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Time-delayed feedback control of diffusion in random walkers
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Time delay in general leads to instability in some systems, while specific feedback with delay can control
fluctuated motion in nonlinear deterministic systems to a stable state. In this paper, we consider a stochastic
process, i.e., a random walk, and observe its diffusion phenomenon with time-delayed feedback. As a result,
the diffusion coefficient decreases with increasing delay time. We analytically illustrate this suppression of
diffusion by using stochastic delay differential equations and justify the feasibility of this suppression by applying
time-delayed feedback to a molecular dynamics model.
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I. INTRODUCTION

Diffusion phenomena are ubiquitous in nature, e.g., in
Brownian motion [1], biological membranes [2,3], fluid
systems [4], engineering systems [5], material science [6], and
so on. These diffusion phenomena are sources of noise and are
unavoidable in experimental systems [7,8]. Noise can prevent
the precise manipulation of small scale systems. However, it
can also be helpful in engineering a system by using physical
phenomena such as logical stochastic resonance, where a
certain amount of noise is required for logical operations
[9,10]. In both cases, it is important to control noise in terms of
the variance of stochastic processes, because noise is normally
adjusted according to its strength. If the variance of noise is
controlled, it would be useful for various kinds of applications.

When we consider systems with noise from a theoretical
viewpoint, mathematical models are convenient, because they
can numerically simulate an experiment. A mathematical
model of Brownian motion is a typical example of a noisy
system, which can be modeled by a simple stochastic descrip-
tion, such as the Langevin equation. For practical purposes, it
is important to consider how diffusion can be suppressed in the
Brownian motion model. The most commonly used approach
for suppressing diffusion is to decrease the temperature of
the whole system, resulting in a suppression of thermal
fluctuations, namely, the relation D ∼ T, where D is the
diffusion coefficient and T is the temperature. However, the
temperature is decreased for all elements in the system and is
not selective for specific targets. Therefore, such a control is
expensive. We introduce an alternative method that can control
the diffusion processes of one particle in Brownian motion.

In terms of cooling nanomicroscopic systems, a math-
ematical model of feedback cooling in electromechanical
oscillators [11] and a generalized model of Langevin dynamics
with non-Markovian feedback [12] have been explored. In
these systems, time delay in the feedback loop is inevitable
due to a time lag between the sensor and the manipulator.
Furthermore, in nonlinear systems, a time-delayed feedback
control (DFC) method has been proposed to stabilize regular
motion in fluctuated dynamics [13]. In general, time delay
leads to system instability. However, DFC proves that time
delay can stabilize deterministic systems. On the other hand, in

stochastic systems, e.g., a random walk model with time delay,
destabilization has been observed as a result of delay [14]. In
addition, a coherent noise-induced oscillation is observed in
the van der Pol system with delayed feedback [15]. Thus, we
consider whether DFC can control the amount of diffusion in
a random walk.

In this paper, we focus on the stochastic diffusion of random
walks, corresponding to Brownian motion in discrete time, and
apply the DFC method to control the extent of this diffusion.
First, we observe diffusion processes in a one-dimensional
(1D) random walk model, controlled by the DFC method,
and analyze control in terms of stochastic delay differential
equations. Second, we apply the method to a molecular
dynamics model of two flocculated particles with thermal
fluctuations that interact via the Lennard-Jones (LJ) potential.
We numerically confirm that it is possible to suppress diffusion
in the molecular dynamics model by the DFC method. It is
noticed that, in conventional control theory, a single path is
controlled to a certain state. In contrast, the purpose of this
study is to statistically control stochastic processes.

II. DELAYED FEEDBACK CONTROL OF RANDOM WALK

In general, nonlinear functions with neutral fixed points
show noise-induced diffusion phenomena. If these functions
are linearized around the neutral fixed points, the following
random walk model can be derived,

xn+1 = xn + Dξn, (1)

where xn is a state variable for discrete time n, ξn is an m-
dimensional random variable following the normal distribution
N (0,1) for each entry, and D is an amplitude vector of noise.
Without loss of generality, we consider a 1D case, where
m = 1.

