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We study irreversible processes for nonlinear oscillators networks described by complex-valued Langevin
equations that account for coupling to different thermochemical baths. Dissipation is introduced via non-
Hermitian terms in the Hamiltonian of the model. We apply the stochastic thermodynamics formalism to compute
explicit expressions for the entropy production rates. We discuss in particular the nonequilibrium steady states
of the network characterized by a constant production rate of entropy and flows of energy and particle currents.
For two specific examples, a one-dimensional chain and a dimer, numerical calculations are presented. The role
of asymmetric coupling among the oscillators on the entropy production is illustrated.
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I. INTRODUCTION

Simple oscillator models allow one to tackle fundamental
problems of nonequilibrium statistical mechanics [1–4] and
to study energy transport in systems that are ubiquitous in
physics, chemistry, biology, and nanosciences [5,6]. Examples
include, but are not limited to, the dynamics of spin systems
[7,8], Bose-Einstein condensates, lasers, mechanical oscilla-
tors [9], and photosynthetic reactions [10].

A central issue is to identify the conditions under which
a network of oscillators reaches thermal equilibrium or is
driven in a nonequilibrium steady state characterized by
the propagation of coupled currents. One basic observable
characterizing the state is the entropy production, whose
calculation in terms of the microscopic variables is the object
of the present paper. In particular, we address this issue using
the language of stochastic thermodynamics (ST) [11–17].
Within the ST framework, the out-of-equilibrium dynamics
is described combining the Langevin and associated Fokker-
Planck (FP) equations or a (quantum or classical) master
equation [16–21]. Those allow one to define the evolution
of probability over the phase space and to derive consistent
expressions for thermodynamic forces and flows and for
entropy production for states arbitrarily far from equilibrium.

Another issue that can be considered is the presence of
asymmetric couplings in the system Hamiltonian. Physical
systems that can be described by asymmetrically coupled
oscillators include magnetic materials with asymmetric ex-
change coupling [22], synthetic lattice gauge fields [23],
transport in topological insulators [24], and parametrically
driven oscillators [25]. Here we discuss how, in a network
of coupled oscillators, detailed balance can be broken either
by the presence of thermal baths at different temperatures and
chemical potential or by an anti-Hermitian coupling among
the oscillators. The use of anti-Hermitian Hamiltonians to
describe phenomenologically irreversibility both in classical
and quantum systems has been widely investigated [26–28].
Here we move a step forward by quantifying irreversibility in
those systems using the ST language.

Although our formulation is completely general, we shall
mostly refer to the dynamics of coupled nonlinear oscillators

in the form of the discrete nonlinear Schrödinger equa-
tion (DNLS) [29–31] whose off-equilibrium properties have
received a certain attention recently [8,32–35]. The spin-
Josephson effect [36], the connection between gauge invari-
ance and thermal transport [37] and heat or spin rectification
[38–40] are a few of the effects within the DNLS field that can
be captured by the ST formalism. One appealing feature of this
class of models is the presence of two conserved quantities,
namely energy and norm [32,33,41], that give rise to coupled
transport effects between the associated currents [32]. This
constitutes a further element of novelty that has not yet been
considered in the existing literature.

The remainder of the paper is organized as follows. In
Sec. I we describe the dynamics of a network of complex
Langevin equations, and we introduce the associated Fokker-
Planck (FP) equation. In Sec. II we derive the entropy flow
and entropy production for this system, and in Sec. III we
identify the adiabatic and nonadiabatic components of entropy
production. In Sec. IV we show the link between heat and
entropy flows and report simulations for the specific case
of a DNLS chain with boundary thermostats. In Sec. V we
discuss example of the dimer, the simplest realisation of the
DNLS consisting of only two coupled oscillators. We present
some numerical simulations that elucidate its off-equilibrium
dynamics. Finally, in Sec. V we conclude the work and
summarize the main results.

