 = 1.

among random elements. At weak correlations, the memory
functions are expressed analytically in terms of high-order
symbolic correlation functions [Eq. (35)]. Thus we have filled
the theoretical gap between the methods of the additive Markov
chain and the likelihood estimation.

In this paper, we have considered the microscopic character-
istics of random symbolic systems—the correlation functions.
The conditional entropy is the most important macroscopic
characteristic of the sequence. Our preliminary numerical
simulations show that the analytical result obtained in this
paper can be used successfully for numerical evaluation of
the entropy of DNA nucleotide sequences and sequences
obtained by dichotomization of a logistic map. We have seen
that third-order correlations (in the framework of a bilinear
Markov chain) can essentially lower the entropy calculated
in the framework of the naive likelihood estimation and the
additive Markov chain approach.

APPENDIX

Binary random sequences can always be considered to
be numeric. Therefore, Eqs. (25) and (26) can be simplified
considerably to a numeric form. Let us consider the symbolic
correlator (5) taken at α1 = α2 = · · · = αk = 1. In this case,
it is possible to set δ(ar,α) = ar , whereupon the symbolic
correlation function takes on a form that is identical to the
numeric one,

C1,...,1(r1,r2, . . . ,rk−1)

= (a0 − p1) · · · (ar1+···+rk−1 − p1)

≡ C(r1,r2, . . . ,rk−1). (A1)

To calculate a symbolic correlator with arbitrary indexes,
it is sufficient to note that the term δ(ar,α) − pα changes its
sign when one replaces 1 with 0 or 0 with 1, δ(ar,α) − pα =
(1 − ar ) − p0 = −(ar − p1). Each such replacement changes
the sign of the correlator. Consequently, its value depends on
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the number q of symbols “0” among α1, . . . ,αk ,

Cα1,...,αk
(r1,r2, . . . ,rk−1) = (−1)qC(r1,r2, . . . ,rk−1). (A2)

Using the same reasoning, we find a simplified expression for
the numeric CPF,

P (ai = 1| · · · ) = p1 +
N∑

r=1

F (r)(ai−r − p1), (A3)

where

F (r) = F11(r) − F10(r). (A4)

Let us rewrite Eq. (25) for the element C11(r). We set
α = β = 1 and take a sum over γ = {0,1}. Then, on the
LHS we obtain the numeric correlator C(r); on the RHS, we
express all symbolic correlators by means of numeric ones
[Eq. (A2)]. After that, all symbolic memory functions turn
out to be grouped in combinations, which result in numeric
memory functions, e.g.,

C10(r − r1)F1;0(r1) + C11(r − r1)F1;1(r1)

= C(r − r1)[F1;1(r1) − F1;0(r1)] = C(r − r1)F (r1). (A5)

In the same way, we manipulate using the second term in
Eq. (25) and introduce the second-order numeric memory

function,

F (r1,r2) = F100(r1,r2) − F101(r1,r2)

−F110(r1,r2) + F111(r1,r2). (A6)

As a result, Eqs. (25) and (26) take on the following simplified
forms, which are convenient for describing binary sequences:

C(r) =
N∑

r1=1

C(r − r1)F (r1)

+
N−1∑
r1=1

N∑
r2=r1+1

C(r − r2,r2 − r1)F (r1,r2), (A7)

C(r1,r2) =
N∑

r ′
1=1

C(r1,r2 − r ′
1)F (r ′

1)

+
N−1∑
r ′

1=1

N∑
r ′

2=r ′
1+1

F (r ′
1,r

′
2)[C(r1,r2 − r ′

2,r
′
2 − r ′

1)

−C(r1)C(r ′
2 − r ′

1)]. (A8)
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