In order to control the random walk in xn, we introduce a
time-delayed feedback control method proposed by Pyragas
[13] that is defined by the expression

xn+1 = xn + Dξn − K(xn − xn−l). (2)

In Eq. (2), the DFC is applied to the model (1), where K is
feedback gain with a value of 0 � K < 1 and l is the delay
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time. Any nonlinear function with noise can be linearized
around its stable fixed point and described in the form of (2)
as follows.

We consider the system

xn+1 = f (xn,a), (3)

where the map f is nonlinear and has a stable or neutrally
stable fixed point. a is a parameter. We assume that the fixed
point is denoted by x̃, and linearize f around x̃. This results in

xn+1 = f (x̃) + f ′(x̃)(xn − x̃), (4)

which can be described as

xn+1 = f ′(x̃)xn + [1 − f ′(x̃)]x̃, (5)

where we use the relation x̃ = f (x̃). For this equation, if we
denote K = 1 − f ′(x̃),

xn+1 = (1 − K)xn + Kx̃. (6)

Regarding this linear map, we add the noise term and rewrite
(6) as

xn+1 = xn + Dξn − K(xn − x̃). (7)

The dynamics of the system (7) is simple, such that a trajectory
fluctuates around the fixed point x̃. It is possible to suppress
diffusion of a random walk by the form of (7), in which the
diffusion coefficient is zero. On the other hand, in order to
control a nonzero diffusion coefficient, we add the control
term K(xn−l − x̃). Consequently, the system is in the form of
DFC, namely, Eq. (2).

It should be noted that this discussion is relevant for systems
with only stable fixed points and thus with no diffusion
observed. By the procedure above, such stable systems are
converted to systems showing diffusion because of the neutral
fixed points.

Figure 1 shows the time series of the (2) system dynamics.
It is observed that a longer l suppresses the diffusion of a
random walk. This result is counterintuitive, since a long time
delay should make a system unstable. However, in the system
(2), the opposite is observed. Thus, we quantify the diffusion
decay with respect to l. In Fig. 2, the diffusion coefficients D,
defined by limT →T∞〈(XT − X0)2〉/T , are shown as a function
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FIG. 1. Suppression of diffusion in random walks of the system
(2). The red solid and green dashed lines represent when l = 2 and
l = 20, respectively. D = 0.001.
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FIG. 2. D with respect to l, averaged over 1000 realizations. The
dashed line is proportional to 1/(1 + Kl)2. K = 0.5.

of l. The result is averaged over 1000 realizations. We take
T∞ = 100 000. It is evident that D decays by l−2. The decay
order is illustrated in the following.

We consider a continuous time (2) system,

ẏt = Dξt − K(yt − yt−τ ), (8)

where y is a real variable and t and t − τ are continuous
time points. For this system, let � = τ/ l, l ∈ {2,3, . . .}.
Then, we define tn as n�, that is, nτ

l
, where n ∈ {−l, − l +

1, . . . ,0,1, . . .}. If we define Yn = ytn and ξn = ξtn , Eq. (8) can
be rewritten as Yn+1 = Yn + D�ξn − �K(Yn − Yn−l). This
form is equivalent to Eq. (2).

We consider the continuous time system (8) using stochastic
delay differential equations. In the standard setting of stochas-
tic calculus, Eq. (8) is now redefined as

dyt = K(yt−τ − yt )dt + Ddwt, t � 0, (9)

where {wt }0�t�T is a standard Wiener process on a filtered
probability space (�,F ,{Ft },P ), and ys for s ∈ [τ,0] is
assumed to be a given F0-measurable random variable Zs .
It should be noted that Ft contains all information for the
realization of ws and ys for s � t . Thus, given Ft , all of these
variables can be all treated as constants. In the following, the
method for determining the diffusion coefficient D is briefly
described. For details, see the Appendix.

Equation (9) has the unique solution of

yt = yZ
t + D

∫ t

0
y0

t−sdws, 0 � t,

yt = Zt, − τ � t � 0, (10)

where

yZ
t : = y0

t Z0 + K

∫ 0

−τ

y0
t−s−τZsds,

y0
t : =

	t/τ
∑
n=0

(
Kn

n!

