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It is shown that the ensemble of pseudo-Hermitian Gaussian matrices recently introduced gives rise in a certain
limit to an ensemble of anti-Hermitian matrices whose eigenvalues have properties directly related to those of
the chiral ensemble of random matrices.
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I. INTRODUCTION

One of the most impressive successes of random matrix
theory (RMT) was the fitting of the local statistical fluctuations
of the nontrivial zeros of the Riemann ζ function by statistics
extracted from the eigenvalues of the complex Hermitian
matrices of the unitary class of the Gaussian ensemble (GUE).
Those zeros are the matter of the famous Riemann conjecture
that states they are the only complex ones and have a real part
equal to one-half.

Despite this success there is an incongruity in the fact that
the GUE eigenvalues are real while the zeros are complex
conjugate. It would be a more conformable agreement with
eigenvalues of some class of anti-Hermitian matrices which
are known to have pure imaginary eigenvalues. However,
eigenvalues of anti-Hermitian matrices though pure imaginary
are not necessarily conjugate. Imaginary and conjugate are the
eigenvalues of antisymmetric matrices. Moreover, Mehta has
shown that oddly their properties have similarities with the
eigenvalues of the complex matrices of the unitary class of
random matrix theory [1]. But matrices with real elements are
associated with time reversal symmetry which is not expected
to be a relevant symmetry in the case of the zeros.

In fact, another important hypothesis regarding the zeros is
that they might be eigenvalues of some physical Hamiltonian.
This has been proposed by Hilbert in the 1920s and if this
Hamiltonian exists it is not expected to be invariant under the
reversal of the time.

More recently, Berry and Keating [2] further elaborated
upon this idea and came up with the suggestion that this
Hamiltonian would have the unidimensional form

H = xp, (1)

where (x,p) are classical conjugate variables. This Hamilto-
nian is not invariant under time reversal as can easily be seen.
But, if simultaneously with the reversal of the time also the
sign of the coordinate is changed then the Hamiltonian remains
the same. This means that it is a PT -symmetric operator, that
is, it belongs to a class of operators invariant under the parity
(P) and the time reversal (T) transformations.

The interest in PT-symmetric systems started when the
spectrum of the complex non-Hermitian Hamiltonian

H = p2 − (ix)ν (2)

was analyzed [3,4], and it was found that, as a function of
the parameter ν, the eigenvalues undergo a transition from
the real axis to the complex plane in conjugate pairs. This

Hamiltonian, Eq. (2), contains a Hermitian part (the first term)
and a PT-symmetric one, the second term.

This type of operator may be connected to another class
of operators known as pseudo-Hermitian operators [5]. An
operator, say A, satisfying this symmetry would be connected
to its adjoint by a similarity transformation

A† = ηAη−1, (3)

where the η is Hermitian. Accordingly, their eigenvalues would
be real or come as complex conjugate pairs. It also has been
found that quantum relations still work and can be extended
to these physical systems if η becomes a metric to define the
inner product as

(.,η.). (4)

This kind of symmetry has been a matter of studies in
quantum mechanics in the last decades and more recently
a PT -symmetric operator with these properties has been
proposed in particular also to investigate the zeros of the
Riemann ζ function [6]. In a different approach, the zeros have
been interpreted as missing spectral lines [7]. Motivated by this
context, it is our purpose to introduce a random matrix model
which may be connected to both PT -symmetric quantum
mechanics and, through its eigenvalues, to the statistics of
the zeros of the Riemmann ζ function.

