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We study critical and magnetic properties of a bilayer Ising system consisting of two triangular planes A
and B, with the antiferromagnetic (AF) coupling JA and the ferromagnetic (FM) one JB for the respective
layers, which are coupled by the interlayer interaction JAB by using Monte Carlo simulations. When JA

and JB are of the same order, the unfrustrated FM plane orders first at a high temperature Tc1 ∼ JB. The
spontaneous FM order then exerts influence on the other frustrated AF plane as an effective magnetic field, which
subsequently induces a ferrimagnetic order in this plane at low temperatures below Tc2. When short-range
order is developed in the AF plane while the influence of the FM plane is still small, there appears a
preemptive Berezinskii-Kosterlitz-Thouless–type pseudocritical crossover regime just above the ferrimagnetic
phase transition point, where the short-distance behavior up to a rather large length scale exponentially diverging
in ∝JA/T is controlled by a line of Gaussian fixed points at T = 0. In the crossover region, a continuous variation
in the effective critical exponent 4

9 � ηeff � 1
2 is observed. The phase diagram by changing the ratio JA/JB is also

investigated.
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I. INTRODUCTION

Magnetism in thin films (i.e., bilayers and multilayers) is a
rapidly developing research field due to their novel magnetic
properties different from bulk materials as well as recent
advances in their fabrication and characterization techniques at
atomic scale [1–3]. This can lead to useful technological appli-
cations such as high-density magnetic recording and magnetic
sensors [4]. One of the main theoretical interests lies in the
possibility to study the crossover phenomena between two-
dimensional (2D) and three-dimensional (3D) systems [5,6].

A number of previous studies focused on magnetic prop-
erties of simple Ising bilayers formed by two ferromagnetic
(FM) layers coupled by an exchange interaction of varying
strength [7–16]. Such bilayers have been shown to undergo
phase transitions that belong to the 2D Ising universality
class and their critical temperature is controlled by the
shift exponent that depends on the interlayer to intralayer
coupling ratio. In a recent numerical work on the thin-film
Ising systems, composed of multiple layers, a systematic
continuous deviation has been reported not only for the critical
temperature, but also for the critical exponents, the latter
of which, however, could be more adequately regarded as
effective exponents, relative to their values for the single layer
system [17].

If the underlying lattice has frustrated in-plane interactions,
the corresponding stacked system can have more nontrivial
physics. It is well known that, in contrast to its ferromagnetic
counterpart, a 2D triangular-lattice Ising antiferromagnet
(TLIA) shows no long-range order (LRO) phase down to zero
temperature due to high geometrical frustration [18]. On the
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other hand, a 3D system obtained by stacking of individual
TLIA planes on top of each other has been confirmed to display
LRO at finite temperatures through the order-by-disorder
mechanism [19–21]. Generally, frustrated spin systems can
display remarkable and often unexpected properties (see, e.g.,
Ref. [22] for a recent review). Peculiar critical behavior has
been reported in the frustrated thin-film spin systems with
Ising-type anisotropy [23,24], showing crossover from the
first- to second-order transition and two phase transitions re-
lated to disorderings of surface and interior layers, respectively.
More recently, it was found that the interplay between the
in-plane frustration and kink excitations fluctuating along the
out-of-plane direction can induce “stiffness from disorder”
phenomena in a layered system of a finite number of TLIA
planes [25].

Motivated by these studies, in this paper we consider a
bilayer system of classical Ising spins corresponding to a
heterostructure of two triangular planes, the spins within which
are coupled by antiferromagnetic (AF) interactions in one layer
and FM interactions in the other. The two planes are coupled
by the interlayer interaction, which we can assume either FM
or AFM without loss of generality. As discussed above, the
critical behavior of the individual planes is very different.
While the FM one displays a phase transition in the Ising
universality class to the FM LRO phase, the AF one shows
no LRO down to zero temperature due to high geometrical
frustration. A prior account of such a bilayer system has
been provided in Ref. [26], which pointed to the existence
of the ferrimagnetic (FR) LRO phase also in the AF plane,
induced by an effective field coming from the FM plane. In
this study we demonstrate that the competing ordering and
disordering tendencies enforced by the respective unfrustrated
and frustrated planes in the AF-FM bilayer result in rather
intricate critical and pseudocritical behaviors in the exchange
interaction parameter space.
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FIG. 1. (a) Structure of the bilayer triangular lattice. (b) The
investigated regions of the parameter space. The solid red line and the
dashed blue lines represent the case(s) with −JA = JB and −JA �= JB,
respectively.