)
(t − nτ )n exp[−K(t − nτ )]. (11)

(See Ref. [16].) It should be noted that y0
t is a deterministic,

rather than a stochastic, process.
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Then, we can express D in terms of y0
t as

D = lim
T →∞

D2

T

∫ T

0

(
y0

s

)2
ds. (12)

Moreover, we examined how the function y0
t behaves in our

numerical computations of Eq. (11), and found that it seemed
to converge to a constant of ȳ ∝ 1

1+Kτ
, as described in the

Appendix and in Ref. [17]. As a consequence, D is given by

D = (Dȳ)2.

In addition, it should be noted that this ȳ and D decrease with
increasing τ , which is consistent with Fig. 2.

Here, the characteristics of our model should be stressed.
In Ref. [16], the equivalent conditions to stationary solutions
of y = {yt } are given (see the definition of the stationarity in
the Appendix), which are not met in our system (10). In the
case of the stationary y, its diffusion coefficient D goes to zero
as T → ∞.

This can be seen in another intuitive way. If a limiting
process of our model (9) is considered with τ → 0,

dy
↓
t = Ddwt .

It should be noted that this is just a scaled random walk,
which still includes D = D2. On the other hand, D = 0, under
another limiting process with τ → ∞,

dy
↑
t = K(y−∞ − y

↑
t )dt + Ddwt,

where y−∞ := limt→−∞ yt is given as an initial condition and
as a constant target control level.

As derived before, in our model, the diffusion coefficient
is given by D = D2( 1

1+Kτ
)
2
. Thus, any level of D between

(0,D2] can be achieved with an appropriate choice of K

and τ .

III. APPLICATION TO MOLECULAR DYNAMICS

In the following, we apply the control scheme which is
shown above to a molecular dynamics model.

We consider the dynamics of particles with noise, and
attractive and dissipative forces in a 1D space,

dxi

dt
= vi, (13)

dvi

dt
= Pi

({xj }Nj=1

) + Di

({vj }Nj=1

) + Rξ, (14)

where xi and vi are the position and velocity of the ith particle,
ξ is noise from the Gaussian distribution with intensity R, and
N is the number of particles. For simplicity, we assume that
the mass of the ith particles, mi = 1. The first term in Eq. (14)
is a conservative force derived as a derivative of the potential
U written as

Pi = −dU
({xj }Nj=1

)
dxi

, (15)

U
({xj }Nj=1

) =
N∑

i=1

N∑
j=i+1

Ṽ (xij ), (16)
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FIG. 3. Time evolutions of the positions of two particles without
control inputs. Particles flocculate because of the interacting force,
and move together diffusively.

where Ṽ is a central force potential, and xij = xi − xj . In
this paper, we use the Lennard-Jones potential as the central
potential as given by

Ṽ (x) = ε

[(σ

x

)12
−

(σ

x

)6
]
. (17)

The second term in Eq. (14) represents a dissipative force,

Di = −γ vi, (18)

where γ is a coefficient of drag. We set σ = 2−1/6 so that the
LJ potential Ṽ (x) has a minimum at x = 1 and ε = 1.

We calculate the dynamics of two particles (N = 2) with
initial conditions x1 = 0.8, v1 = 0.0, x2 = 5.8, and v2 = 0.0.
It should be noted that other values of the initial conditions
provide similar results below. In this case, the particles
flocculate because of the attracting force from the LJ potential,
and move together diffusively (see Fig. 3).

In this application, we control fluctuations in the system by
using the time-delayed feedback control method. Velocities
fluctuate randomly around 0 because of the Gaussian noise
and are stable at 0 without noise. Thus, the dynamics of the
velocities is the same as the Gaussian noise. This Gaussian
noiselike behavior makes the dynamics of the positions
analogous to a simple random walk, dxi

dt
∼ ξ . Thus, control

inputs are given only according to the dynamics of the
positions, which are driven by noise originally from the
velocities. The control scheme for the molecular dynamics
model is written as

dxi

dt
= vi − K[xi − xi(t − τ )], (19)

dvi

dt
= Pi

({xj }Nj=1

) + Di

({vj }Nj=1

) + Rξ. (20)

Control signals are injected when the particles are flocculated.
Figure 4(a) shows the dynamics of the center positions of two
particles (N = 2) without control (dotted line) and with control
with τ = 10 (solid line). In the case of three particles (N = 3),
the dynamics of the center positions without control and with
control is shown in Fig. 4(b). The movement of the flocculated
particles is diffusive because of noise. These figures show that
the diffusion of the flocculated particles is suppressed by our
control method.
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FIG. 4. Time evolutions of the center position of (a) two particles
and (b) three particles. The green and the red lines are the time
evolutions without control inputs and with control input (τ = 10),
respectively.

