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Nonadiabatic dynamics of the excited states for the Lipkin-Meshkov-Glick model
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We theoretically investigate the impact of the excited state quantum phase transition on the adiabatic dynamics
for the Lipkin-Meshkov-Glick model. Using a time-dependent protocol, we continuously change a model
parameter and then discuss the scaling properties of the system especially close to the excited state quantum
phase transition where we find that these depend on the energy eigenstate. On top, we show that the mean-field
dynamics with the time-dependent protocol gives the correct scaling and expectation values in the thermodynamic
limit even for the excited states.
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I. INTRODUCTION

Universality and feature analogy connect different branches
of physics. One of the most famous examples are phase
transitions which span from cosmology to the quantum
world [1–3]. Here one of the intriguing questions is scaling
properties around the phase transition in both equilibrium
and nonequilibrium setups. One way to create the latter
is a continuous quench from one state to another [4,5].
The connection between both can be characterized by
the Kibble-Zurek mechanism, which connects the quench-
induced defect formation with the universal scaling exponents
in equilibrium such as relaxation time and the healing
length [6,7].

A quantum phase transition (QPT) is a paradigm at the
small-scale domain; its famous property is the nonanalyticity
of the ground-state energy and ground-state wave function at
some point in the system configuration space. The validity
of the Kibble-Zurek mechanism has been applied to QPTs in
the Ising-like models with a finite dimension [8–10]. Later it
was shown that the scaling connection still holds even in zero-
dimensional models like the Dicke [11], where the length scale
is absent [12,13]. Furthermore, its connection to Landau-Zener
transitions has been shown [1,14–16]. The scaling connection
is relevant, e.g., for quantum computation algorithms in
systems with a QPT [17,18]. Note that the Kibble-Zurek
mechanism has been verified in various experimental setups,
e.g., using quantum atomic gases [19–22], superfluids [23] or
Coulomb crystals [24].

Here we extend the study of scaling properties toward
excited state quantum phase transition (ESQPT) [25–29].
Similar to the ground state QPT, the ESQPT is defined by
a discontinuity in the density of states in the excited part of
the spectrum, it is imprinted in different observables and was
experimentally found, e.g., in the bending spectra of different
molecular systems [30–32].

For our investigation we consider the so-called Lipkin-
Meshkov-Glick (LMG) model, which describes the dynamics
of N two-level systems with an internal all-to-all coupling.
This model was first introduced in the context of nuclear
physics to check the validity of different predictions [33–35].
Recently, it has attracted much attention again in the context
of cold atoms and many-body physics, especially as a rather
simple model with an experimental realization for studying
QPTs [36–40].

The QPT-induced scaling properties, the excited state
impact to the wave-package dynamics or the transitionless
driving in the time-dependent LMG model in the presence of a
linear or a sudden quench has been theoretically investigated in
Refs. [41–47], but with the ground state as the initial condition.
The ground state is a common choice, especially in the context
of the quantum computation and annealing problems [48,49].
In contrast, here we choose several excited states as the initial
condition to probe the scaling effects induced by the ESQPT
and find that the scaling parameter decreases and converges to
a constant value if the energy of the chosen initial excited state
increases. Note that our study has experimental relevance, as
the excited states can be prepared with coherent states which
are commonly used in the existing experimental setup of the
LMG model [36,37].

Our work is organized as follows. In Sec. II we introduce
the model, and in Sec. III we review its spectral characteristics
and investigate the gap closing scaling for the excited states. In
Sec. IV we numerically investigate the scaling properties due
to the ESQPT and in Sec. V the state dynamics for different
speeds of the quench protocol by solving the time-dependent
Schrödinger equation. In Sec. VI we show that the results from
the previous chapters can be obtained from the corresponding
mean-field model. We summarize our findings in Sec. VII.