II. MODEL AND SIMULATION DETAILS

A. Model

The Hamiltonian of the bilayer Ising system [Fig. 1(a)] is

H = −JA

∑
〈i∈A,j∈A〉

σiσj − JB

∑
〈k∈B,l∈B〉

σkσl

− JAB

∑
〈i∈A,k∈B〉

σiσk, (1)

where σi = ±1 is an Ising spin on the ith lattice site. The
first (second) sum runs over nearest neighbors (NN) within
the plane A (B), where JA < 0 and JB > 0, respectively, are
the AF and the FM interactions in each plane. The third sum
runs over NN between the planes A and B, coupled by the FM
interaction JAB > 0. In this work, we take JB + JAB as the unit
of energy, unless otherwise specified.

B. Parameter regime of our investigation

In the 2D parameter space (JA,JB,JAB) with JB + JAB

fixed, we select a couple of representative 1D cuts for our
investigation presented in Sec. IV. First, we will consider
the intraplane exchange interactions to have equal strengths
and the intraplane to interplane exchange interaction ratio will
vary from zero to infinity, i.e., −JA = JB = 1 − JAB ≡ J with
J ∈ [0,1]. This is a continuation of the previous investigation
of the same model presented in Ref. [26], where J = 0.5 was
assumed (i.e., −JA = JB = JAB). We will also consider more
general cases where JA and JB have different amplitudes,
taking (JB,JAB) = (0.4,0.6) and (0.1, 0.9) with varying JA as
our examples. These one-dimensional (1D) parametrizations
are illustrated in Fig. 1(b).

C. Simulation details

The model (1) is studied by Monte Carlo (MC) simulations
by using the standard Metropolis algorithm. We consider spin
systems with the total number of sites L × L × 2, with L =
24, 48, 72, 96, and 120, and apply periodic boundary conditions
in the in-plane directions. To evaluate various thermodynamic
quantities (see below), we typically consider 105 Monte Carlo
sweeps (MCS) for sampling after discarding 2 × 104 MCS for
thermalization. In order to shorten the thermalization period
at low temperatures, we start our simulation from a high
temperature in the paramagnetic region with a random spin
configuration and gradually decrease the temperature T with

τ

τ

FIG. 2. Integrated autocorrelation time τint,mo
near the low-

temperature phase transition in the AF layer for (JA, JB, JAB)
= (−0.4,0.4,0.6) with different lattice sizes L. The inset shows the
L dependence of the peak height showing a power-law behavior with
the estimated dynamic critical exponent z ≈ 2.3.

a small step (typically �T = 0.05 or 0.02, which is in units of
JB + JAB and the Boltzmann constant kB ≡ 1); the simulation
at the next lower temperature starts from the final configuration
obtained at the previous temperature.

In order to obtain the critical exponents, we perform a
finite-size scaling (FSS) analysis, in which we elaborate our
MC simulations with a larger number of MCS (107 MCS
for sampling and 2 × 106 MCS for thermalization where
the sampling is made every 10th MCS to reduce autocor-
relation effects). We also apply the reweighting techniques
[27] to examine the temperature dependence in detail. We
note that the autocorrelation is particularly enhanced near
the low-temperature phase transition in the frustrated AF
layer, and thus relatively long simulations are necessary to
obtain a reliable output. As shown in Fig. 2, the integrated
autocorrelation time τint,mo

for the FR order parameter mo of
the AF plane (see the definition below) follows τint,mo

∝ Lz

with z ≈ 2.3 and can be as large as the order of 102 MCS for
the largest lattice we studied. Our protocol for the FSS analysis
ensures that the data quality is good enough for assessing the
critical behavior at low temperatures. For reliable estimation
of statistical errors, we use the �-method [28].