Figure 5 shows the dependence of the D with τ . As is the
case with the simple random walk, the D decreases with a
change in τ .

IV. DISCUSSION

In this paper, we have applied time-delayed feedback
control to a 1D random walk model. The interaction between
noise and time delay is nontrivial. We have observed that
the diffusion coefficient decreases with increasing delay
time. Thus, we have analytically explained the decay of the
diffusion coefficient by solving the stochastic delay differential
equations derived from the controlled system. In principle, it
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FIG. 5. The diffusion coefficient D of the molecular dynamics
model with two particles as a function of τ .

is possible to control the amount of diffusion from zero to a
specific value.

We have applied the proposed method to a molecular
dynamics model described by continuous time differential
equations. We have numerically demonstrated the control of
two flocculated particles with the LJ potential. Consequently,
diffusion generated by noise was successfully controlled and
decay of the diffusion coefficient was observed in this system.

The proposed method does not change the physical proper-
ties of the system in comparison to the conventional technique
of reducing diffusion, i.e., decreasing temperature, which can
change the thermophysical properties. Moreover, the previous
analysis of delayed random walks is based on the assumption
of stationarity [14,18]. In contrast, our method is not stationary
and a conventional analysis by stochastic delay differential
equations in Ref. [16] cannot be applied. In addition to such
theoretical findings, we remark that the method can be applied
to nanomicroscopic resonators for reducing thermal noise. In
those experimental systems, time delay cannot be avoided or
shortened less than some length [11,12]. However, making a
longer time delay can be easy so that our method is effective
in the systems.

Other types of time-delayed feedback control are also feasi-
ble. For example, we have proposed the adaptive time-delayed
system as follows [19], xn+1 = xn + Dξn − 1/xn−τ (xn −
xn−τ ). This form of adaptive time-delayed feedback control
shows almost similar performance to the original system (2)
in terms of control of the diffusion coefficient. The difference
between the original and the adaptive control is in determining
K or determining the initial values for the system. We can
apply the adaptive control scheme to real world systems
depending on the availability of the control parameters. If
we cannot access K , adaptive feedback gain 1/xn−τ can be
alternatively used.
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APPENDIX : SOLVING SDDE

1. Derivation of the diffusion coefficient D
Here, we examine the following SDE with delay (SDDE),

dy
(τ )
t = K

(
y

(τ )
t−τ − y

(τ )
t

)
dt + Ddwt, t � 0, (A1)

where {wt }0�t�T is a standard Wiener process on a filtered
probability space (�,F ,{Ft },P ), K is a positive constant
representing the speed of “mean reversion” to a delayed control
y

(τ )
t−τ , D is a positive constant for a volatility of y

(τ )
t , and τ is

the delay interval for the control. y(τ )
s for s ∈ [τ,0] is assumed

to be a given F0-measurable random variable Zs .

012148-4



TIME-DELAYED FEEDBACK CONTROL OF DIFFUSION IN . . . PHYSICAL REVIEW E 96, 012148 (2017)

In the remainder of this section, we derive the concrete
expression for its diffusion coefficients

D := lim
T →∞

V
[
y

(τ )
T

]
T

,

where V [x] is a variance of x. Owing to the work by Kuchler
and Mensch [16], we can construct the unique solution to the
SDDE (A1) as

y
(τ )
t = yZ

t + D

∫ t

0
y0

t−sdws, 0 � t,

y
(τ )
t = Zt, − τ � t � 0, (A2)

where

yZ
t : = y0

t Z0 + K

∫ 0

−τ

y0
t−s−τZsds,

y0
t : =

	t/τ
∑
n=0

(
Kn

n!

