
PHYSICAL REVIEW E 96, 012152 (2017)

Endoreversible quantum heat engines in the linear response regime
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We analyze general models of quantum heat engines operating a cycle of two adiabatic and two isothermal
processes. We use the quantum master equation for a system to describe heat transfer current during a
thermodynamic process in contact with a heat reservoir, with no use of phenomenological thermal conduction.
We apply the endoreversibility description to such engine models working in the linear response regime and
derive expressions of the efficiency and the power. By analyzing the entropy production rate along a single cycle,
we identify the thermodynamic flux and force that a linear relation connects. From maximizing the power output,
we find that such heat engines satisfy the tight-coupling condition and the efficiency at maximum power agrees
with the Curzon-Ahlborn efficiency known as the upper bound in the linear response regime.
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I. INTRODUCTION

The Carnot efficiency ηC = 1 − T r
c /T r

h , obtained from a
Carnot heat engine infinitely slowly working in the quasistatic
limit with vanishing irreversibility, is an upper limit of the
efficiency of all the existing heat engines working between
two heat reservoirs with constant temperatures T r

h and T r
c .

The Carnot heat engine with maximum efficiency produces
vanishing power, though some specific models outputting finite
power at the Carnot efficiency have been found [1–9]. The issue
of a heat engine working at maximum power, with a sacrifice
of efficiency, was studied by Curzon and Ahlborn [10]. In
their paper, adopting the endoreversible assumption and using
Newton’s heat transfer law, the efficiency at maximum power
η∗ for a finite-time Carnot cycle is given by the Curzon-
Ahlborn (CA) efficiency ηCA = 1 − √

T r
c /T r

h . The finite-time
performance has been subsequently studied in autonomous
(steady-state) [11–22] or cyclic (periodically driven) heat
engines [4,12,14,23–45] based on classical [4,11,13,18,24–
28,33,34,41–43,45] and quantum [17,19–23,29,31–33,36,37]
systems, with special emphasis on the issue of efficiency at
maximum power and its bound(s). Linear response theory was
applied to the description of heat engines [12,14,16,24,27,40],
proving that the CA efficiency [12,14,24,27] is the upper bound
of efficiency at maximum power η∗, i.e.,

η∗ � �T r

2T r
= ηCA + O[�(T r )2], (1)

where �T r ≡ T r
h − T r

c and T ≡ (Th + Tc)/2.
The efficiency at maximum power η∗ achieves its upper

bound when the heat engine works under the tight-coupling
(no-heat-leakage) condition. Under the endoreversible as-
sumption, the thermodynamic quantities can be well de-
fined and the fundamental thermodynamic relation holds
well between the thermodynamic variables of the working
substance even in a finite-time thermodynamic process. This
endoreversible condition was used to describe the classical
heat engines proceeding from specific heat transfer laws
[25,27,28,34], which, however, are phenomenological. Lin-
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ear irreversible thermodynamics was recently introduced by
Izumida and Okuda [27] to study the classical endoreversible
Carnot cycle consisting of two adiabatic and two isothermal
processes, where the heat conduction is assumed to be the
Fourier law. Nevertheless, the liner response description of
endoreversible quantum heat engines, which are not restricted
to the Carnot model and where the relaxation dynamics (in-
stead of phenomenological heat transfer laws) are used, is still
lacking. For this reason, we study the finite-power performance
of (generalized) quantum engines under the endoreversible
condition and analyze the efficiency at maximum power.

The present study follows a tradition of analyzing quantum
cycle models of heat engines, applying the endoreversible
condition under which the total entropy production is solely
due to heat transfer between the system and the heat reser-
voirs. Without loss of generality, the working substance of
the engine is composed of an ensemble of noninteracting
harmonic oscillators or spin- 1

2 subsystems, two types of
systems in the universe: bosons and fermions. The dynamics
and thermodynamics of these quantum systems are described
in Sec. II. The quantum version of a cyclic heat engine is
optimized in Sec. III, where the efficiency at maximum power
is analyzed. Section IV develops the optimization within the
framework of linear irreversible thermodynamics, confirming
the result obtained in Sec. III. Section V summarizes the main
conclusions.