The study of non-Hermitian random matrices can be traced
back at least as far as to the seminal works of Ginibre [8], which
explored the properties of general random matrix models for
real, complex, and quaternion elements. Additionally, complex
networks were studied as early as the 1970s and 1980s using
non-Hermitian matrices [9–11] and that line of research has
been actively pursued since then (see, e.g., Refs. [12,13]
and references therein). In physics, non-Hermitian random
matrices appeared in such contexts as dissipative quantum
maps [14], quantum chromodynamics [15], the statistics of
quantum chaotic scattering processes [16], and localization
problems in condensed matter physics [17–19]. In a broader
context, further properties of non-Hermitian random matrices
were the focus of continued study in itself, and several
properties of non-Hermitian matrices were studied in the
literature such as the eigenvalue density on the complex
plane of almost-Hermitian matrices [20,21], the statistics
of non-Gaussian non-Hermitian random matrices and their
relation to free random variables [22,23], and many other
statistical properties [24–32]. A concise but insightful review
may be found in Chap. 18 of Ref. [33].

However, since the early studies of PT-symmetric systems
there was an interest in investigating random matrix ensembles
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to model the PT -symmetric kind of non-Hermitian Hamilto-
nians. This interest comes naturally as time reversal symmetry
plays an important role in RMT [1]. The ensembles initially
proposed were restricted to the case of 2 × 2 matrices [34,35],
with further extensions shortly thereafter going as far as treat
explicitly the 3 × 3 case [36], and random walks and cyclic
matrices were approached in the N × N case a few years
later [37].

More recently, general N × N models were proposed in at
least three different approaches. The first introduced the use
of split-complex and split-quaternion ensembles of random
matrices [38], using the properties of those numbers to model
thePT -symmetric aspects of the system. The second consisted
of considering matrices of tridiagonal form like the ones of the
so-called β ensemble [39,40]. In this ensemble the Dyson
index β can assume any real positive value in contrast with
Gaussian case in which β = 1,2,4.

But here we focus on the last of those approaches, a
recently introduced ensemble of pseudo-Hermitian Gaussian
matrices [41]. This approach shares some traits with that of
[38] such as the use of N × N Gaussian matrices. However,
instead of introducing PT -symmetric properties through the
properties of the split numbers, projection operators are
introduced for this purpose. Starting from a Hermitian matrix
with standard real, complex, or quaternion Gaussian elements,
pseudo-Hermiticity is introduced through the use of projection
operators to define Hermitian and anti-Hermitian blocks. It
has been found that, introducing an interaction between the
blocks as a function of a real positive parameter controlling the
intensity of that interaction, the eigenvalues of this special class
of Gaussian matrices leave the real axis and, as the parameter
increases, fill an ellipsis and finally approach the imaginary
axis as conjugate pairs. Our main purpose in the present paper
is to investigate properties of these complex eigenvalues.

II. PSEUDO-HERMITIAN GAUSSIAN ENSEMBLE

In the construction of the pseudo-Hermitian ensemble of
Ref. [41], the starting point is the standard RMT ensemble
defined by the distribution [1]

P (H ) = Z−1
N exp

[
−β

2
tr(H †H )

]
, (5)

where H is a matrix whose elements can be written as

Hij = H 0
ij + iH 1

ij + jH 2
ij + kH 3

ij (6)

with i2 = j 2 = k2 = ijk = −1. The number of nonzero el-
ements in Eq. (6) denoted by β can be equal to 1, 2, or 4
[1]. Therefore, the elements are Gaussian distributed and can
be real, complex, or quaternion. In Ref. [41], these matrices
were used to define a family of matrices which satisfy the
pseudo-Hermitian condition (3). One feature of that model is
that the metric η is found to be an involution, that is η2 = 1.

Here we are interested in taking advantage of this fact to restate
the formalism of that model. To do this let us consider a matrix
which may be written as

A(r) = H + rS (7)

such that A(r) verifies Eq. (3) and where H is a Hermitian
matrix and S is an anti-Hermitian matrix, with r a positive

parameter. The operator η will then commute with the
Hermitian part H,

[H,η] = 0, (8)

and anticommute with the anti-Hermitian part S,

{S,η} = 0. (9)

Moreover, as an involution, the metric η has eigenvalues
±1, which leads to a split of the space into subspaces labeled
by these values. Introducing the operators P and Q that project
into these subspaces, the metric can be expressed as

η = P − Q. (10)