II. STOCHASTIC NETWORK MODEL

Let us consider a network, where the dynamics of each
of the m = 1, . . . ,M nodes is described by the following
Langevin equations [see the sketch in Fig. 1(a)]:

ψ̇m = Fm + ξm. (1)

Here the dot indicates time derivative and ψm = √
pm(t)eiφm(t)

is a complex oscillator amplitude. The force Fm is an arbitrary
function of the ψs and their complex conjugate. We assume
that both the coupling between the ψs and the local forcing and
damping are contained in the definition of F . The white noises
ξm, which model the stochastic baths, are complex Gaussian

2470-0045/2017/96(1)/012150(7) 012150-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.012150


BORLENGHI, IUBINI, LEPRI, AND FRANSSON PHYSICAL REVIEW E 96, 012150 (2017)

FIG. 1. (a) Network of nonlinear oscillators, where ψm is the local
oscillator amplitude and Fm the force that specifies the geometry of the
system. Each site can be coupled to a thermal bath with temperature
Tm and chemical potential μm. (b) DNLS chain with the first site
connected to a bath with temperature T and chemical potential μ.
(c) Schrödinger dimer, consisting of two coupled oscillators con-
nected to two thermal baths with different temperature Tm and
chemical potential μm, m = 1,2.

random processes with zero average and correlation

〈ξm(t)ξ ∗
n (t ′)〉 = Dmδmnδ(t − t ′). (2)

Here Dm = αmTm is the diffusion constant, with αm the
damping rate and Tm the temperature of bath m. Equation (1)
is a general model that describes a multitude of systems
encountered in physics, chemistry, and biology.

Throughout the paper we adopt the following conventions:
We set the Boltzmann constant kB equal 1. Vectors and
matrices are written in plain text, while their component are
denoted by the m and n subscripts.

We define the Wirtinger derivatives as

∂m ≡ ∂

∂ψm

= 1

2

(
∂

∂xm

− i
∂

∂ym

)
, (3)

with ψm = xm + iym and ∂∗
m = ∂

∂ψ∗
m

its complex conjugated.
The variables (ψm,iψ∗

m) are canonically conjugate. The total
forces Fm = F I

m + FR
m are the sum of dissipative (or irre-

versible, I ) and conservative (or reversible, R) components.
Those are given by the derivatives F

I/R
m = i∂∗

mHI/R of anti-
Hermitian and Hermitian Hamiltonians HI/R , respectively.
The latter have opposite parity under the time-reversal
transformation and the total Hamiltonian H is defined as
H = HI + HR .

The Fokker-Planck (FP) equation associated to Eq. (1) reads
[42,43]

Ṗ =
∑
m

[−∂m(FmP ) − ∂∗
m(F ∗

mP ) + 2Dm∂m∂∗
mP ]. (4)

Equation (4) gives the evolution of the probability P to find
the system in the configuration (ψ1, . . . ,ψM,ψ∗

1 , . . . ,ψ∗
M ) at

time t . Following Refs. [44,45], we define the irreversible and
reversible probability currents

J I
m = F I

mP − Dm∂∗
mP, (5)

J R
m = FR

m P, (6)

withJm = J I
m + J R

m andJ ∗
m its complex conjugated. In terms

of those currents the FP equation, Eq. (4), assumes the form
of a continuity equation:

Ṗ =
∑
m

(−∂mJm − ∂∗
mJ ∗

m). (7)

The steady state corresponds to Ṗ = 0, while thermal equilib-
rium corresponds to Jm = J ∗

m = 0.
The average of an arbitrary function f of the observables

is expressed by means of P as 〈f 〉 = ∫
f Pdx, where dx =

( i
2 )N

∏N
m=1 dψm ∧ dψ∗

m is the phase-space volume element.
Note that this average is equivalent to ensemble average of
Eq. (1) over different realizations of the stochastic processes.
As usual [16,18], we consider the case where the probability
currents and the thermodynamical forces vanish at infinity, so
that the cross terms in the integration by part can be discarded.