II. QUANTUM DYNAMICS AND THERMODYNAMICS OF
AN ISOTHERMAL PROCESS

For a quantum system with a magnetic moment M
trapped in a magnetic field B, its direction can be assumed
to be constant and along the positive-z axis, with the
magnitude of the magnetic field changing over time and
being not vanishing. The system Hamiltonian can be given
by H (t) = −M · B = 2μBS · B = 2μBBz(t)Sz, where μB is
the Bohr magnetron and S is the spin angular momentum.
The system Hamiltonian can be written as H = ω(t)Sz by
setting ω(t) = 2μBBz(t). The average spin polarization S

can be given by (kB ≡ 1) S = 〈Sz〉 = − 1
2 tanh( βω

2 ), where
β = 1/T is the inverse temperature of the system. Throughout
the paper, β rather than T refers to the temperature. The
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expectation of the system Hamiltonian can be written as a
function of the temperature β and the external field ω (h̄ ≡ 1),

〈H 〉 = ωS = −1

2
ω tanh

(
βω

2

)
. (2)

The Hamiltonian of a harmonic oscillator is determined by

H = ω(t)
(
N̂ + 1

2

)
, (3)

where the number operator is N̂ = â†â, with â† and â being
the Bosonic creation and annihilation operators, respectively,
and its expectation value

〈H 〉 = ω

(
n + 1

2

)
= ω

2
coth

(
βω

2

)
, (4)

where n = 〈N̂〉 = 1
eβω−1 is the mean population. Given a

harmonic oscillator, its time-dependent frequency ω(t) deter-
mined by the external field is the control variable. We note
that, for a spin and a harmonic system [46], the expectation
Hamiltonian 〈H 〉 is a function of its temperature β and external
field ω: 〈H 〉 = 〈H (β,ω)〉.

An exact treatment of the dynamics for an open quan-
tum system in contact with a heat reservoir is extremely
complicated. The dynamics of an open quantum system
away from thermal equilibrium, however, can be modeled
by the semigroup formalism [47], with the time evolution of
the density operator ρ̂, dρ̂/dt = −i[H,ρ̂] + LD(ρ̂), where
LD is the dissipative generator that can drive the system
to thermal equilibrium for a static Hamiltonian H = H (ω)
with time-independent ω. The dissipator LD , conforming
to Lindblad’s form for a Markovian evolution in which the
positivity of the density matrix ρ̂ is preserved, can be given
by LD(ρ̂) = ∑

α kα(V̂αρ̂V̂ †
α − 1

2 ρ̂V̂ †
α V̂α − 1

2 V̂ †
α V̂αρ̂). Here V̂ †

α

and V̂α are referred to as Lindblad operators in the Hilbert
space of the system and Hermitian conjugates, and the kα are
positive coefficients that could be determined from the first
principles calculation [47]. An operator can be written as a set
of quantum expectations 〈X̂〉 = Tr(ρ̂X̂). It follows that for a
thermodynamic process the time evolution of the operator X̂

in the Heisenberg picture is [29,31–33]

dX̂

dt
= i[H,X̂] + ∂X̂

∂t
+ LD(X̂), (5)

where LD(X̂) = ∑
α kα(V̂ †

α [X̂,V̂α] + [V̂ †
α ,X̂]V̂α). We set X̂ =

H , where E = 〈H 〉, and then substitute H into Eq. (5),
obtaining

dE

dt
= dW

dt
+ dQ

dt
=

〈
∂H

∂t

〉
+ 〈LD(Ĥ )〉, (6)

where P = dW
dt

= 〈 ∂H
∂t

〉 and dQ

dt
= 〈LD(H )〉 are the power

and the instantaneous heat flow, respectively. For a harmonic
(spin- 1

2 ) system, the operators V̂ † and V̂ become the spin
(harmonic) creation â† (Ŝ† = Ŝx + iŜy) and annihilation
operators â (Ŝ = Ŝx − iŜy). Setting X̂ = H = ω(â†â + 1

2 )
(X̂ = H = ωŜz) in Eq. (5) and using Eq. (6), where
LD(X̂) = k+(â[X̂,â†] + [â,X̂]â†) + k−(â†[X̂,â] + [â†,X̂]â)
or LD(X̂) = k+(Ŝ[X̂,Ŝ†] + [Ŝ,X̂]Ŝ†) + k−(Ŝ†[X̂,Ŝ] +
[Ŝ†,X̂]Ŝ), the instantaneous heat current is written as