We are now in position to use the Gaussian matrices of
Eq. (6) used to construct two realizations of the pseudo-
Hermitian matrix A. The first of these realizations is just

A = PHP + QHQ + r(PHQ − QHP ), (11)

where

Pi = |i〉〈i| (12)

and

P =
M∑
i=1

Pi and Q =
N∑

j=M+1

Pj . (13)

The matrix defined in (11) verifies both (8) and (9). This can
be seen by noting that, for (11), H = PHP + QHQ and
S = PHQ − QHP and therefore

(P − Q)H − H(P − Q)

= PHP − QHQ − (PHP − QHQ) = 0,

(P − Q)S + S(P − Q)

= PHQ + QHP + (−QHP − PHQ) = 0. (14)

The second realization is motivated by the fact that
given a PT-symmetric potential V (x), that is one such that
[V (−x)]∗ = V (x), transforming it into a matrix using a
complete set of eigenfunctions with a definite parity produces,
with the usual inner product over the real line, elements

Vij = 〈�i(x)|V (x)|�j (x)〉. (15)

Taking the complex conjugate and changing x to −x then as a
consequence of the parity of the eigenfunctions we obtain

V ∗
ij = (−1)i+jVji, (16)

which shows that the elements follow a structure in which the
subdiagonals alternate sign.

In order to obtain N × N matrices whose structures follow
(16), the set of N projectors {Pk}k=1,2,...,N as defined in (12) is
used to define [41]

A =
N∑

k=1

PkHPk +
∑
j>i

rsij PiHPj

+
∑
j<i

rsij cos[(j − i)π ]PiHPj , (17)

where sij = 1/2 − 1/2 cos[(i − j )π ] and r is a real positive
parameter. In this case, the metric can still be written as
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η = P − Q with

P =
[N+1/2]∑

i=1

P2i−1 and Q =
[N/2]∑
j=1

P2j , (18)

where [.] means integer part. The first, P , is the projector
on the subspace created by the odd elements of the base,
whereas the second, Q, does the same for the even elements.
This method creates a chessboardlike structure, where the
Hermitian and anti-Hermitian parts occupy alternating nature
of the subdiagonal elements of the matrix.

The Hermitian and anti-Hermitian parts of (17) may be
written as, respectively,

H =
N∑

mod (|i−j |,2)=0

PkHPj ,

S =
∑

mod (|i−j |,2)=1

[PiHPj − PjHPi], (19)

where mod (x,y) denotes the remainder of the division
between integers x and y and δi,j is the Kronecker δ. This
means that the Hermitian part consists of all the products
PiHPj where both i and j have the same integer parity and
the anti-Hermitian part consists of all the analogous products
where i and j have different parities.

The commutation and anticommutation relations, (8) and
(9), are also valid in this case. This can be seen fairly
straightforwardly by first noting that

PH =
∑

i,j odd

PiHPj = HP,

QH =
∑

i,j even

PiHPj = HQ, (20)

and that

PS =
∑
i odd
j even

[PiHPj − PjHPi] = SQ,

QS =
∑
i even
j odd

[PiHPj − PjHPi] = SP. (21)

Equation (20) implies immediately that (P − Q)H = H(P −
Q) which in turn implies (8), whereas (21) similarly implies
that (P − Q)S = S(Q − P ), which in turn implies (9).

In [41] it is shown that in both cases discussed above, the
joint density distribution of the matrix elements of A is given
by

P (A) = ζN (r) exp

{
−β

2
tr

[(
1 − 1

r2

)
AA + A†A†

4

+
(

1 + 1

r2

)
AA† + A†A

4

]}
. (22)

Moreover, it is shown that this form suggests the ansatz that
the resulting distribution of eigenvalues are likely to follow an
elliptic law [11,42,43] with axes

a =
√

N

1 + r2
, (23)

b = r2

√
N

1 + r2
. (24)

The behavior of these ellipses is shown in Fig. 1, where the
semimajor axis is real for r = 0.75 in Fig. 1(a), becomes equal
to the semiminor axis for r = 1.00 in Fig. 1(b), and finally
becomes imaginary for r = 1.25 in Fig. 1(c).