D. Observables

We evaluate the following quantities, where 〈. . . 〉 denotes
thermal averaging. The internal energy per site is

E = 〈H〉
2L2

, (2)

and

C = 〈H2〉 − 〈H〉2

2L2T 2
(3)

is the specific heat per site. From the T dependence of the
internal energy, we can derive the entropy density by using the
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thermodynamic integration method [29] as

S(T ) = ln 2 + E(T )

T
+

∫ T

∞

E(T̃ )

T̃ 2
dT̃ . (4)

The magnetization per site in each plane is

mA(B) = 〈MA(B)〉
L2

= 1

L2

〈∣∣∣∣ ∑
i∈A(B)

σi

∣∣∣∣
〉
. (5)

We also define the three-sublattice FR order parameter within
the AF plane A as

mo = 〈Mo〉
L2

= 1√
6L2

〈
√

(O(1))2 + (O(2))2 + (O(3))2〉, (6)

with O(μ) = ∑
R φ

(μ)
R (μ = 1,2,3). Here, the summation runs

over the enlarged unit cell R comprising three spins in the
plane A and

φ
(1)
R = σR,1 − 1

2 (σR,2 + σR,3) (7)

is the FR local order parameter, where σR,μ (μ = 1,2,3) denote
the μth sublattice spin of the enlarged unit cell at R in the
plane A (φ(2)

R and φ
(3)
R are defined by cyclic permutation of the

indices). We will refer to φ
(1)
R simply as φR in what follows. In

addition, we define the Binder parameter associated with the
FR order parameter:

U4,o = 1 −
〈
m4

o

〉
3
〈
m2

o

〉2 . (8)

We also calculate several derivatives of Mx , x = A, B, and
o. First, the susceptibility per site χx , corresponding to the
parameter Mx , is

χx =
〈
M2

x

〉 − 〈Mx〉2

L2T
, (9)

and the derivative of 〈mx〉 with respect to 1/T and the
logarithmic derivatives of 〈mx〉 and 〈m2

x〉 with respect to the
same parameter are

d1/T mx = −T 2 ∂

∂T
〈mx〉 = 〈mxH〉 − 〈mx〉〈H〉, (10a)

d1/T ln mx = −T 2 ∂

∂T
ln〈mx〉 = 〈mxH〉

〈mx〉 − 〈H〉. (10b)

The specific heat C [Eq. (3)] and the derivatives of the order
parameters [Eqs. (9), (10a), and (10b)] are useful for determin-
ing transition points and their universality classes. In particular,
the extremum of each observableO as a function of T defines a
finite-size estimate of the transition temperature T O

max(L) (the
so-called L-dependent pseudotransition temperature), which
is known to converge into the transition temperature in the
thermodynamic limit. In the case of the second-order phase
transition, the leading asymptotic behavior is

T O
max(L) − Tc ∝ L−1/ν . (11)

Also, the extremum of each observable O at T = T O
max(L) is

known to scale with L as

Cmax(L) ∼
{
c0 + c1L

α/ν for α �= 0,

c0 + c1 ln L for α = 0,
(12a)

χx,max(L) ∝ Lγ/ν, (12b)

d1/T mx,max(L) ∝ L(1−β)/ν, (12c)

d1/T ln mx,max(L) ∝ L1/ν, (12d)

where x = A, B, and o distinguishes the different observ-
ables defined above, which may diverge at different phase
transitions. From the above FSS relations one can estimate the
critical exponents α, β, γ , and ν, and thereby determine the
corresponding universality class.