Q̇ = −K(〈H 〉t − 〈H 〉eq), (7)

FIG. 1. The 〈H 〉t -ω(t) diagram of an isothermal expansion where
heat is injected into the system from the heat reservoir. The
isothermal process indicated by the red line begins and ends at the
instants [ω(ti),β(ti)] and [ω(tf ),β(tf )], respectively. The expectation
values of the system Hamiltonian with varying control variable ω(t)
but constant temperatures β(t) = βα(tf ),βα(ti) and β(t) = βr

α are
indicated by the dashed and solid blue lines, respectively. Here 〈H 〉eq

is the expectation of the system Hamiltonian at thermal equilibrium
with the heat reservoir of constant temperature βr

α .

where K = k− − k+ (K = k− + k+) is the heat conductivity
for the harmonic (spin) system and k+/k− = e−βω obeys the
detailed balance ensuring that the system evolves asymptoti-
cally in a specific way to the thermal equilibrium state. Here
neq = k+

k−−k+
+ 1

2 (Seq = − 1
2

k−−k+
k−+k+

), the asymptotic population
(polarization), corresponds to the value at thermal equilibrium:
n = 1

2 coth(βrω) [S = − 1
2 tanh(βrω)]. Here and hereafter βr

is referred to as the temperature of the reservoir and it is
assumed to be positive. We also assume that the energy of the
system under consideration is not unbounded upward and its
temperature is then positive.

We first consider an isothermal process during which
the system is interacting with an idealized heat resource α

at constant temperature βr
α (=1/T r

α ). Throughout the paper
the word “isothermal” is adopt to merely mean that the
system is coupled to a heat reservoir whose temperature is
constant. The idealized constant temperature can be realized
by assuming that the reservoir relaxes infinitely fast to its
equilibrium when compared to the time scale of the system
dynamics, which means that such a heat reservoir is exactly
the thermodynamic thermal reservoir. The process starts with
the initial time t = ti and ends at the final time t = tf ,
during which the corresponding control variable varies from
ω(ti) to ω(tf ) and the expectation value of the Hamiltonian
〈H 〉t = 〈H [βα(t),ωα(t)]〉 with ti � t � tf is time dependent.
Figure 1 schematically depicts an isothermal process in
which the system absorbs heat from the heat reservoir α

with temperature βr
α . (A similar schematic diagram for an

isothermal compression, along which the system is kept in
contact with a cold heat reservoir, is not plotted here.) At the
instant t = tf , the control variable ω(t) is frozen and becomes
time independent by ω(tf ) = ω. Under such a fixed value of
ω, the system kept in contact with the heat reservoir undergoes
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FIG. 2. Schematic diagram of a heat engine cycle based on (a) a spin system in the (ω,S) plane and (b) a harmonic system in the (ω,n) plane.
Two isothermal processes are indicated by two blue lines while two adiabatic processes are denoted by two red lines. The values of average
populations (n or S) with varying control variable ω(t) but constant temperatures βr

h and βr
c are shown by the two green lines, respectively.

Here S
eq

h (neq

h ) and Seq
c (neq

h ) are the average spin polarizations (populations) at thermal equilibrium with two heat reservoirs at temperatures βr
h

and βr
c , respectively.

thermalization, the process of the system approaching thermal
equilibrium through mutual interaction between the system
and its environment. Specifically, along this thermalization,
where the control parameter ω(t) = ω(tf ) is constant but the
temperature is varied from βα(tf ) to βr

α with βr
α = βα(t →

∞), the system exchanges heat with the reservoir and can
reach thermal equilibrium after relaxation with infinitely long
time and the expectation of the Hamiltonian approaches
its time-independent asymptotic value 〈H 〉t→∞ = 〈H 〉eq =
〈H [βr

α,ωα(tf )]〉.
We approximate the instantaneous expectation of the

Hamiltonian 〈H [βα(t),ωα(t)]〉 around the thermal equilibrium
point βα(t) = βr

α and ωα(t) = ωα(tf ), retaining only the first
nonzero term

〈H 〉t = 〈H 〉eq + 1

Kα

〈H 〉βα

eq

[
βα(t) − βr

α

]