Therefore, this distribution describes a transition from a
situation in which the eigenvalues lie in the real axis, for r = 0,
to one in which the eigenvalues move into the complex plane,
and approaches the imaginary axis when r becomes large.
In Fig. 2 we present the behavior of the eigenvalues as the r

parameter increases. As the eigenvalues with no imaginary part
evaporate into the complex plane, as shown in Fig. 2(a), their
imaginary part, scaled by 1/r , condensates into the imaginary
axis, as shown in Fig. 2(b).

Putting r = 0, we have the eigenvalue equation

A� = H� = λ� (25)

and the equation

Hη� = λη� (26)

obtained with the commutator relation (8). Therefore,
in this case the eigenvalues of η are good quantum
numbers.
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FIG. 1. Effect on the eigenvalues of varying parameter r for a single matrix of size n = 256 for (a) r = 0.75, (b) r = 1.00, and (c) r = 1.25.
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FIG. 2. Real eigenvalues (a) and complex eigenvalues, scaled by 1/r (b), of the matrix as a function of the parameter r . Color denotes the
absolute vale of the real part of the eigenvalues, with red denoting the largest relative intensity of the whole.

By adding and subtracting these equations we obtain

PHP� = λP� (27)

and

QHQ� = λQ� (28)

in which the relations

P = 1 + η

2
(29)

and

Q = 1 − η

2
(30)

have been used. Therefore, we have two decoupled matrices
whose eigenvalues are those of the Gaussian matrices. The
dimensions of the blocks are M × M and (N − M) × (N −
M) in the first realization, Eq. (11), in which the decoupled
matrices have a block diagonal structure. In the second one,
Eq. (17), denoting as n the integer part of N/2, the two
decoupled matrices are both n × n for N even and for N odd
the PHP block has dimension (n + 1) × (n + 1), and their
structure is such that one of them has only the elements of H
that have a given parity, that is either even or odd.

III. ANTI-HERMITIAN LIMIT

The anti-Hermitian part of the pseudo-Hermitian matrix A

[44] is obtained by taking the limit

S = lim
r→∞

A

r
, (31)

whose joint density distribution of its matrix elements is
immediately found to be given by

P (S) = 1

WN

exp

(
−β

2
tr SS†

)
. (32)

We remark that this should not be mistaken as being an anti-
pseudo-Hermitian matrix, which is defined in the literature
[44] as an operator which verifies (3) for an antilinear, anti-
Hermitian η.

There is a noteworthy property of matrices which are both
pseudo- and anti-Hermitian regarding their trace. Let S be an

N × N diagonalizable pseudo-Hermitian matrix verifying

S† = μSμ−1 = −S (33)

and with diagonalizations

SU = U
,

SV = V 
̄.

Using the pseudo-Hermitian relation (33) we obtain the
connection between the two above diagonalizations,

V −1 = U †μ,

and applying this to the trace of S†S, we obtain through the
cyclic property of the trace and the anti-Hermiticity of S,

tr(S†S) = tr(S†SV U †μ) = tr(U †μS†SV ) = −tr(U †μSV 
̄)

= −tr(U †μV 
̄
̄) = tr(

̄).

Therefore, for any pseudo- and anti-Hermitian diagonalizable
matrix S, we have that

tr(S†S) = tr(
̄
) = tr(

̄) =
N∑

k=1

|ξk|2, (34)

where 
 is the diagonal matrix containing the eigenvalues
{ξk}k=1,2,...,N of S.