III. ENTROPY FLOW AND ENTROPY PRODUCTION

The entropy flow � and entropy production 	 are obtained
starting from the definition of phase-space entropy

S = −〈log P 〉 ≡ −
∫

P log Pdx (8)

and computing its time derivative by means of Eq. (4):

Ṡ =
∫ ∑

m

(∂mJm + ∂∗
mJ ∗

m) ln Pdx. (9)

On integrating by parts, using Eqs. (5)–(7) and assuming that
the reversible forces have zero divergence [18,19], Eq. (9)
becomes

Ṡ = −2Re
∫ ∑

m

J I
m

∂mP

P
dx. (10)

From Eq. (5) one has

∂mP

P
= ∂m ln P = 1

Dm

(
F I∗

m − J I∗
m /P

)
(11)

and ∂∗
m ln P its complex conjugate. Substituting this into

Eq. (10) gives

Ṡ = −2Re
∫ ∑

m

J I
m

F I
m

Dm

dx +
∫ ∑

m

∣∣J I
m

∣∣2

DmP
dx. (12)

The two terms in Eq. (12) correspond respectively to minus
the entropy flow � from the system to the environment and
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entropy production 	. Note in particular that � has the
usual form of products between probability fluxes Jm and
thermodynamical forces F ∗

m/Dm and that 	 is positive definite.
In nonequilibrium stationary states, one has Ṡ = −� + 	 =
0, so that � = 	. These quantities are both zero only at
thermal equilibrium. On using Eq. (5), integrating by parts,
and substituting the integrals over P with ensemble average,
the total entropy flow becomes

� =
∑
m

�m =
∑
m

[
2

〈∣∣F I
m

∣∣2〉
Dm

+ 2Re
〈
∂mF I

m

〉]
, (13)

where �m is the entropy flow on site m. Note that Eq. (13) is
the generalization of the expression given in Ref. [18] to the
case where forces are complex valued.

Before concluding the section, let us briefly discuss the
more general case of nonstationary conditions. To this aim,
it is useful to separate the entropy production into adiabatic
and nonadiabatic components, which correspond respectively
to steady and nonsteady states [21]. On indicating with
superscript s the steady state probability P s and fluxes J s ,
one writes the steady-state FP equation as

Ṗ s =
∑
m

[−∂mJ s
m − ∂∗

mJ ∗s
m

] ≡ 0. (14)

By using Eqs. (5) and (6), it is convenient to define the
following quantity:


m ≡ Jm

P
− J s

m

P s
= −Dm∂∗

m ln
P

P s
. (15)

Equation (15) defines the discrepancy between a stationary
and nonstationary state. By inserting 
m into the definition of
entropy production Eq. (10) and integrating by parts, one can
show that the latter splits into the sum 	 = 	a + 	na of two
parts which are respectively the adiabatic and nonadiabatic
components:

	a = 2
∫ ∑

m

P

Dm

∣∣J s
m

∣∣2

P 2
s

dx = 2
∑
m

〈 ∣∣J s
m

∣∣2

DmP 2
s

〉
, (16)

	na = 2
∫ ∑

m

P

Dm

|
m|2dx = 2
∑
m

〈 |
m|2
Dm

〉
. (17)

The adiabatic component corresponds to nonequilibrium
steady state, obtained, for example, connecting the system to
baths at different constant temperature. On the other hand, the
nonadiabatic component corresponds to nonstationary states,
obtained by applying a time-dependent driving to the system.

IV. STEADY-STATE HEAT FLOW

Let us return to the stationary case and consider the relation
between the entropy flux � derived in the previous section
and the heat flow. For clarity, we specialize to the relevant case
of DNLS oscillators in contact with boundary reservoirs [33].
In particular, we consider the geometry sketched in Fig. 1(b),
where the first site of the chain is in contact with a reservoir

on the left at temperature T and chemical potential μ and with
the rest of the chain on the right. This setup is described by the
following Hamiltonians [8]

HR =
∑
m

hm, (18)

HI = iα(h1 − μp1), (19)

where hm is the local energy yielding the conservative
forces FR

m δmj = i∂∗
mhj . Analogously, the irreversible forces

are F I
mδm1 = i∂∗

mHI . Let us now evaluate the variation of the
local internal energy u1 = 〈h1 − μp1〉 on a stationary state.

u̇1 = d

dt

∫
dxP (x)(h1 − μp1) =

∫
dxP (x)(ḣ1 − μṗ1)

= 1

iα

∫
dxP (x)ḢI , (20)

where α 	= 0 is assumed. On substituting the dissipative forces
and using the antihermitianity of HI , one has

u̇1 = 1

iα

〈∑
m

(
∂HI

∂ψ∗
m

ψ̇∗
m + ∂HI

∂ψm

ψ̇m

)〉

= 1

iα

〈(−iF I
1 ψ̇∗

1 − iF I∗
1 ψ̇1

)〉
. (21)