The above FSS arguments are not applicable in a straight-
forward manner in the case of the TLIA model (which we
have, say, for JAB = 0) simply because it shows no LRO down
to zero temperature. However, it is known that the ground
state displays quasi-long-range ordering (QLRO) with the
spin-correlation function showing the power-law decay [30]:

〈σiσj 〉 ∝ eiQ·rij r
−η

ij , (13)

with η = 1
2 and Q = (4π/3,0). The power-law decay of

the spin-correlation function is also characteristic of the
Berezinskii-Kosterlitz-Thouless (BKT) phase [31,32]. The
exponent η can be estimated by FSS of the corresponding
order parameter mo, which scales as

mo(L) ∝ L−η/2. (14)

III. GROUND-STATE PHASE DIAGRAM

The ground state (GS) can be determined by considering
the energetics of two coupled elementary triangular plaquettes
in the adjacent planes; see Fig. 3. We find that for JB >

( 1
6 )JAB and −JA > ( 1

6 )JAB [JB > 1
7 and −JA > (1 − JB)/6,

respectively, in the unit of JB + JAB = 1], both planes display
LRO: the plane A shows a three-sublattice FR LRO with
spins on two sublattices parallel, and those on the third
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FIG. 3. Ground-state phase diagram.
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FIG. 4. Temperature variations of the sublattice magnetizations (a) mA and (b) mB, (c) the ferrimagnetic order mo of the AF layer,
(d) the total specific heat, and (e) inverse temperature variations of the entropy density, for various values of J = −JA = JB = 1 − JAB and
L = 48. The solid black curves in (d) and (e) show the exact solutions for the decoupled dimer limit (J = 0). Tc1 and Tc2 in (d) represent two
critical temperatures for J = 0.4. (f) T dependence of χA, χB, and χo for J = 0.4.

one antiparallel, to the FM ordered spin configuration in the
plane B. For JB < ( 1

6 )JAB, the energetics is dominated by the
interlayer coupling JAB, and every NN spin pair coupled by
JAB becomes (anti)parallel to each other for JAB > 0 (JAB <

0), which we call a “dimer”. The in-plane spin configuration
is simply determined by the sign of JA + JB: the GS is the
FM state for JA + JB > 0 while it has the same massive
degeneracy as the TLIA for JA + JB < 0 (we refer to this
as the “Wannier phase”). Here, the case with JA + JB = 0
is rather special because the dimers are decoupled at T = 0
and we obtain a trivial disordered GS. Finally, the FM GS for
JA + JB > 0 and JB < ( 1

6 )JAB extends to the region where
JB � ( 1

6 )JAB, as long as −JA < ( 1
6 )JAB.

IV. FINITE-TEMPERATURE RESULTS

A. Case with −JA = JB and JAB varied

First, we investigate the case of −JA = JB = 1 − JAB ≡ J

with J ∈ [0,1]. The above GS scenario is corroborated by
temperature variations of the magnetizations in the respec-
tive planes mA and mB, obtained for various values of
J ∈ {0.1,0.2,0.4,0.6,0.8,0.9} and fixed L = 48, as shown
in Figs. 4(a) and 4(b). Figure 5 shows the finite-T phase
diagram that we will discuss in the following. For J = 0.1,
or (JA,JB,JAB) = (−0.1,0.1,0.9), it is suggested that both mA

and mB remain zero at any temperature in the thermodynamic
limit, whereas for the other cases with J > 1

7 , they saturate
to the zero-temperature values of 1

3 and 1, respectively. In the
latter cases, there is a FM phase transition driven by spins in
the plane B first at some critical value Tc1, as T is lowered

from the paramagnetic phase. For a range of temperatures
below Tc1, spins in the plane A also show some degree of FM
ordering, which is induced by the FM LRO in the plane B.
At a sufficiently low temperature Tc2, a FR LRO develops
in the AF plane, as evidenced from the order parameter mo

[Fig. 4(c)] as well as the the second sharp peak in the specific
heat curves [Fig. 4(d)]. This FR order breaks the translational
and the threefold rotational symmetry of the underlying
lattice.