+ 1

Kα

〈H 〉ωα

eq [ωα(t) − ωα(tf )], (8)

where we have defined H
βα
eq ≡ Kα

∂〈H 〉t
∂βα

|βα(t)=βr
α,ωα(t)=ωα (tf ) and

Hωα
eq ≡ Kα

∂〈H 〉t
∂ωα

|βα(t)=βr
α,ωα(t)=ωα (tf ) [48]. Combining Eqs. (7)

and (8), we obtain

Q̇α = Hβα

eq

[
βr

α − βα(t)
] + Hωα

eq [ωα(tf ) − ωα(t)]. (9)

Here βα(t) and ωα(t) can be expressed as follows:

βα(t) = βα(ti) + γ (t)
[
βr

α − βα(ti)
]
, (10)

ωα(t) = ωα(ti) + g(t)[ωα(tf ) − ωα(ti)], (11)

where γ (t) and g(t), as functions of time t , satisfy the
boundary conditions γ (ti) = g(ti) = 0 and g(tf ) = γ (t →
∞) = 1. The duration of the isothermal process in contact
with a heat reservoir is finite, which means that the thermo-
dynamic state of the working substance evolves along the
curves of nonquasistatic isothermal processes. Considering
Eqs. (9)–(11), the instantaneous heat current Q̇α can be

approximated by

Q̇α = Hβα

eq γ̃α(t)
[
βα(ti) − βr

α

] + Hωα

eq g̃α(t)[ωα(ti) − ωα(tf )],

(12)

where we have used γ̃α(t) ≡ γα(t) − 1 and g̃α(t) ≡ gα(t) − 1.

III. OPTIMIZING THE OPERATION OF A CYCLIC
QUANTUM HEAT ENGINE MODEL

The cyclic heat engine model consisting of two adiabatic
and two isothermal processes is sketched in Fig. 2. The present
engine may be a Carnot cycle, a Brayton cycle, or an Otto
cycle [49–51] (the control variable ω is kept constant in an
isochoric process of the Otto cycle) and its working substance
is composed of a quantum system, envisioned as an ensemble
of noninteracting spin- 1

2 subsystems or harmonic oscillators
[46]. Such an engine model, for which the temperatures of the
hot and cold (thermodynamic thermal) reservoirs are constant,
is now briefly described. (i) For the isothermal expansion,
we set the initial and final values of time to be ti = 0 and
tf = τh. Along this process the working substance is kept
in contact with the hot reservoir of temperature βh, while
the control variable ω(t) is varied from ω0

h to ω
f

h . A result
of the variation of the control variable is that the effective
temperature of the working substance β(t) is changing from β0

h

to β
f

h . (ii) In the adiabatic expansion, the system is decoupled
from the heat reservoir for time τhc and the control variable
is varied from ω

f

h to ω0
c , without heat transfer between the

system and its surroundings. (iii) The time required to complete
the isothermal compression is τc. In this step, the system is
coupled to the cold reservoir of temperature βc, while the
control variable changes from ω0

c to ω
f
c , causing the effective

temperature βc(t) to change from β0
c to β

f
c . (iv) The adiabatic

compression, similar to the adiabatic expansion, closes the full
cycle, after which the system is back in its original state. During
this process, the system is isolated from the heat reservoir and
the control variable changes back to its initial value ω0

h in a
time interval τch.
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The cycle period for the heat engine is then given by τcyc =
τh + τhc + τc + τch. For the cyclic heat engine, we consider
the quantity

∑
α

∫ τcyc

0 βα(t)Q̇α in the linear response regime.
Since no heat is transferred during the adiabatic processes, we
find from Eqs. (10) and (11) that

∑
α

∫ τ
f
α

τ i
α

βα(t)Q̇αdt

=
∫ τ

f

h

τ 0
h

[
Hβh

eq γ̃h(t)
(
β0

h − βr
h

) + Hωh

eq g̃h(t)
(
ω0

h − ω
f

h

)]
dt

+
∫ τ

f
c

τ 0
c

[
Hβc

eq γ̃c(t)
(
β0

c − βr
c

)

+Hωc

eq g̃c(t)
(
ω0

c − ωf
c

)]
dt + O(�2)

= β0
h〈Qh〉 + β0

c 〈Qc〉 + O(�2), (13)

where 〈Qα〉 = ∫ τ
f
α

τ i
α

Q̇αdt , with τ 0
α and τ

f
α (α = h,c) denoting

the initial and final times for the hot or cold isothermal
processes, is the average heat exchanged between the system
and the heat reservoir.