II. MODEL

The anisotropic LMG Hamiltonian reads [50]

Ĥ = −hĴz − γx

N
Ĵ 2

x , (1)

where Ĵη = 1
2

∑N
i=1 σ̂ (i)

η , η = {x,y,z}, are collective angular
momentum operators and σ̂x,y,z are the common Pauli ma-
trices. The magnetic field h defines the level splitting in
the noninteracting case, whereas γx describes the coupling
strength between the N two-level systems. Note that here the
angular momentum j is directly connected to the system size
via N = 2j ; this suggests using the angular momentum basis
of the Ĵz operator |j,m〉 for the matrix representation of the
Hamiltonian Eq. (1).

The Hamiltonian Eq. (1) preserves the length of the total
spin Ĵ 2 = Ĵ 2

x + Ĵ 2
y + Ĵ 2

z [51] and has a parity symmetry which

divides Ĥ into two different independent energetic subspaces,
one even “+” and one odd “−” [52,53]. The corresponding
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FIG. 1. (Left) The even part of the energy spectrum for the LMG
model Eq. (4) for a finite atomic number N. A few of the low-lying
neighboring states are marked with solid and dashed color lines.
Parameters are as follows: N = 200. (Right) From the spectrum
numerically determined density of states for two different γx values,
along the dashed and solid arrows in the left panel. The logarithmic
peak (solid line) appears for γx/h > γ cr,1

x and indicates the ESQPT
at E/(hN ) = 1/2. Parameters are as follows: N = 10 000.

parity operator reads

P̂± = 1
2 [1 ± exp(iπĴz) exp(iπN/2)]. (2)

Note the parity conservation is directly imprinted in the
matrix representation of the Hamiltonian Eq. (1),

〈j,m′|Ĥ |j,m〉 =
[
−hm − γx

2N
(k−(j,m)2 + k+(j,m)2)

]
δm′, m

− γx

2N
k+(j,m)k+(j,m + 1)δm′, m+2

− γx

2N
k−(j,m)k−(j,m − 1)δm′, m−2, (3)

as a decomposition into two decoupled regions with even
or odd state |j,m〉. Here Ĵ±|j,m〉 = k±(j,m)|j,m ± 1〉 with
Ĵ± = Ĵx ± iĴy used.

As parity is conserved, we will restrict ourselves only to
the even “+” parity and will perform all calculations with the
even Hamiltonian,

Ĥ+ = P̂
†
+Ĥ P̂+, (4)

which contains the ground state of the system. In the following,
we will denote the eigenstates of the Hamiltonian Ĥ+ by |i〉
for fixed γx values, i.e.,

Ĥ+|i〉 = E+
i |i〉. (5)

Note that the spectra of both even and odd Hamiltonians
become identical in the N → ∞ limit. The lower part of the
even-parity spectrum is shown in Fig. 1 as a function of the
coupling strength γx .

III. SPECTRAL PROPERTIES

A lot of intriguing physical properties are incorporated
in Eq. (1). Most prominently, a second-order quantum phase
transition (QPT) appears in the thermodynamic limit N → ∞
at γx/h = γ cr,1

x /h ≡ 1 [39,54,55], which is visible in the
energy spectrum. There, the ground-state energy becomes
nonanalytic and the gap to the first excited state closes as
a function of γx/h; see the two blue (solid and dashed) lines in
Fig. 1 (left). The energy distance between the ground and the
first excited state is shown in Fig. 2(a) by blue colored lines for

FIG. 2. (a) The energy difference between neighboring eigen-
states |i + 1〉 and |i〉 of the Ĥ+ Hamiltonian (4) as a function of
γx/h for different numbers N . The neighboring states shown here
are marked in Fig. 1 with the same color for N = 200. The shown
state numbers i is for N = 200. In case of a different N value,
the corresponding state number has to be rescaled according to
(i − 1)N/200 + 1. The gap closing shows the value for γ cr,i

x /h where
the ESQPT takes place (b). The exponent ci , Eq. (7), characterizes
the gap closing for a state |i〉 for different particle numbers N . Note
the relative scaling of the x axis.