The nature of the respective phase transitions can be
studied by performing the FSS analysis. The high-temperature
FM phase transition driven by spins in the plane B is
identified as a second-order transition belonging to the Ising
universality class (αI = 0, βI = 1

8 , γI = 7
4 , ηI = 1

4 , and νI = 1).
No significant deviation from the standard behavior is found
even in the vicinity of J = 1

7 , as shown in Fig. 6(a) for
J = 0.2. The corresponding critical temperature is obtained
from the FSS in Fig. 6(b), as Tc1 = 0.3895(6). Thus, it appears
that the coupling of the FM layer to the frustrated AF layer
results in lowering of the transition temperature but otherwise
does not alter the universality class. On the other hand, the
universality class of the low-temperature FR transition is
clearly different from the behavior of the TLIA model. As
shown in Fig. 4(c), the order parameter mo starts to increase at
this transition point, which means that the threefold symmetry
is broken in the FR phase (the preemptive enhancement of
mo seen for J = 0.8 and 0.9 will be discussed shortly).
In Fig. 7(a) we present the FSS results for the respective
critical exponents for J = 0.4. In fact, the estimated values of
1/νc2 = 1.26(3), αc2/νc2 = 0.43(3), (1 − βc2)/νc2 = 1.11(2),
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FIG. 5. Phase diagram in the (T ,J ) parameter space where
J = −JA = JB = 1 − JAB. The transition temperatures Tc1 and Tc2

are determined in several ways: the maximum of the corresponding
susceptibilities (i.e., χB for Tc1 and χo for Tc2), the crossing of U4,o

for Tc2, and the FSS analysis, as indicated within the parentheses of
the legends, with the last one giving most accurate estimates. The
pseudocritical crossover regime surrounded by the lines of T ∗ at
high T and T ∗∗ at low T , characterized by ηeff

o = 1
2 and ηeff

o = 4
9 ,

respectively, is the part of the FM phase in this parameter space (T ∗∗

is expected to coincide with Tc2 in the thermodynamic limit; see the
text). The filled squares at T = 0 indicate the exact interval of the
stabilization of the FR-FM ground state, 1

7 < J < 1. The ground state
for 0 � J < 1

7 is the trivial disordered state comprising decoupled
dimers (see the text).

and γc2/νc2 = 1.82(3) are quite close to the universal values
of the three-state ferromagnetic Potts model [33,34], with the
exact critical exponent ratios given by 1/νP = 1.2, αP /νP =
0.4, (1 − βP )/νP = 1.06̄, and γP /νP = 1.73̄. The critical
temperature is estimated in Fig. 7(b) as Tc2 = 0.4527(2) for
J = 0.4. Similar values of the critical exponent ratios are
obtained for other values of the parameter J , as shown in
Fig. 8(a). We find that as J approaches larger values (namely,
as the interplane coupling becomes smaller), the exponents
appear to deviate from the Potts values; see Fig. 7(c) for
J = 0.6, for which Tc2 = 0.4622(8) [Fig. 7(d)]. We believe
that this is just a finite-size effect and expect the deviation to
diminish at larger system sizes. In fact, such a trend can already
be observed in the present data if the data for L < Lmin are
gradually dropped from the FSS analysis, as shown in Fig. 8(b)
for J = 0.6.

At the FR phase transition, there is an anomaly also
in the sublattice magnetization mA and the corresponding
susceptibility χA diverges, as more clearly seen in the inset
of Fig. 4(f) showing the reweighting results of χA. However,
the corresponding critical exponent governing this power-law
divergence appears to be related to some secondary scaling
operators, as the sublattice magnetization mA is not a proper
order parameter for this phase transition.

We find that the system shows peculiar behaviors in the
specific heat and the entropy just above the FR phase for
J ≈ 1, namely, when JAB is very small relative to |JA| and JB.
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FIG. 6. (a) Critical exponent ratios and (b) T O
max(L) obtained in

the FSS analysis at the high-temperature phase transition into the
FM phase driven by spins in the plane B, for J = −JA = JB =
1 − JAB = 0.2. The arrow in (b) indicates the estimate of Tc1 in the
thermodynamic limit.