By inserting the equations of motion, Eq. (1), the above
equation becomes

u̇1 = − 1

α

[
2
〈∣∣F I

1

∣∣2〉 + 2Re
〈
F I

1 ξ1(t)
〉]

− 2

α
Re

〈
F I

1 F ∗R
1

〉
, (22)

assuming that 〈F I
mξj 〉 = αT 〈∂mF I

m〉 as in Refs. [18,19], one
gets

u̇1 = −�1T − 2

α
Re

〈
F I

1 F ∗R
1

〉 = −�1T − j
q

1 , (23)

where j
q

1 is the heat flux on site 1. Indeed, for a lattice site m

in contact with the reservoir, we have

jq
m − j

q

m−1 = 2

α
Re

〈
F I

mF ∗R
m

〉
= −2Re

〈
∂hm

∂ψ∗
m

F ∗R
m

〉
+ 2μRe

〈
∂pm

∂ψ∗
m

F ∗R
m

〉
. (24)

The first term of the right-hand side corresponds to the energy
flow difference jh

m − jh
m−1 while the second term is the particle

flow difference j
p
m − j

p

m−1 [8] multiplied by the chemical
potential. Therefore, we consistently obtain the relation j

q
m =

jh
m − μj

p
m [6]. Finally, since u̇1 = 0 on a stationary state

and j
q

0 = 0, we recover the basic thermodynamical relation
j

q

1 = −�1T .
The consistency of Eq. (23) has been tested numerically

on a chain of L DNLS oscillators in contact with two
boundary heat baths. The system Hamiltonian can be explicitly
written as

HR =
L∑

m=1

(|ψm|4 + ψ∗
mψm+1 + ψ∗

m+1ψm) (25)
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FIG. 2. Heat-flux balance during the relaxation to a nonequilib-
rium stationary state of a DNLS chain with L = 500 lattice sites.
The system is in contact with two boundary reservoirs at temperature
T1 = 0.25, TL = 0.35 and chemical potential μ1 = μL = −1, with
couplings α1 = αL = 0.05. Blue (dot-dashed) and red (dashed)
curves refer to the boundary heat flux computed from the entropy
fluxes �j , with j = 1,L. The green (solid) line shows the behavior
of the average heat flux jq in the bulk, computed through Eq. (24).
The inset shows the temperature profile measured in the stationary
regime (see Ref. [32] for computational details). Simulations were
performed with a fourth-order Runge-Kutta algorithm with a time
step of 0.005 model temporal units.

and the heat baths are implemented as in Eq. (1) with D1 =
αT1 and D2 = αT2. Assuming fixed boundary conditions
(ψ0 = ψL+1 = 0), the dissipative Hamiltonian reads [8,33]

HI = iα(|ψ1|4 + ψ∗
1 ψ2 + ψ∗

2 ψ1 − μ1p1)

+ iα(|ψL|4 + ψ∗
LψL−1 + ψ∗

L−1ψL − μLpL).

(26)

Figure 2 shows the heat-flux balance between the boundary
currents �jTj (j = 1,L) and the average bulk flux jq =
1/L

∑
m j

q
m near a nonequilibrium stationary state with dif-

ferent boundary temperatures. When the stationary state is
reached, a relation analogous to Eq. (23) holds separately at
the rightmost boundary. This regime corresponds to a linear
temperature profile along the chain (see the inset) and a flat
profile of j

q
m (data not shown).

V. DYNAMICS OF A DIMER

For a better physical insight, and to appreciate the role of
coupling on transport, we now discuss the simplest realization
of the DNLS consisting of only two coupled oscillators L = 2
[see Fig. 1(c) for a schematic]. The system is described by the
non-Hermitian Hamiltonian

H = (1 + iα)[ω1(p1)p1 + ω2(p2)p2 + A12ψ1ψ
∗
2

+A21ψ
∗
1 ψ2] + iαμ1p1 + iαμ2p2. (27)

The quantities ωm(pm) = ω0
m + Qpm and αωm(pm), m = 1,2

are, respectively, the nonlinear frequency and damping with Q

the nonlinearity coefficient, while μm is the chemical potential.
For simplicity, we do not write the explicit dependence of the

frequencies on the powers. The coupled equations of motion,
given by ψ̇m = i∂∗

mH + ξm, m = 1,2 read

ψ̇1 = (i − α)(ω1ψ1 + A12ψ2) + αμ1ψ1 + ξ1, (28)