different particle numbers N . For N → ∞ the ground-state
gap closes and the position of the minimum of the i = 1
curves converges to γ cr,1

x /h = 1. Note that the energy axis
in Fig. 2 is not scaled with 1/N , unlike the energy axis in
Fig. 1. The energy spectrum was determined by a numerical
diagonalization of Ĥ+ in Eq. (4) represented in the Ĵz basis
{|m〉}, i.e.,

Ĵz|m〉 = m|m〉. (6)

In the thermodynamic limit the excited spectrum possesses
an additional phase transition—the excited state quantum
phase transition (ESQPT) [25,51,56–58]. In the case of the
LMG model, the ESQPT is visible as a logarithmic divergence
of the spectral level density at the energy E = −0.5/(hN )
of the so-called separatrix, whose existence is typical for
an ESQPT [59,60], for a fixed γx > γ cr,1

x value [61]. In the
right panel of Fig. 1 we plot the numerically determined level
density for two different γx values. Whereas for γx < γ cr,1

x

the density of states is approximately flat (dashed curve),
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for γx > γ cr,1
x the density divergence is clearly visible (solid

curve) at E = −0.5/(hN ) A look into the level clustering
for finite particle number N visualizes the formation of the
ESQPT; see Fig. 1. It is built by an infinite series of avoided
level crossings of the neighboring excited states, as their gap
closes at the energy of the ESQPT in the thermodynamic
limit [25,29,42,52,62]. Some of such neighboring states are
marked by solid and dashed colored lines in Fig. 1.

We visualize this gap closing by plotting the energy distance
between the neighboring excited states |i〉 and |i + 1〉 which
are colored in Fig. 2(a) for different values of N . Qualitatively,
the form of the curves for the excited states and their finite-
size scaling behavior is similar to the ground-state curves for
|i = 1〉. The cusplike minimum of the curve i is at a position
γ cr,i

x /h which increases with i. It marks the region where level
density around the state |i〉 diverges in the thermodynamic
limit and the ESQPT takes place. In the E(γx) representation,
the flow of the states |i〉 and |i + 1〉 will bring them to the
energy of E(γ cr,i

x ) = −0.5/N at γ cr,i
x /h; see Fig. 1 [28]. For

a further analysis of the gap closing in the excited states we
will later-on define an adiabatic protocol approaching the point
γ cr,i

x from the left. Therefore, we fit the left part of each curve
i in Fig. 2(a) close to the cusp minimum by [63]

Ei+1 − Ei = ai

∣∣γx − γ cr,i
x

∣∣−ci (7)

for different N values; here the ai,ci are the fitting parameters
and γ cr,i

x is determined numerically by finding the energetic
minimum of the difference Ei+1 − Ei by varying γx . The
obtained numbers for the critical scaling ci of the states
|i + 1〉 and |i〉 are shown in Fig. 2(b). The scaling behavior
is quantitatively similar for different particle numbers N .
The ground-state scaling parameter ci=1 approaches 1/2 for
N → ∞, which is typical for a second-order QPT [63]. For the
excited states |i > 1〉 ci decays until a constant value. Hence,
the energy distance of higher neighboring states i and i + 1
develops close to the ESQPT region in a similar manner.

IV. ADIABATIC DYNAMICS

We now analyze the system behavior by continuously
quenching it through the ESQPT, starting in an excited state
of Ĥ+. To probe the influence of the ESQPT on the adiabatic
system dynamics, we assume a time-dependent interaction
strength γx(t), linearly increased from some starting value γ (i)

at time tin to the final value γ (f ) at time tf ,

γx(t) = t

Q
, (8)

where the quench rate Q determines the inverse speed of
the protocol, and t ∈ [tin,tf ]. Note that the ground state QPT
for our model, Eq. (1), has been investigated with similar
schemes [41,42,44].