We assume that the quantum heat engine satisfies the
endoreversible condition, under which the irreversibility hin-
dering the performance of the ideal quantum heat engines is
exclusively caused by imperfect thermal interaction between
the working substance and the heat reservoirs. Based on this
condition, the relaxation time scale of the working substance
can be assumed to be much smaller than that of heat exchange
in the isothermal processes and the working substance can
thus relax to internal equilibrium at any instant along these
processes [30], implying that the instantaneous temperature
of the working substance can indeed be determined from the
equilibriumlike forms (2) and (4) for the endoreversible cycles
in the linear response regime [52]. It is also indicated that
the entropy of the working substance at any infinitesimal
difference can be defined by dSentropy = β(t)dQ. As the
entropy is the state variable, there is no net change in the
entropy of the system for a single cycle, i.e.,

∮
Q̇(t)β(t) = 0,

with β being the time-dependent temperature of the working
substance [25,34]. This condition where the temperature of the
working substance is time dependent, unlike the conventional
endoreversible assumption [10] under which the temperature
of the working substance is presumed to be constant, was
called the weak endoreversible assumption by Wang and Tu
[30]. In the linear response regime, we have the restriction
from Eq. (13),

β0
h〈Qh〉 + β0

c 〈Qc〉 + O(�2) = 0, (14)

which is exactly the conventional endoreversible assumption
[10], where the effective temperature of the working substance
is assumed to be kept constant along an isothermal process.
That is, the weak endoreversible assumption reduces to the
conventional one. Alternatively, the conventional endore-
versible assumption, in which the temperature of the working
substance is constant [i.e., γ (t) = γ (ti) = 0 in Eq. (10)],
automatically holds well under the weak endoreversible
condition, where the temperature of the working substance
is not necessarily assumed to be fixed, provided that the heat

engine works in the linear response regime. For simplicity,

we set β̄0 = β0
h+β0

c

2 and ω̄0 = ω0
h+ω0

c

2 , and β̄r = βr
h+βr

c

2 and

ω̄f = ω
f

h +ω
f
c

2 . Keeping the first order, we have

β̄0 = c0 + c1�β + c2�βr, ω̄0 = d0 + d1�ω + d2�ωf ,

(15)

where we used �β ≡ β0
h − β0

c , �βr ≡ βr
h − βr

c , �ω ≡ ω0
h −

ω0
c , and �ωf ≡ ω

f

h − ω
f
c . Substituting the expressions of β̄0

and ω̄0 into Eq. (14), we find

c0 = β̄r , (16)

c1 = H
βc
eq �c − H

βh
eq �h

2
(
H

βc
eq �c + H

βh
eq �h

) , (17)

c2 = − H
βc
eq �c − H

βh
eq �h

2
(
H

βc
eq �c + H

βh
eq �h

) , (18)

d0 = ω̄f , (19)

d1 = Hωc
eq Gc − Hωh

eq Gh

2
(
H

ωc
eq Gc + H

ωh
eq Gh

) , (20)

d2 = − Hωc
eq Gc − Hωh

eq Gh

2
(
H

ωc
eq Gc + H

ωh
eq Gh

) , (21)

where we have used �hτcyc = ∫ τ
f

h

τ 0
h

γ̃h(t)dt , �cτcyc =∫ τ
f
c

τ 0
c

γ̃c(t)dt , Ghτcyc = ∫ τ
f

h

τ 0
h

g̃h(t)dt , and Gcτcyc = ∫ τ
f
c

τ 0
c

g̃c(t)dt ,

with �α (0 < �α < 1) and Gα (0 < Gα < 1) being dimen-
sionless parameters. Employing Eq. (15), β̄0 and ω̄0 become

β̄0 = β̄r + H
βc
eq �c − H

βh
eq �h

2
(
H

βc
eq �c + H

βh
eq �h

)�β

− H
βc
eq �c − H

βh
eq �h

2
(
H

βc
eq �c + H

βh
eq �h

)�βr, (22)