)
(t − nτ )n exp[−K(t − nτ )]. (A3)

(For details, see Proposition 2.2 in Ref. [16].)
It should be stressed that y0

t is a deterministic, nonstochastic
process, and the first term on the right-hand side of (A2), that
is, yZ

t , is a random process whose outcomes are available
with the filtration F0, the information at t = 0. In contrast,
the second term in (A2) is independent from F0 and hence
from yZ

t .
With this solution to y(τ ), we first compute a conditional

variance of yτ
T on the initial filtration F0.

Proposition 1. The expectation and variance of y
(τ )
T condi-

tional on F0 is given by

E
[
y

(τ )
T

∣∣F0
] = yZ

T

and

V
[
y

(τ )
T

∣∣F0
] = V

[
yZ

T

∣∣F0
] + V

[
D

∫ T

0
y0

T −sdws |F0

]

= D2
∫ T

0

(
y0

T −s

)2
ds. (A4)

Proof. The expectation is directly derived from (A2) and the
martingale property of stochastic integrals. For the variance,
the first line is derived from the independence between yZ

T

and
∫ T

0 y0
T −sdws , and then is derived from Itô’s isometry and

availability of yZ
T with F0.

Then, a total (unconditional) variance of y
(τ )
T without

the information about the outcomes of Zs for s � 0 is
computed as

V
[
y

(τ )
T

] = E
[(

y
(τ )
T

)2] − E
[
y

(τ )
T

]2

= E
[
E

[(
y

(τ )
T

)2∣∣F0
]] − E

[
E

[
y

(τ )
T

∣∣F0
]]2

= E
[
V

[
y

(τ )
T

∣∣F0
] + E

[
y

(τ )
T

∣∣F0
]2] − E

[
E

[
y

(τ )
T

∣∣F0
]]2

= E

[
D2

∫ T

0

(
y0

T −s

)2
ds + (

yZ
T

)2
]

− E
[
yZ

T

]2

= D2
∫ T

0

(
y0

T −s

)2
ds + E

[(
yZ

T

)2] − E
[
yZ

T

]2
. (A5)

First, since y0
t is a deterministic function of t , as mentioned

earlier, we have

E
[
yZ

T

] = y0
T E[Z0] + K

∫ 0

−τ

y0
T −s−τE[Zs]ds.

As described later, the function y0
t seems to converge to a

certain level ȳ; thus, the last term on the right-hand side
of Eq. (A5) actually contributes nothing to the diffusion
coefficient D because of the division by T .

Similarly, the second term on the right-hand side of
Eq. (A5), that is,

E
[(

yZ
T

)2] = E

[(
y0

T Z0
)2 + 2

(
y0

T Z0
)(

K

∫ 0

−τ

y0
T −s−τZsds

)

+
(

K

∫ 0

−τ

y0
T −s−τZsds

)2
]

= (
y0

T

)2
E

[
Z2

0

] + 2Ky0
T E

[
Z0

∫ 0

−τ

y0
T −s−τZsds

]

+K2E

[(∫ 0

−τ

y0
T −s−τZsds

)2
]
, (A6)

again has no contribution to D because it disappears when T

becomes infinite.
Thus, we can conclude that the diffusion coefficient D of

y(τ ) is given by

D = lim
T →∞

1

T
D2

∫ T

0

(
y0

T −s

)2
ds,

that is, an “average over time” of (y0
T −s)

2
. From this equation,

we can estimate that a change in D(τ )
y due to a change of

τ is strongly dependent on the behavior of the fundamental
solution y0

t when τ moves.