Thus, starting in a time-local eigenstate |i(tin)〉 of the
Hamiltonian Ĥ+(t) Eq. (5) at time t = tin with γ = γx(tin),
we solve the time-dependent Schrödinger equation,

i ˙|ψ(t)〉 = Ĥ+(t)|ψ(t)〉, |ψ(t = tin)〉 = |i(tin)〉. (9)

Due to the time-dependent Hamiltonian Ĥ+(t) the wave
package �(t ′) at time t ′ > tin will not necessarily be the ith
eigenstate |i(t ′)〉 of the Hamiltonian any more, it will strongly

FIG. 3. System properties under a continuous linear change of
the coupling γx in time t with a rate Q. (a) The residual energy
Eres

i , (b) the fidelity, and (c) the distribution width σ for different
initial eigenstates |i(tin)〉 (left) and different scales Q (right) shows the
breakdown of adiabaticity which is connected to the protocol caused
transition of the initial wave package |i(tin)〉 through the ESQPT.
Parameters are as follows: N = 200, tin = −10/h, (left) Qh2 = 30,
(right) |i(tin)〉 = |9〉.

differ especially in the case of the nonadiabatic evolution. We
solve this equation numerically by representing the operators
in the |j,m〉 basis.

To analyze the wave package |ψ(t)〉, we first introduce the
so-called residual energy [12,41],

Eres
i (t) ≡ 〈ψ(t)|Ĥ (t)|ψ(t)〉 − 〈i(t)|Ĥ (t)|i(t)〉, (10)

which is the difference between the energy expectation value
at time t and the adiabatic eigenenergy of the Hamiltonian
Ĥ+(t) at time t . Obviously, this is zero at tin but changes if
the adiabatic condition is not fulfilled. If the initial state is the
ground state, the residual energy remains positive, but in the
case of excited states it can have both signs which can switch
in time. The panels in Fig. 3(a) show the residual energy for
different initial eigenstates of the Hamiltonian Ĥ+(t) at tin and
a fixed Q value (left) or for different Q values but a fixed
initial eigenstate (right). Note that we usually choose tin =
−10/h, therefore Eres

i can deviate from 0 at t = 0, especially
for smaller Q values. For higher Q values the deviation is
negligible at the begin of the protocol, therefore we show the
dynamics only for γx(t)/h > 0 in Fig. 3. The Eres

i shows a
strongly oscillating behavior which crosses the zero value for
all initial states except the ground state which is labeled by “1”.
The beginning of the oscillation phase indicates the breakdown
of adiabaticity. This is due to the onset of the ESQPT which
causes the gap closing between the neighboring excited states;
compare with Fig. 2.

012153-3



WASSILIJ KOPYLOV, GERNOT SCHALLER, AND TOBIAS BRANDES PHYSICAL REVIEW E 96, 012153 (2017)

The wave package |ψ(t)〉 can be represented in the time-
local eigenbasis at each time t ,

|ψ(t)〉 =
∑

i

αi(t)|i(t)〉, (11)

where |αi(t)|2 gives the probability that the state |i(t)〉 is
occupied. Note that the αi(t) as the wave function |ψ(t)〉
depend on the choice for the initial condition |i(tin)〉; see
Eq. (9). For a better analysis of the adiabaticity loss we need
a positive valued signature instead of the residual energy. The
simplest choice is the fidelity [44,47],

F (t) = |〈ψ(t)|i(t)〉|2. (12)

It measures the overlap of the state |i(t)〉 with the wave package
and deviates from unity in the nonadiabatic regime. The onset
of deviation is shifted to higher γx(t) values for higher initial
eigenstates and coincides with the beginning of the oscillating
phase in the residual energy; see left panel in Fig. 3(b). The
protocol quench scale Q, Eq. (8), has a strong effect on the
adiabaticity loss, too [Fig. 3(b) right]. For a slower protocol
(larger Q) the γx position for the adiabaticity loss shifts closer
to the ESQPT value γ cr,i

x , whereas for a faster protocol the
adiabaticity break down shifts to smaller γx values, for an
initial state |i(tin)〉.