ψ̇2 = (i − α)(ω2ψ2 + A21ψ1) + αμ2ψ2 + ξ2. (29)

From the previous section, one has the following expressions
for particle and energy currents:

j
p

12 = 2Im〈A12ψ
∗
1 ψ2〉, (30)

jE
12 = 2Re〈A12ψ

∗
1 ψ̇2〉. (31)

When the two reservoirs have different temperatures and/or
chemical potentials or an asymmetric coupling, the system
reaches a nonequilibrium steady state where the currents
are constant. Thermal equilibrium, which corresponds to the
case where the currents are zero, is obtained where both
baths have the same temperature and chemical potentials and
the coupling is symmetric, A12 = A21 ≡ A. Note that if the
coupling is symmetric, one has j

p/E

12 = −j
p/E

21 . However, for
an asymmetric coupling, those currents differ and transport is
described by the net currents j

p/E
net = j

p/E

12 − j
p/E

21 .
As discussed previously, the I and R components of the

thermodynamical forces F
I/R
m = i∂∗

mHI/R are the ones that
change (respectively, do not change) sign on the time-reversal
operation HI/R(t) → HI/R∗(−t). To separate the Hamiltonian
in I/R parts, it is convenient to split the coupling between the
oscillators as A = B + C, respectively, into Hermitian and
anti-Hermitian parts. A straightforward calculation gives

HI = −iα(ω1p1 + ω2p2 + μ1p1 + μ2p2)

− iα(B12ψ
∗
1 ψ2 + B21ψ1ψ

∗
2 )

+C12ψ
∗
1 ψ2 + C21ψ1ψ

∗
2 , (32)

HR = ω1p1 + ω2p2 + B12ψ
∗
1 ψ2 + B21ψ1ψ

∗
2

− iα(C12ψ
∗
1 ψ2 + C21ψ1ψ

∗
2 ), (33)

and the thermodynamical forces read

F I
1 = −α(μ1ψ1 + ω1ψ1 + B12ψ2) − iC12ψ2, (34)

FR
1 = −i(ω1ψ1 + B12ψ2) − αC12ψ2. (35)

Note that one has the same decomposition if the coupling
matrix A is real, but in this case B and C are, respectively,
its symmetric and antisymmetric components. One can see
here that the presence of anti-Hermitian (or antisymmetric)
components adds extra terms in both the irreversible and
reversible forces.

Following Eq. (13), the entropy production for the dimer
finally reads:

� = 2

〈∣∣F I
1

∣∣2〉
αT1

+ 2

〈∣∣F I
2

∣∣2〉
αT2

+ 2Re
〈
∂1F

I
1

〉 + 2Re
〈
∂2F

I
2

〉
, (36)

with ∂mFm = −α(μm + ωm).
We turn now to numerical simulations of Eqs. (28) and (29).

In the following, the parameters α = 0.02, ω0
1 = ω0

2 = 1 were
used. At first, we have calculated the observables for a system
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FIG. 3. DNLS dimer: Time-averaged observables as a function
of �T = T1 − T2. Panel (a) shows the entropy flow and panel (b)
the power difference �p = p1 − p2, while panels (c) and (d) display,
respectively, particle and energy currents. The solid lines are guides
to the eye, while the dashed line in panel (b) is a linear fit. Equations
(28) and (29) have been integrated numerically using a fourth-order
Runge-Kutta algorithm. The integration has been performed for 4 ×
106 steps, with a time step of 10−3 model units. The observables
where time averaged and then ensemble averaged on 64 different
realizations of the thermal field.

with symmetric coupling A12 = A21 ≡ A = 0.1, keeping T1 =
0.2 and varying T2 between 0.2 and 2.7 model units. Figure 3
shows the observables as a function of �T = T1 − T2. One
can see that both the entropy production and the currents
increase linearly at low temperature and then saturate. This
behavior is similar to what has been observed in several
systems previously studied, such as the spin-caloritronics
diode and artificial spin chains [8,36,39,40]. It is due to
the fact that at increasing temperature, thermal fluctuation
hinders synchronization between the oscillators thus reducing
the currents.