ω̄0 = ω̄f + Hωc
eq Gc − Hωh

eq Gh

2
(
H

ωc
eq Gc + H

ωh
eq Gh

)�ω

− Hωc
eq Gc − Hωh

eq Gh

2
(
H

ωc
eq Gc + H

ωh
eq Gh

)�ωf . (23)

Note from Eq. (14) that the efficiency of these engines,
η = 〈W〉/〈Qh〉 with 〈W〉 = 〈Qh〉 + 〈Qc〉 being the average
work output per cycle, takes the form

η = 1 − β0
h

β0
c

� −�β

β̄r
. (24)

The power output P = (
∫ τcyc

0 ηQ̇hdt)/τcyc reads, from
Eqs. (12) and (24),

P = −�β

β̄r

[
Hβh

eq �h

(
β0

h − βr
h

) + Hωh

eq Gh

(
ω0

h − ω
f

h

)]
. (25)

It follows, substituting Eqs. (22) and (23) into Eqs. (12) and
(25), that the power output and the average heat absorbed by
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the system per cycle become

P = −�β

βr

[
H

βc
eq H

βh
eq �h�c

H
βc
eq �c + H

βh
eq �h

(�β − �βr )

+ Hωc
eq Hωh

eq GhGc

H
ωc
eq Gh + H

ωh
eq Gh

(�ω − �ωf )

]
(26)

and

〈Qh〉 =
[

H
βc
eq H

βh
eq �h�c

H
βc
eq �c + H

βh
eq �h

(�β − �βr )

+ Hωc
eq Hωh

eq GhGc

H
ωc
eq Gh + H

ωh
eq Gh

(�ω − �ωf )

]
τcyc, (27)

respectively. In deriving Eqs. (26) and (27) we have used β0
h =

β̄0 + �β/2, βr
h = β̄r + �βr/2, ω0

h = ω̄0 + �ω/2, and ω
f

h =
ω̄f + �ωf /2.

To proceed with our analysis, we now reveal the relationship
between the temperature difference and the difference of the
control variable. For our purpose it suffices to consider the den-
sity operators for the quantum system ρ(β,ω) = exp(−β〈H 〉)

Tr exp(−β〈H 〉) ,
where the expectation of the Hamiltonian was given by Eq. (2)

for the spin system or Eq. (4) for the harmonic system. Without
going through the details of the calculation, we note that
the entropy Sentropy = −ρTr ln ρ for the spin or harmonic
system takes the explicit form Sentropy = Sentropy(β〈H 〉) =
Sentropy(βω), which means that Sentropy is a function of the
“parameter” βω only. Specifically, during an isoentropic
adiabatic process, one has the following relations: Sentropy =
const ⇔ ρ = const ⇔ β〈H 〉 = const ⇔ βω = const. For the
adiabatic compression and expansion, we then have β0

hω
0
h =

β
f
c ω

f
c and β

f

h ω
f

h = β0
c ω

0
c . In the linear response regime where

the temperature gradient �βr (=βr
c − βr

h) is very small, the
temperature of the working substance β

f

h (βf
c ) at the final

state during the hot (cold) isothermal process must be very
close to its asymptotic value βr

h (βr
c ), the temperature of the

heat reservoir. Specifically, although the system requires an
infinitely long time to achieve its (global) equilibrium state
during an isothermal process, its value at the final state must
be very close to the value of the equilibrium state. That is,
β

f
α � βr

α and β
f
c � βr

c , leading to the approximation

β0
hω

0
h � βr

cω
f
c , β0

c ω
0
c � βr

hω
f

h , (28)

which, together with Eq. (13), gives rise to

�ω − �ωf = 2
(
β0

c β
0
h − βr

cβ
r
h

)(
�hH

wh
eq + �cH

wc
eq

)
ω̄f

−β0
hβ

r
hGcH

wc
eq + β0

c

( − β0
hGcH

wc
eq + βr

cGhH
wh
eq + β0

c GhH
wh
eq

) , (29)

where we have used ω0
h = ω̄0 + �ω/2 and ω

f

h = ω̄f +
�ωf /2. Substituting β0

h = β̄0 + �β/2 and βr
h = β̄r + �βr/2

into Eq. (29) and expanding that with respect to �β and �βr

as well as �ω and �ωf , we have

�ω − �ωf � ω̄f

β̄r
(�βr − �β), (30)

which, together with Eq. (26), leads to the final function of
power

P = −
(

H
βc
eq H

βh
eq �h�c

H
βc
eq �c + �hH

βh
eq

− Hωc
eq Hωh

eq GhGc

H
ωc
eq Gh + GhH

ωh
eq

ωf

β̄r

)