However, in the ongoing discussion we use a quantity σ ,
which is not only positive but contains information about all
eigenstates,

σ (t) ≡ 1

N

√∑
j

Eres
j (t)2|αj (t)|2, (13)

which describes the energy width of the wave package |�(t)〉
in the time-local basis {|i(t)〉}. 1 Similar as in the case of the
residual energy, Eq. (10) and the fidelity, (12), the presence
of the ESQPT in the excited states affects the dynamical
evolution of the σ (t); see Fig. 3(c). Its value increases if
the adiabaticity is lost, which depends on the position of the
ESQPT γ cr,i

x and the protocol quench scale Q, as we have
discussed above. Summarizing, all quantities plotted in Fig. 3
consistently display the adiabaticity change.

For a deeper analysis we now investigate the scaling of the
energy spread σ (t) by plotting it for different Q values, keeping
γx(t) fixed; see Fig. 4(a). For each initial state |i(tin)〉 we choose
γx(t) to be close to their specific transition at γ cr,i

x ; see Fig. 2.
Qualitatively, the scaling of σ (Q) is similar for both excited
and ground states, as there are two regions for Qh2 < 1 and
Qh2 	 1 where the scaling is linear in the double logarithmic
representation, but with different slopes. A similar separation
has been found recently for the Jaynes-Cummings model [12].
Quantitatively, the scaling exponent α for Qh2 	 1, which is
the slope in the double-logarithmic representation, i.e.,

σ (Q) ∼ Qα, (14)

1Note that the standard deviation of a distribution εj with probability
pj is given by

√∑
j (εj −ε̄)2pj and ε̄ = ∑

j εjpj . Here, ε̄ = 〈ψ |Ĥ+|ψ〉.

FIG. 4. (a) The energy distribution width σ (T ) for different
initial eigenstates |i(tin)〉 as a function of the quench speed Q in a
double-logarithmic representation. Time t and coupling γx(t) chosen
such that γx(t) ≈ γ cr,i

x , the critical coupling for crossing the ESQPT
line E/N = −0.5h in Fig. 2. (b) α exponent of the σ (Q) curve
in the linear area for Qh2 > 5 (filled circles). Blue squares represent
the corresponding exponents obtained from a mean-field solution; see
Sec. VI. The double top connects the initial state |i〉 with its energy
Et=tin . Parameters are as follows: N = 1000.

changes for different initial states; see Fig. 4(b), orange dots.
For the ground state i = 1 the exponent is around −0.35 and
agrees with Refs. [12,64] in the thermodynamic limit. Note that
Ref. [64] predicts the “−1/3” scaling in the classical regime,
which applies for the LMG model with the well-known mean
field; see Sec. VI. For higher excited states the slope decreases
and tends to a constant value around −1. Interestingly, the
slope variation can be achieved even for the ground state in
quantum critical systems. Thus by varying the effective system
size it can be decreased until the value of −2, which is typical
of an adiabatic evolution in the presence of a second-order
QPT [12,41]. In our case the system size N is fixed and the
change is caused by the excited states dynamics which suggests
a correspondence between the dynamics around the ESQPT for
higher states and the finite-size-dependent dynamics around
the ground-state QPT. Note the form of the σ (Q) curve
echoes the gap scaling of the excited states; see Fig. 2. The
constant exponent for i/N > 0.05 again shows the dynamical
indistinguishably of the excited states close to the ESQPT.
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FIG. 5. Square root of occupation
√

Pj of the time-local eigen-
states |j (t)〉 with the number j as a function of time t for the protocol
Eq. (8) with Qh2 = 1 (left) and Qh2 = 10 (right). The color denotes
the contribution of the time-local state to the whole state �(t), thus
Pj (t) = |αj (t)|2. The green dotted line shows where the ESQPT
takes place. Note that

√
Pj for j > 40 is not shown, as it is zero

in both cases. The adiabatic evolution for γx(t) < 0 is not shown,
too. Parameters are as follows: N = 200, initial state at tin = 0 is
|i(tin)〉 = |17〉.