The anticommutation of S with the metric η defines a
discrete symmetry characteristic of the presence of chirality,
that is of a P symmetry [45]. So, apart from the fact that
we are dealing with conjugate pairs of imaginary eigenvalues,
we should expect to recover properties of the so-called chiral
ensemble. To see this, let us consider the eigenvalue equation

S� = λ� (35)

together with the equation

Sη� = −λη� (36)

obtained using the anticommutator relation (9). Adding and
subtracting them and using relations (29) and (30) we have the
coupled equations

QSP� = λQ� (37)
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and

PSQ� = λP�. (38)

Easily, these equations decouple as

(QSP )†(QSP )P� = −λ2P� (39)

and

(PSQ)†(PSQ)Q� = −λ2Q�. (40)

It is convenient to introduce matrices S± whose elements are
the elements of the matrices QSP and PSQ respectively. In
the realization defined by Eq. (11), S+ has dimension (N −
M) × M whose elements are

S+
ij = (QSP )ij = −H ∗

M+i,j (41)

and S− has dimension M × (N − M) and elements

S−
ij = (PSQ)ij = Hi,M+j . (42)

The above matrices generate the Wishart matrices (S±)†S±
with distribution [40]

P (S±) = C−1
M exp

[
−β

2
tr(S±)†S±

]
, (43)

which share the same set of eigenvalues with the distribution
of a Laguerre ensemble

Pβ (y1, . . . ,yM )

= 1

CM

M∏
k=1,

y
β(N−2M+1)/2−1
k e−βyk/2

∏
j>i

|yj − yi |β. (44)

Turning now to the realization defined by Eq. (17) with
M = [N/2] and sgn(x) = x/|x|, we have the matrices

S+
ij = (QSP )2i,2j−1 = sgn(2i − 2j + 1)H2i,2j−1 (45)

and

S−
ij = (PSQ)2i−i,2j = sgn(2i − 2j − 1)H2i−1,2j . (46)

Their dimensions are M × M if N is even and M × (M + 1)
and (M + 1) × M respectively if N is odd. This means that
these matrices may still be reduced to the Wishart case and
(43) still holds. Therefore, making the substitution yk = λ2

k,

the joint distribution of the eigenvalues of the anti-pseudo-
Hermitian ensemble, is obtained as

Pβ(λ1, . . . ,λM ) = 1

ZM

M∏
γ=1

exp

(
−β|λγ |2

2

)
|λγ |β(N−2M+1)−1

×
∏
ξ>γ

∣∣λ2
ξ − λ2

γ

∣∣β. (47)

In (47), the term N − 2M in the exponent is the number of
zeros and M is the number of complex conjugate pairs. This
corresponds to the number of differences between nonzero
eigenvalues and the zeros in the former case, and the term
|λ|β−1 corresponds to the number of differences between
eigenvalues and their complex conjugates. This suggests that
the factorization of the Jacobian in the Hermitian case extends
to the pseudo-Hermitian case in terms of these differences; cf.
the Appendix.

IV. SPECTRAL STATISTICS

In the specific case of β = 2 and even matrix size, this
corresponds to the GUE, which follows the same statistics as
the zeros of the Riemann ζ function [46]. We remark that if
the terms |λk|β−1 are considered as the differences between
each eigenvalue and its conjugate, then the total number of
differences is equal to the number of independent elements of
the matrix S.

To write the spectral properties of the anti-Hermitian
ensemble it is more convenient to consider Eq. (44) and
following Ref. [47] the properties for square matrices and
β = 2 will be given for a given m � 1 by the Kernel

Km(x,y) =
m−1∑
k=0

φk(x)φk(y), (48)

where the functions are the Laguerre functions

φk(y) = exp
(
−y

2

)
Lk(y), (49)

where {Lk(y)}k=1,2,... are the orthogonal Laguerre polyno-
mials. We may then use the Christoffel-Darboux [48] to
obtain

Km(x,y) = am

φm(x)φm−1(y) − φm(y)φm−1(x)

x − y
. (50)

The eigenvalue density is given by the diagonal part of the
kernel Km(x,x) which in the large m → N � 1 asymptotic
limit becomes the Marchenko-Pastur distribution [40,49,50]

ρ(y) = N

π

√
1 − y

y
(51)

for β = 1,2. In terms of the eigenvalue variable of the anti-
Hermitian ensemble the density is the Wigner semicircle,

ρ(λ) = N

π

√
1 − λ2. (52)

The fluctuations properties are contained in the kernel.
In order to do so, we use the asymptotic expansions for
large N [48],

φN (y) ≈ 1

π1/2N1/4

1

y1/4
cos

(
2
√

Ny − π

4

)
,

φN−1(y) ≈ 1

π1/2(N − 1)1/4

1

y1/4
cos

(
2
√

(N − 1)y − π

4

)
.