×
(

�β

β̄r

)
(�β − �βr ). (31)

Here the power P , a quadratic function of the temperature
difference �β, can thus be optimized with respect to �β.
The power becomes vanishing either in the quasistatic limit
�β = �βr , when the heat engine runs at an infinitely slow
speed, or in the extreme case �β = 0, where the heat flux
from the hot heat reservoir is completely injected into the cold
heat reservoir without producing any work. From Eq. (31),
maximizing the power output for the heat engine in a finite
time is equivalent to setting ∂P/∂�β = 0, yielding

�β = �βr

2
. (32)

With consideration of Eqs. (24) and (32), we obtain the
efficiency at maximum power as

η∗ = −�βr

2β̄r
= ηCA + O[(�β̄r )2]. (33)

We reproduce a reported universal upper bound of the
maximum-power efficiency obtained from a strong-coupling
Carnot heat engine [24,27]. Notice, however, that Eq. (33) was
obtained for models of quantum heat engines, which work
either a spin (Fermi) or a harmonic (Bose) system and are
not restricted to the Carnot cycle model. In the special case
when the heat engine is the quantum version of the Otto cycle,
the second term in Eq. (26) or (27) is vanishing and one can
easily reproduce Eq. (33). There is no clear physical reason
why the efficiency at maximum power achieves the upper
bound ηCA, which is realized only for the heat engines under
the tight-coupling (no-heat-leakage) condition. Upon thought,
however, the result obtained may not be surprising, provided
the heat engines satisfy the strong-coupling condition. That
is, such ideal energy conversion mechanisms, in which the
energy fluxes are proportional to each other at all times, may
be tagged tightly coupled, which will be discussed in the
following.

IV. OPTIMAL ANALYSIS BASED ON LINEAR
IRREVERSIBLE THERMODYNAMICS

The entropy production rate of the system σ̇ can be
expressed as the sum of the entropy increase rates of the two
heat reservoirs

σ̇ = − 1

τcyc

∑
α

∫ τ
f
α

τ 0
α

βr
αQ̇αdt

= −[
(〈Q̇h〉 + 〈Q̇c〉)βr

c + 〈Q̇h〉
(
βr

h − βr
c

)]
. (34)
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Considering Eq. (24), Eq. (34) can be approximated by using
βr

c � β̄r as

σ̇ � β̄r〈Q̇h〉�β

β̄r
+ 〈Q̇h〉(−�βr ) = JeXe + JtXt , (35)

where 〈Q̇h〉 = (
∫ τcyc

0 Q̇hdt)/τcyc is the average heat current
per cycle. Here the entropy and thermal fluxes are identified
by using Eq. (27),

Je = β̄r〈Q̇h〉 = β̄r

(
H

βc
eq H

βh
eq �h�c

H
βc
eq �c + �hH

βh
eq

− Hωc
eq Hωh

eq GhGc

H
ωc
eq Gh + GhH

ωh
eq

ωf

β̄r

)
(�β − �βr ) (36)

and

Jt = 〈Q̇h〉 =
(

H
βc
eq H

βh
eq �h�c

H
βc
eq �c + �hH

βh
eq

− Hωc
eq Hωh

eq GhGc

H
ωc
eq Gh + GhH

ωh
eq

ωf

β̄r

)
(�β − �βr ), (37)

respectively, and their conjugate thermodynamic forces are

Xe = �β

β̄r
= β0

h − β0
c

β̄r

, Xt = −�βr = βr
c − βr

h. (38)

In the linear response regime, there is a linear relation between
fluxes Je,t and forces Xe,t such that

Je = LeeXe + LetXt , Jt = LteXe + LttXt , (39)

where the Onsager coefficients are required to satisfy Let =
Lte,Ltt ,Lee � 0 and LttLee � LetLte. Using Eqs. (36)–(39),
the Onsager coefficients are obtained as