2. Behavior of y0
t

In this section, we examine the behavior of y0
t , which plays a

very important role in the behavior of D.
First, we mention the relation between the behavior and

stationarity of y(τ ). In Ref. [16], the authors proved several
equivalent conditions for the stationarity of the solution to a
SDDE, for example,

dxt = (axt + bxt−τ )dt + Ddwt,

which is a generalization of our model (A2) (in our model,
a = −K and b = K). One of those conditions is a negativity
of v0(a,b,τ ), and

v0(a,b,τ ) = max{Re(λ); h(λ) = 0},
where h(λ) is a characteristic function given by

h(λ) = λ − a − b exp(−λτ ),

and Re(x) is a real part of x ∈ C.
Unfortunately, it is easily shown that v0(−K,K,τ ) = 0,

indicating a nonstationary solution in our model.
Proposition 2. Considering our model (A2) with a = −K ,

and b = K , v0(−K,K,τ ) = 0.
Proof. First, it is obvious that λ = 0 solves h(λ) = 0.
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Second, assume a characteristic root of h(λ) = 0 with the
form z = ε + iβ, where ε > 0 and i2 = −1. Then,

Re[h(z)] = Re{(ε + iβ) + K − K exp[−(ε + iβ)τ ]}
= ε + K − K exp(−ετ ) cos βτ

� ε + K[1 − exp(−ετ )] > 0.

There exists a contradiction to the assumption that z is
the root of h(z) = 0, leading us to the conclusion that
v0(−K,K,τ ) = 0.

Moreover, in Proposition 3.2 in Ref. [16], y0
t , which is the

fundamental solution to (A3), was proved to be strictly positive
on (0,∞] and

lim
t→∞ t−1 ln y0

t = v0(−K,K,τ ).

Thus, the aforementioned findings show that our y0
t does not

grow positively or negatively faster than t .

Moreover, although not yet proved in a rigorous man-
ner, with our several numerical computations of the con-
structive definition (A3), y0

t is confirmed to almost con-
verge to the constant ȳ = 1

1+Kτ
, which is decaying in τ .

The rigorous proof of the relation ȳ = 1
1+Kτ

should be
explored by comparing the coefficients of the expanded

1
1+Kτ

in a series with those of Eq. (11) at t = Nτ ,
N = {1,2,3, . . .}.

Thus, D is eventually given by

D = lim
T →∞

1

T
D2

∫ T

0

(
y0

T −s

)
ds = (Dȳ)2,

with the same decaying pattern, which is consistent with
Fig. 2.

[1] A. Einstein, Ann. Phys. 322, 549 (1905).
[2] Z. Siwy and A. Fulinski, Phys. Rev. Lett. 89, 198103 (2002).
[3] D. Arcizet, B. Meier, E. Sackmann, J. O. Rädler, and D.

Heinrich, Phys. Rev. Lett. 101, 248103 (2008).
[4] B. I. Shraiman and E. D. Siggia, Nature (London) 405, 639

(2000).
[5] J. J. Collins and C. J. De Luca, Exp. Brain Res. 95, 308 (1993).
[6] T. Fujita et al., Nano Lett. 14, 1172 (2014).
[7] V. Tabard-Cossa et al., Nanotechnology 18, 305505 (2007).
[8] H. J. Butt and M. Jaschke, Nanotechnology 6, 1 (1995).
[9] K. Murali, S. Sinha, W. L. Ditto, and A. R. Bulsara, Phys. Rev.

Lett. 102, 104101 (2009).
[10] M. Igarashi, C.-H. Huang, T. Morie, and S. Samukawa, Appl.

Phys. Express 3, 085202 (2010).
[11] M. Bonaldi, L. Conti, P. De Gregorio, L. Rondoni, G. Vedovato,

A. Vinante, M. Bignotto, M. Cerdonio, P. Falferi, N. Liguori,

S. Longo, R. Mezzena, A. Ortolan, G. A. Prodi, F. Salemi,
L. Taffarello, S. Vitale, and J.-P. Zendri, Phys. Rev. Lett. 103,
010601 (2009).

[12] T. Munakata and M. L. Rosinberg, Phys. Rev. Lett. 112, 180601
(2014).

[13] K. Pyragas, Phys. Lett. A 170, 421 (1992).
[14] T. Ohira and J. G. Milton, Phys. Rev. E 52, 3277

(1995).
[15] A. G. Balanov, N. B. Janson, and E. Schöll, Physica D 199, 1

(2004).
[16] U. Küchler and B. Mensch, Stochastics Stochastic Rep. 40, 23

(1992).
[17] M. U. Kobayashi et al. (unpublished).
[18] T. Ohira and T. Yamane, Phys. Rev. E 61, 1247 (2000).
[19] H. Ando and M. U. Kobayashi, IFAC-PapersOnLine 48, 262

(2015).