V. STATE DYNAMICS

For a further analysis of our protocol, Eq. (8), we plot
the system dynamics exemplary for two different Q values in
Fig. 5 by plotting the occupation probability Pj (t) = |αj (t)|2
for each time-local eigenstate |j (t)〉. For a small Qh2 = 1
value (left), the adiabaticity is lost shortly after γx(t)/h = 0
and the distribution becomes spread between all eigenstates
of H+(t), whereas for a higher Qh2 = 10 value (right) the
adiabaticity is lost at a much later stage γx(t)/h ≈ 1.25,
and the wave function is located mostly between the 15th
and 25th eigenstate. We also recognize, that the width
increases continuously for some time after the position of the
ESQPT (green dotted line) is crossed [42]. This representation
suggests, that the ESQPT signatures are visible for higher
Q values and become smoothed for the smaller ones, as the
wave package becomes then strong delocalized over many
eigenstates.

Next we investigate the dynamics in terms of the spin-
coherent states which can be visualized on the Bloch sphere.
An instantaneous spin coherent state |θ,ϕ〉t ≡ |θ (t),ϕ(t)〉
rotates the Dicke state |m = N/2〉 by the angles θ and φ and
is defined as [65,66]

|θ,ϕ〉t = [1 + | exp(iφ) tan(θ/2)|]−N/2

× exp[exp(iφ) tan(θ/2)Ĵ−]|N/2〉, (15)

and can be rewritten using all eigenstates of the Ĵz as [58]

|θ,ϕ〉t =
√

N + 1

4π
(

N
2 + 1

)

×
N/2∑

m=−N/2

√(
N

m + N/2

)
sin

(
θ

2

) N
2 +m

× cos

(
θ

2

) N
2 −m

exp

[
−i

(
N

2
+ m

)
ϕ

]
|m〉. (16)

Thus, the wave function can be expanded in this new basis
according to

|�(t)〉 =
∫

dθdϕβ(θ,ϕ)|θ,ϕ〉t , (17)

where

β(θ,ϕ) = 〈�(t)|θ (t),ϕ(t)〉. (18)

The quantity |β(θ,ϕ)|2 gives the contribution of the
corresponding coherent state to the wave function |ψ(t)〉.
Figure 6 shows snapshots of this probability for discrete
t ∼ γx(t) values on the upper half of the Bloch sphere which
is projected to its great circle. The gray lines show the position
of coherent states with the same energy. Each of those lines,
if the eigenstates were presented directly on the Bloch sphere,
would mark the position of the center of a time-local eigenstate
with the corresponding energy of the Hamiltonian Ĥ at time t .
Compare therefore yellow dots and colored halo in the top left
panel of Fig. 6.

The QPT of the ground state is visible in the structure
change of the iso-energetic lines, thus for γx(t)/h > 1 two
different energetic structures are present which are separated
by a separatrix shaped as the symbol “∞”. At the separatrix
the ESQPT takes place. The separatrix grows with increasing
γx(t). The top and bottom figure panels show the evolution
of the wave function in terms of spin coherent states for two
different Q parameters (the same as in Fig. 5), one smaller (top
panel, fast quench) and larger (bottom panel, slow quench).
The initial state is in both cases the same as in Fig. 5, thus
the 17th excited eigenstate of the Hamiltonian Ĥ+(γx(t = 0))
and coincides with one gray line in Fig. 6. Note that the width
of the β(θ,ϕ) distribution becomes smaller with larger N .
The adiabaticity loss due to the appearance of the QPT and
the ESQPT at some later point in the dynamical evolution
is visible by a deviation of the coherent state distribution
from the corresponding gray line. For a faster protocol, the
difference is clearly visible at γx(t)/h = 1 (second figure,
top panel), whereas for a slower protocol the wave package
approximately follows the corresponding gray energy line even
at γx(t)/h = 1.5 (second figure, bottom panel). However, the
protocol speed is essential for a further evolution. For a fast
evolution (top panel) the wave package does not have enough
time to adapt and keeps its shape until γx(t)/h ≈ 2 (first four
snapshots). Meanwhile the separatrix goes through the wave
package and embeds it for higher γx(t) values. For a slower
change of γx(t) (bottom) the wave package approximately still
follows the corresponding energy line which collects it around
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FIG. 6. Protocol-dependent development of the wave function in terms of coherent states |φ,θ〉. The results are shown on the upper half
of the Bloch sphere projected to its great circle. The color shows the occupation probability of the correspondent coherent state. Gray lines
show the states with the same energy. The yellow dots show the mean-field solution of corresponding semiclassical equations; see Sec. VI.
Each point corresponds to one coherent state. Parameters are as follows. N = 200, (top) Qh2 = 1, from left to right γx(t)/h has the following
values: 0, 1, 1.5, 2, 3, 4. (Bottom) Qh2 = 10, from left to right γx(t)/h has following values: 0, 1.5, 1.93, 2.1, 3.