For J = 0.8 and 0.9, for instance, the specific heat shows
a dip between the two peaks [Fig. 4(d)]. As this implies,
there is a plateau region of the entropy as a function of
T [Fig. 4(e)]. The entropy value in the plateau is close to
( 1

2 ) × 0.3231 ≈ 0.1615, which corresponds to the half of
the GS value of the single-layer TLIA [18]. Therefore, the
peculiar behavior is ascribed to fluctuations in the plane A.
As mentioned earlier, the FR order parameter mo takes finite
values for finite L within the corresponding temperature range,
but slowly decays with increasing L [see Fig. 9(a)]. These
features resemble the characteristics of a BKT-type phase,
although we will argue that this is actually a pseudocritical
crossover regime induced by a proximity to a Gaussian fixed
point (see Sec. V), with a rather large but finite correlation
length for the FR local order parameter φR in Eq. (7),
namely, 〈φRφR′ 〉 ∝ |R − R′|−ηeff

o exp(−|R − R′|/ξ ) with large
ξ � 1. Assuming for the moment the algebraically decaying
correlation function [Eq. (13)] in this region, the corresponding
effective exponent ηeff

o is estimated from the FSS expression
[Eq. (14)]. As shown in Fig. 9(b), the decay in this temperature
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range for (JA,JB,JAB) = (−0.9,0.9,0.1) (J = 0.9) is well
approximated by a power law with ηeff

o ≈ 1
2 , accompanying

a slow monotonic variation of ηeff
o � 1

2 as a function of
T . In this sense, this BKT-type behavior is distinct from
both the low-temperature FR phase with ηeff

o = 0 and the
high-temperature paramagnetic phase with ηeff

o = 2. In fact,
the quality of regression to the power-law behavior is excellent
within the corresponding temperature range: the coefficient
of determination for regression shows R2 ≈ 1 within the
plateaulike regime of ηeff

o (R2 ≈ 1 at high temperatures
corresponds to a paramagnetic behavior), as shown in the left
inset of Fig. 9(b). We will examine this peculiar behavior
in more detail in Sec. V. According to a renormalization
group argument presented there, it is adequate to introduce
characteristic temperatures T ∗ and T ∗∗ based on the criteria
ηeff

o = 1
2 and 4

9 , respectively, which are presented in the phase
diagram (Fig. 5). The range T ∗∗ < T < T ∗ approximately
coincides with the range of the plateau (Fig. 9).
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FIG. 9. Temperature variation of (a) the order parameter mo

for various L and (b) the exponent ηeff
o obtained from the scaling

relation (14), for J = −JA = JB = 1 − JAB = 0.9. In (b), the value
4
9 � ηeff

o � 1
2 is expected for the BKT-type spin-correlation in the

plane A induced by a coupling to the FM ordered layer B (see the text
in Sec. V). The insets show the FSS log-log plots of mo(L) for some
representative values of T (right) and the coefficient of determination
of the linear fit R2 as a function of T (left); the region with R2 ≈ 1
at low temperatures is indicated by the shaded area here and also in
the main plot of (b).

B. Cases with −JA �= JB

Next, we discuss more generic cases where −JA �= JB. As
mentioned earlier, we consider the following two representa-
tive cases, (JB,JAB) = (0.4,0.6) and (0.1, 0.9), corresponding
to moderate and strong relative strengths of the interplane
coupling, and vary JA in the unit of JB + JAB. For (JB,JAB) =
(0.1,0.9), it turns out that the bilayer system can be essentially
reduced to the single-layer system of dimerized spins (see
Sec. III), as far as |JA| is of the same order as JB and not
so much exceeding JAB. Within such a range, varying JA/JB