FIG. 4. Time-averaged observables computed as a function of
the chemical potential difference �μ = μ1 − μ2. Panels (a) and (b)
show, respectively, the entropy flow and the power difference �p =
p1 − p2, while panels (c) and (d) display, respectively, the particle
and energy currents. Dashed lines in panels (a) and (b) are quadratic
fits, and dashed lines in panels (c) and (d) are linear fits.

FIG. 5. Time averaged observable at constant temperature, com-
puted as a function of the coupling difference �A = A12 − A21,
keeping A21 = 0.1 fixed and increasing A12. Panels (a) and (b)
show, respectively, the entropy flow and the power difference �p =
p1 − p2, while panels (c) and (d) display, respectively, the particle
and energy currents. The dashed line in panel (a) is a quadratic fit,
and the dashed lines in panels (b), (c), and (d) are linear fits.

The power difference �p = p1 − p2 decrease linearly as
a function of �T , since p1 remains constant and p2 is
proportional to the temperature T2.

Next, we focus on the effect of chemical potential difference
on transport. In Fig. 4 the observables as a function of
�μ = μ1 − μ2 are reported. The simulations were performed
keeping T1 = T2 = 0.1 and μ2 = 0.01 fixed and varying μ1

between 0.01 and 0.05. One can observe that both � and
�p grow quadratically, while the currents increase linearly
as a function of �μ. Note in particular that no saturation is
observed in this case.

Finally, let us discuss the case in which the model is brought
outside equilibrium by an asymmetric coupling. Figure 5
displays the observables at constant temperature T = 0.2 as a
function of the asymmetry �A = A12 − A21 of the coupling.
One can see in Fig. 5(a) that the entropy flow increases
quadratically with the coupling, while the other observables are
linear in �A. Note also that the observables, and in particular
the entropy production and the energy current, are much
larger than in the case of symmetric coupling and temperature
difference, showing that the asymmetric coupling is a very
efficient means to drive the system out of equilibrium.

VI. CONCLUSIONS

In summary, we considered assembly of coupled nonlinear
oscillators coupled to Langevin baths. Within the ST approach
we compute explicit expressions for the entropy production
rate and demonstrated their concrete use for specific model
cases: the DNLS chain and dimer. In the case of the chain, we
showed how the approach to the steady state can be studied
by monitoring �. For the dimer, we emphasized the role of
asymmetry in the coupling as a means to effectively drive
the system out of equilibrium. The asymmetry reflects the
presence of anti-Hermitian components in the Hamiltonian.

The role of non-Hermitian Hamiltonians in classical and
quantum oscillators has been long investigated [26]. Recently,
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the differences between the Lindblad and non-Hermitian
formulation of open quantum systems have been clarified [46].
The present work can serve to elucidate how anti-Hermitian
components contribute to drive out of equilibrium this kind of
system. Generalizing these results to the case of multiplicative
noise should allow us to treat genuinely quantum systems and
provide a connection with the formalism of quantum state
diffusion equations [47].

The importance of the dimer is that it is the simplest
object that can be investigated, and yet it exhibits a rich
dynamics due to the fact that it has two conserved quantities
with associated currents. In magnetic system and in particular
in spin valve structures, the dipolar interaction between
layers introduces naturally an asymmetric coupling [48], and
further investigation is needed to understand coupled transport
in those systems. Most of the times these setups can be
described by simple dimer models as the one treated in this
paper [7].

Generally speaking, the off-equilibrium observables are
of importance to quantify irreversibility in a multitude of
physical systems. Possible applications include the description

of transport in mechanical oscillators [25], synthetic gauge
fields [23], and topological insulators [24]. Similar expression
for entropy productions have also been obtained in the context
of granular media [49].

We remark that the role of asymmetric coupling in the
dynamics of oscillator network has attracted a certain attention
in recent years, especially in connection with synchronisation
phenomena and the dynamics of neural network [50–54]. Our
work moves a step forward by addressing the off-equilibrium
thermodynamics of those type of systems using a very general
approach.

We mention also that a possible mechanism to create
an asymmetric or complex coupling consists in forcing
parametrically the coupled oscillators in such a way that the
forcing has a fixed phase.
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