the north pole on the Bloch sphere along the separatrix line
(see third and fourth snapshot). Due to this fact the ESQPT
signatures should be present, for example, in observables like
〈Jz〉(t) or 〈J 2

x 〉(t). For a higher γx(t) value the wave package
is completely embedded by the separatrix.

VI. MEAN-FIELD CONNECTION

The coherent state representation is closely connected to the
mean-field treatment, which in case of the closed LMG model
coincides with the quantum results in the thermodynamic
limit [39]. In this section we apply the protocol Eq. (8) at
the mean-field level and compare the resulting semiclassical
with the numerical quantum results from the previous sections.
However, the mean field provides the system information
based on the operator expectation values and it is not
possible to fix some energy level just by counting from the
ground state, which we have explicitly used in the previous
section.

To derive the mean-field equations we use the Heisenberg
equation ∂t 〈Ĵη〉 = i〈[Ĥ ,Ĵη]〉 and assume that the factorization
〈Ĵ ηĴ ′

η〉 = 〈Ĵη〉〈Ĵ ′
η〉 for η ∈ x,y,z holds in the thermodynamic

limit, this yields [67,68]

J̇x(t) = hJy(t), (19)

J̇y(t) = −hJx(t) + 2γx(t)Jx(t)Jz(t), (20)

J̇z(t) = −2γx(t)Jx(t)Jy(t), (21)

where Ji(t) ≡ 1
N

〈Ĵi〉 denotes the rescaled average operator
value.

To compare the results between the fully quantum and
the mean-field calculations, we have to start with a similar
initial condition in both cases. However, the initial condition
in case of the mean-field calculation is a point on the Bloch
sphere and corresponds to a spin-coherent state. In contrast,
in the quantum case we have chosen an eigenstate of the

Hamiltonian Ĥ+ at t = tin as the initial condition. But an
eigenstate is according to Eq. (17) a superposition of spin
coherent states; see Fig. 6 for the visualization. Therefore,
in the mean-field case we start with a set of initial states,
whose energies correspond to the eigenenergy of the initial
eigenstate in the quantum case we want to compare with.
The dynamical evolution of coherent states is shown in Fig. 6
by yellow dots. We see that the quantum dynamics of the
wave functions is captured by the mean-field calculation very
well.