(53)

In order to turn (53) into a form that can be used in (50), we
use the Taylor expansions

f (u; ε) = cos
(

2
√

N (1 + ε)u − π

4

)
≈ cos

(
2
√

Nu − π

4

)
−

√
Nuε sin

(
2
√

Nu − π

4

)
,

(54)

[N (1 + δ)]−1/4 ≈ N−1/4 − 1
4N−5/4δ (55)
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FIG. 3. Deviations from the semicircle distribution for 105 matrices of order N = 32 for (a) β = 1 and (b) β = 2.

and therefore, for ε = − 1
N

,

φN (y) ≈ 1

π1/2N1/4

1

y1/4
cos wN (y),

φN−1(y) ≈ 1

π1/2N1/4

[
cos wN (y)

y1/4
+ y1/4

√
N

sin wN (y)

]
,

wN (y) = 2
√

Ny − π

4
, (56)

where only terms up to order 1/N were kept. We may then
obtain

KN (x,y) ≈ 1

π
√

N (xy)1/4

{
sin(2

√
Nx − 2

√
Ny)

2
√

Nx − 2
√

Ny

+ cos(2
√

Nx + 2
√

Ny)

2
√

Nx + 2
√

Ny

}
. (57)

Considering now the substitution

(x,y) →
(

ξ 2

2
√

N
,

γ 2

2
√

N

)
(58)

we then have

KN (ξ,γ ) ≈ 1

πN3/2

√
|ξγ |

[
sin (ξ − γ )

ξ − γ
+ cos(ξ + γ )

ξ + γ

]
. (59)

The first term leads to Wigner-Dyson statistics while the
second one produces oscillations near the origin [1]. This
conclusion is confirmed by numerical simulations as shown
in Fig. 3 for β = 1 in Fig. 3(a) and β = 2 in Fig. 3(b).

In the figures, this density is compared with numerical
results for the antisymmetric and anti-Hermitian cases. The
semicircle gives a good fit of the average density but there are
discrepancies near the origin. Using the semicircle, the spectra
are unfolded and in Fig. 4 the spacing distributions for the
two cases are compared with the Wigner surmise [1] for the
orthogonal and the unitary cases.

V. CONCLUSION

In the present paper we further investigate properties
of the ensemble recently introduced in Ref. [41] whose
Gaussian matrices satisfy the pseudo-Hermitian condition,
namely Eq. (3). Decomposing the matrices into Hermitian

and anti-Hermitian parts, it is found that the former commutes
with the metric while the latter anticommutes with the same
metric. As the anticommutation with the metric means parity
invariance, the matrices contain a parity invariant term besides
a term that belongs to the symmetry classes of the Gaussian
ensemble. As a function of a real positive parameter that
couples the two terms, the ensemble undergoes a transition
from a Hermitian to a pseudo-Hermitian anti-Hermitian family
of matrices. It was then shown that after this transition, this
pseudo-anti-Hermitian family is directly related to the chiral
ensemble of random matrices. It is also worthy of note that
the eigenvalues come in pure imaginary conjugate pairs, and
that the distribution of those imaginary parts, for the β = 2
case, follows the same distribution as the nontrivial zeros of
the Riemann ζ function.
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APPENDIX: DERIVATION OF THE JACOBIAN FROM
MATRIX ELEMENTS TO EIGENVALUES

In order to obtain the density in terms of eigenvalues for
the general matrix A with pseudo-Hermiticity operator η, we
must first obtain an equation for the diagonalization of A [1].
We begin by writing