Lee =
(

H
βc
eq H

βh
eq �h�c

H
βc
eq �c + �hH

βh
eq

− Hωc
eq Hωh

eq GhGc

H
ωc
eq Gc + GhH

ωh
eq

ω̄f

β̄r

)
(β̄r )2,

(40)

Let =
(

H
βc
eq H

βh
eq �h�c

H
βc
eq �c + �hH

βh
eq

− Hωc
eq Hωh

eq GhGc

H
ωc
eq Gc + GhH

ωh
eq

ω̄f

β̄r

)
β̄r ,

(41)

Lte =
(

H
βc
eq H

βh
eq �h�c

H
βc
eq �c + �hH

βh
eq

− Hωc
eq Hωh

eq GhGc

H
ωc
eq Gc + GhH

ωh
eq

ω̄f

β̄r

)
β̄r ,

(42)

Ltt = H
βc
eq H

βh
eq �h�c

H
βc
eq �c + �hH

βh
eq

− Hωc
eq Hωh

eq GhGc

H
ωc
eq Gc + GhH

ωh
eq

ω̄f

β̄r
, (43)

which confirm that the Onsager reciprocity Let = Lte holds
and the tight-coupling (no-heat-leakage) condition

q ≡ Let√
LttLee

= 1 (44)

is fulfilled. Based on Eqs. (31), (38), (40), and (41), the power
outputP can be expressed in terms of the Onsager coefficients:

P = Jt

�β

β̄r
= (LeeXe + LetXt )Xe. (45)

In then follows, using the condition ∂P/∂Xe = 0, that the
maximum power is realized at the optimal point X∗

e =
�βrβ̄r/2 and the corresponding efficiency η∗ is still given
by Eq. (33). We therefore show that the heat engine is tightly
coupled through appropriate identification of thermodynamic
fluxes and forces and that the efficiency at maximum power
(when accurate to the first order of ηC) attains the upper bound
ηCA, with no use of any particular working substance or heat
conductance.

As a final brief remark, we note that Eq. (34) can
be reexpressed as σ̇ = −(βr

h〈Q̇h〉 + βr
c 〈Q̇c〉) � −Pβ̄r +

〈Q̇h〉�βr = JmXm + JtXt [24]. Here Jm and Jt , the mechan-
ical and thermal fluxes, are identified as Jm = 1/τcyc and Jt =
〈Q̇h〉, with the affinities Xm = −β̄rW and Xt = −�βr , and
they have linear constitutive relations Jm = LmmXm + LmtXt

and Jt = LtmXm + LttXt , where the Onsager coefficients sat-
isfy Lmt = Ltm,Ltt ,Lmm � 0 and LttLmm � LmtLtm. How-
ever, these kinetic coefficients, Lμν = (∂Jμ/∂Xν)X=0 for
μ,ν = m,t , cannot be expressed explicitly in such a case
when Jm = 1/τcyc. We note that the power and the efficiency
can be written as P = −JmXm/β̄r and η = −β̄rJt/JmXm,
respectively. We then find, setting ∂P/∂Xm = 0, that the
efficiency at maximum power becomes η∗ = �βr

2
q2

1−q2 , where
the definition of the coupling strength parameter q =
Lmt/

√
LmmLtt has been used, with −1 � q � 1. Again,

the upper bound of the efficiency at maximum power is
achieved only when the tight-coupling condition |q| = 1 is
satisfied.

V. CONCLUSION

We have studied the finite-power performance of endore-
versible quantum heat engines, whose working substance
obeys one of the two typical quantum statistics (Fermi-Dirac
and Bose-Einstein) and which do not employ any specific
law(s) of thermal conduction. Based on the quantum master
equation in the Lindblad form, we have calculated the instanta-
neous heat flux between the working substance and heat reser-
voir of constant temperature along any isothermal process. The
power and efficiency are expressed in terms of the thermody-
namic variables of the working substance. Optimizing directly
the power with respect to the temperature of the working
substance, the efficiency at maximum power was found to
be the CA efficiency ηCA, the known upper bound for the heat
engines in the linear response regime. This result was then
further confirmed and these engines were proved to be tightly
coupled through appropriate identification of thermodynamic
fluxes and forces, within the context of linear irreversible
thermodynamics.
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