In case of the adiabatic evolution the energy of each
coherent state in the set would evolve in the same way, thus
the width of the energy distribution for a set of coherent
states would be zero. However, in the case of the adiabaticity
breakdown the set of coherent states will evolve in a different
manner and as a consequence the width of the energy
distribution becomes finite. We will characterize the width
by the standard deviation σM and calculate it as a function
of Q for sets of coherent states with different initial energy
Ein ≡ E(t = tin) at a special time γ cr,Ein

x (t). The latter is equal
to γ cr,i

x if 〈i(tin)|Ĥ+|i(tin)〉 = Ein and gives the value when
in case of the fully adiabatic evolution the initial set will
cross the ESQPT region. Same as in the quantum case, the
curve σM (Q) has a linear part for Qh2 	 1 in the double-
logarithmic representation (not shown here), which we fit by a
power law,

σM (Q) ∼ Qα. (22)

The corresponding exponents α for different initial energies are
shown in Fig. 4 by blue squares and matches pretty well to the
purely quantum calculations. However, the perfect agreement
cannot be expected due to the finite-size effects on the one
hand and the factorization assumption at the lowest level on
the other.

The ongoing protocol deforms the energy landscape (see
Fig. 6), induces a symmetry breaking, and creates a separatrix
for γx(t)/h > 1. Especially for a slower protocol (large Q) the
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FIG. 7. The J̄z expectation value based on the mean-field theory
calculated by averaging over a set of coherent states with a fixed
energy Ein/(hN ) at the initial time t = tin in the (Qh2,γx(t)) plane.
The increase of Jz value is connected to the passing of the ESQPT
region in the system; see blue line. Parameters are as follows:
Ein/(hN ) = −0.265, tin = −1/h.

set of initial states has a small “energy width” and goes around
the same time through the growing separatrix. However, this
corresponds to a system which goes through the ESQPT. This
is visible in the observables behavior as a typical peak; in
the case of Jz the peak arises around the value of “0.5”. In
Fig. 7 we show the J̄z expectation value averaged over the
set of different initial conditions with the same energy Ein,
thus over the Jz values of yellow dots in Fig. 6, for different
protocol speeds Q as a function of γx(t). Such averaging helps
to suppress protocol-induced oscillations. One can see clearly
a sharp increase (yellow dotted line) of J̄z which occurs when
the wave package comes close to the separatrix. For lower Q

the adiabaticity breaks down and the peak is moved to higher
γx values becoming more flat. For higher Q values the position
of the peak tends to γx(t)/h = 1.4, which corresponds to the
ESQPT position for the given initial energy Ein. We could fit
the Q-dependent position of the peak by Qpeak = 1/(γx(t) −
1.4)2, where the exponent “−2” was the fitting parameter. Note
that we have also checked that the quantum calculation leads
to the quantitatively same results.

VII. SUMMARY

In this work we have investigated the role of the ESQPT
for the adiabaticity loss of the excited states dynamics in the
LMG model. Similar to the adiabaticity loss of the ground-state
evolution close to the QPT, the energy spectrum around the
ESQPT in case of the LMG model is composed of a series of
avoided crossings, which will make the dynamics of excited
states nonadiabatic. To probe the adiabaticity loss, we have
linearly increased the internal coupling in the model and
crossed the ESQPT boundary by starting in different excited
states. We argue, that the usually used residual energy to
quantify the adiabaticity loss is not useful for the excited states,
therefore we investigate the energy width of the wave package.
Our results show that even for the excited states the energy
width of the wave package close to the ESQPT scales with
the power law as a function of the inverse protocol speed Q.
However, the corresponding exponent depends on the excited
state. Whereas for the lower part of the spectrum there is a
significant change in the exponents, for the higher part of the
energy spectrum this exponent tends to a constant value.

Additionally, we showed that the mean-field- and quantum-
based results agree. Therefore, we linked the eigenstates of the
LMG Hamiltonian with a set of coherent states, which are the
closest ones to the mean-field states. Thus, we investigated
the evolution of the mean-field states set with initially same
energy. Due to their different position on the Bloch sphere,
each of those states evolves in a different manner under a
protocol action. The deviation of the fully adiabatic evolution
of this mean-field dynamics gives on average the same scaling
behavior as a function of the protocol speed. In the Bloch
sphere representation the protocol action can be understood
as passing of the protocol-caused separatrix growth cutting
through the wave package. Especially for a slower protocol
evolution the ESQPT signatures can be identified in the
dynamical evolution of the wave package.
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