AU = U� (A1)

and the diagonalization in terms of the complex conjugate
eigenvalues,

AV = V �̄, (A2)

which corresponds to switching the positions of the eigenvec-
tors of the conjugate pairs in (A1). Taking the adjoint of (A1)
and considering the pseudo-Hermiticity of A as in (3), however
we have that

U †ηA = �̄U †η (A3)

such that, multiplying Eq. (A2) by U †η to the left and
subtracting (A3) multiplied by V to the right, we get

U †ηV �̄ − �̄U †ηV = 0 (A4)
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FIG. 4. Spacing distribution for 105 matrices of order N = 32. Circles denote the numerical data and the solid lines denote the Wigner
surmise for β = 1 and β = 2.

and, therefore, U †ηV = 1 and thus the Hermiticity of η implies
that V −1 = (ηU )† or, alternatively,

U−1 = (ηV )†. (A5)

Now, to define the Jacobian of interest we must perform a
change of variables that maps the elements of A into the N

eigenvalues and another set of M variables which describe the
remaining degrees of freedom. In other words,

P
(
�j ,p

{k}
μ

) = P (A) det

[
∂
(
ai,i ,a

{k}
i,j

)
∂(�j ,pμ)

]
, (A6)

where �j are the eigenvalues, pμ are the M additional variables
needed by the constraints in the eigenfunctions, and the last
term denotes the Jacobian of the transformation.

To obtain this Jacobian, we must consider first that

A = U�U−1. (A7)

Therefore

∂

∂�j

Aγ,ξ = ∂

∂�j

[U�U−1]γ,ξ = ∂

∂�j

∑
δ,ε

Uγ,δ�δ,εU
−1
ξ,ε

and since � is a diagonal matrix containing the eigenvalues of
A, and noting that the remaining terms are of U and its inverse,

∂Aγ,ξ

∂�j

= δj,γ δγ,ξ . (A8)

The inverse relation U−1U = 1 gives us

∂

∂pμ

U−1U =
(

∂

∂pμ

U−1

)
U + U−1

(
∂

∂pμ

U

)
= 0

→
(

∂

∂pμ

U−1

)
U = −U−1

(
∂

∂pμ

U

)
≡ �μ. (A9)

This new matrix �μ has a property of interest,

�†
μ = U †

(
∂

∂pμ

U−1

)†
= V −1

(
∂

∂pμ

V

)
, (A10)

which may be used in specific realizations of A to obtain
further information about the change of variables.

Using the definition in the above Eq. (A9), multiplying (A1)
from the left by U−1 and taking the derivative of the resulting
equation by a parameter pμ we obtain

U−1 ∂A

∂pμ

U = U−1

(
∂

∂pμ

U

)
� − �

(
∂

∂pμ

U−1

)
U = (�μ� − ��μ) (A11)

or, in component terms,(
U−1 ∂A

∂pμ

U

)
γ,ξ

= (�μ)γ,ξ (�ξ − �γ ). (A12)

Therefore, instead of writing the Jacobian matrix directly,
we follow Mehta’s approach [1] and write the auxiliary
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matrix

� =
⎛
⎝

[
U−1 ∂A

∂�j
U

]
ξ,ξ

[
U−1 ∂A

∂�j
U

]
γ,ξ[

U−1 ∂A
∂pμ

U
]
ξ,ξ

[
U−1 ∂A

∂pμ
U

]
γ,ξ

⎞
⎠

=
(

δj,γ 0

0 [�μ]γ,ξ (�ξ − �γ )

)
. (A13)

The determinant of this matrix is then the Jacobian up to a
function on the eigenvector parameters

φ(pμ) det � = det

[
∂(ai,i ,ai,j )

∂(�j ,pμ)

]
. (A14)

This is, therefore, a general expression that shows that the
Jacobian factors as a product of differences, due to �, and
a term dependent only in eigenvector terms, which may be
integrated out of the probability distribution.
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