simply amounts to changing the effective in-plane interaction
JA + JB for dimerized spins, or block spins in the sense
of the Migdal-Kadanoff real-space renormalization group.
The corresponding phase diagram is similar to that of the
single-layer FM (AFM) model if JA + JB > 0 (JA + JB < 0),

and the FM transition in the former case remains in the 2D
Ising universality class even in the presence of the coupling to
the AF layer. Thus, below we focus on the case of (JB,JAB) =
(0.4,0.6). The temperature and size dependencies of mx , χx ,
and ηx with x = A, B, and o are shown in Figs. 10(a)–
10(o) for JA ∈ {−0.05, − 0.1, − 0.4, − 1.6, − 4}, in which
we include the case of |JA| = JB = 0.4 as a reference to
the case considered in Sec. IV A. Figure 11 shows the phase
diagram that we will discuss in what follows.

We first discuss the cases with |JA| < JB. While we find no
significant change in the FM transition at T = Tc1 compared
to the case of |JA| = JB = 0.4, Tc2 decreases as |JA| decreases
and the FR phase vanishes at JA = −(1/6)JAB = −0.1, where
the plane A undergoes a first-order metamagnetic transition
accompanying a jump from mA = 1

3 to mA = 1. For JA >

−(1/6)JAB, the GS of the bilayer system is in the FM phase
(Fig. 11). The ferromagnetically ordered spins in the plane
B induce an effective magnetic field for spins in the plane
A, the magnitude of which is mBJAB in the mean-field
approximation. Thus, reducing |JA| means that this effective
field is enhanced relative to the intralayer coupling for the plane
A. This explains the observed disappearance of the FR phase.

On the other hand, as we increase |JA| from |JA| = JB,
this naturally increases characteristic temperature associated
with short-range order (SRO) in the frustrated plane A.
For our practical purposes, we can use T ∗ (corresponding
to ηeff

o = 1
2 ) also as the temperature scale for this SRO.

Figure 12(a) suggests T ∗ ≈ 0.3|JA| for large |JA|. In the
simulation, the SRO can be seen as enhancement of mo

for small system sizes at Tc2 � T � T ∗; see Fig. 10(j) for
(JA,JA,JAB) = (−1.6,0.4,0.6). For sufficiently large |JA|, T ∗

can well exceed the FM transition temperature Tc1, though no
LRO can emerge at T ≈ T ∗ because of the highly frustrated
nature of the interaction. Instead, we find a plateaulike feature
of ηeff

o ≈ 1
2 for T � T ∗ [see Fig. 10(o) where (JA,JB,JAB) =

(−10,0.4,0.6)], meaning that the spin configuration in the
plane A in this regime has essentially the same characteristics
as the GS configuration of the TLIA [18], up to a finite
but very large length scale that exponentially increases in
∝|JA|/T . For smaller values of |JA|, e.g., for (JA,JB,JAB) =
(−4,0.4,0.6), ηeff

o reveals a similar though much narrower
temperature window of ηeff

o ≈ 1
2 [Fig. 10(o)]. Although we

reemphasize that this is a pseudocritical behavior with finite ξ ,
the coefficient of determination for regression shows R2 ≈ 1
within the plateaulike regime [Figs. 12(b) and 12(c)]. Similar
to the case with |JA| = JB � JAB discussed in Sec. IV A [e.g.,
for (JA,JB,JAB) = (−0.9,0.9,0.1) shown in Fig. 9(b)], the
plateau of ηeff

o is not completely flat but has a small finite slope.
As shown in Fig. 12(a), the finite slope becomes more evident
around T = Tc1. This implies that the small variation of ηeff

o is
induced by a coupling to the FM order in the plane B. In the
meantime, it is found that the short-range FR correlation in the
plane A is slightly suppressed around the FM transition, but
it becomes enhanced again upon further decreasing T below
Tc1. This behavior creates a dip in the T dependence of χo

[Fig. 10(n)].
The system undergoes the FR transition at T = Tc2.