012148-6

https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1103/PhysRevLett.89.198103
https://doi.org/10.1103/PhysRevLett.89.198103
https://doi.org/10.1103/PhysRevLett.89.198103
https://doi.org/10.1103/PhysRevLett.89.198103
https://doi.org/10.1103/PhysRevLett.101.248103
https://doi.org/10.1103/PhysRevLett.101.248103
https://doi.org/10.1103/PhysRevLett.101.248103
https://doi.org/10.1103/PhysRevLett.101.248103
https://doi.org/10.1038/35015000
https://doi.org/10.1038/35015000
https://doi.org/10.1038/35015000
https://doi.org/10.1038/35015000
https://doi.org/10.1007/BF00229788
https://doi.org/10.1007/BF00229788
https://doi.org/10.1007/BF00229788
https://doi.org/10.1007/BF00229788
https://doi.org/10.1021/nl403895s
https://doi.org/10.1021/nl403895s
https://doi.org/10.1021/nl403895s
https://doi.org/10.1021/nl403895s
https://doi.org/10.1088/0957-4484/18/30/305505
https://doi.org/10.1088/0957-4484/18/30/305505
https://doi.org/10.1088/0957-4484/18/30/305505
https://doi.org/10.1088/0957-4484/18/30/305505
https://doi.org/10.1088/0957-4484/6/1/001
https://doi.org/10.1088/0957-4484/6/1/001
https://doi.org/10.1088/0957-4484/6/1/001
https://doi.org/10.1088/0957-4484/6/1/001
https://doi.org/10.1103/PhysRevLett.102.104101
https://doi.org/10.1103/PhysRevLett.102.104101
https://doi.org/10.1103/PhysRevLett.102.104101
https://doi.org/10.1103/PhysRevLett.102.104101
https://doi.org/10.1143/APEX.3.085202
https://doi.org/10.1143/APEX.3.085202
https://doi.org/10.1143/APEX.3.085202
https://doi.org/10.1143/APEX.3.085202
https://doi.org/10.1103/PhysRevLett.103.010601
https://doi.org/10.1103/PhysRevLett.103.010601
https://doi.org/10.1103/PhysRevLett.103.010601
https://doi.org/10.1103/PhysRevLett.103.010601
https://doi.org/10.1103/PhysRevLett.112.180601
https://doi.org/10.1103/PhysRevLett.112.180601
https://doi.org/10.1103/PhysRevLett.112.180601
https://doi.org/10.1103/PhysRevLett.112.180601
https://doi.org/10.1016/0375-9601(92)90745-8
https://doi.org/10.1016/0375-9601(92)90745-8
https://doi.org/10.1016/0375-9601(92)90745-8
https://doi.org/10.1016/0375-9601(92)90745-8
https://doi.org/10.1103/PhysRevE.52.3277
https://doi.org/10.1103/PhysRevE.52.3277
https://doi.org/10.1103/PhysRevE.52.3277
https://doi.org/10.1103/PhysRevE.52.3277
https://doi.org/10.1016/j.physd.2004.05.008
https://doi.org/10.1016/j.physd.2004.05.008
https://doi.org/10.1016/j.physd.2004.05.008
https://doi.org/10.1016/j.physd.2004.05.008
https://doi.org/10.1080/17442509208833780
https://doi.org/10.1080/17442509208833780
https://doi.org/10.1080/17442509208833780
https://doi.org/10.1080/17442509208833780
https://doi.org/10.1103/PhysRevE.61.1247
https://doi.org/10.1103/PhysRevE.61.1247
https://doi.org/10.1103/PhysRevE.61.1247
https://doi.org/10.1103/PhysRevE.61.1247
https://doi.org/10.1016/j.ifacol.2015.11.047
https://doi.org/10.1016/j.ifacol.2015.11.047
https://doi.org/10.1016/j.ifacol.2015.11.047
https://doi.org/10.1016/j.ifacol.2015.11.047