Although this is expected to be in the same universality class as
in the case of |JA| = JB, the singularity at the FR transition for

012145-7
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|JA| � JB suffers from much more severe finite-size effects;
we find, for instance, that the peak of χo at T ≈ Tc2 is more
rounded for (JA,JB,JAB) = (−4,0.4,0.6) [Fig. 10(n)] than in
the case of (JA,JB,JAB) = (−0.4,0.4,0.6) [Fig. 10(h)].

When we tune |JA| so that it is still larger than JB but of
more comparable magnitude, the plateaulike feature of ηeff

o

observed for large |JA| increasingly diminishes. Eventually,
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FIG. 12. (a) Temperature dependence of ηeff
o for JA = −1.6, −4,

and −10 with (JB,JAB) = (0.4,0.6). (b)–(d) Temperature dependence
of the coefficient of determination of the linear fit R2 for each case.

the plateau disappears and SRO in the plane A develops into
the FR LRO without an intervention of a BKT-type temperature
window, as in the case of JA = −1.6 [Fig. 12(a)]. In such a
case, we find that the FM order in the plane B is established
substantially prior to the short-range order in the plane A
(namely, Tc1 � T ∗). This implies that the FM order parameter
mB has to be small enough at T = T ∗ to have an extended
region with the pseudocritical BKT-type behavior when JB

and JAB are of the same order.

V. DISCUSSION: ORIGIN OF THE PSEUDOCRITICAL
BKT-TYPE BEHAVIOR

In the previous section, we investigated two representative
cases where the peculiar BKT-type behavior of ηeff

o ≈ 1
2

emerges prior to the FR transition in the plane A, accom-
panying a small monotonic temperature variation of ηeff

o � 1
2 :

(i) |JA| = JB � JAB (Sec. IV A) and (ii) |JA| � JB ≈ JAB

(Sec. IV B). In the case (i), the system first undergoes the FM
transition at T = Tc1 driven by spins in the unfrustrated plane B
upon cooling, followed by development of SRO in the plane A
under the influence of the small interlayer coupling JAB. This
SRO is subsequently promoted to the FR LRO at T = Tc2 and it
is during the corresponding ordering process that the BKT-type
behavior appears in the plane A. In the case (ii), on the other
hand, the large |JA| induces SRO first in the plane A around
T ≈ T ∗ upon cooling. The BKT-type behavior emerges as the
FM order is subsequently developed in the plane B, which
in the same time gradually affects the spin correlation in the
plane A through JAB. In both cases, the spin correlation in the
plane A in the BKT-type regime is very well described by a
power law (the coefficient of the determination of regression is
R2 ≈ 1 within the corresponding regime). This extends at least
up to the length scale of our largest system size (L = 120), or
possibly by order of magnitude larger than this in some cases;
see below, where we evaluate ξ/L in an effective model up to
L = 768.

The emergence of such BKT-type behaviors might be
unexpected because the broken symmetry group in the FR
GS is Z3, and it is known that the (p � 4)-state clock model
in 2D does not support an intermediate critical phase with
emergent U(1) symmetry [35]. The essential difference from
this oversimplified picture is the proximity of the system (more
precisely, the plane A) to the degenerate GS manifold of the
TLIA, which is under the influence of a small coupling to the
FM plane B. As mentioned earlier, the coupling to the plane B
can be regarded as an effective magnetic field Heff ≈ mBJAB

in the mean-field approximation for spins in the plane A.
This observation motivates us to invoke an effective model
description for spins in the plane A by neglecting fluctuations
in the plane B,1 namely, by considering a monolayer TLIA in
a magnetic field defined by

HTLIA = −J̃
∑
〈ij〉

σiσj − H̃
∑

i

σi, (15)

1For the sake of simplicity, we neglect the possible effect due to
short-range FM order in the plane B, which may exist in the case
(ii) at T � Tc1. In other words, our discussion applies only to the
crossover at T < Tc1 where mB �= 0.
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FIG. 13. (a) The order parameter mo for L = 24 and (b) the
effective critical exponent ηeff

o , for the bilayer model (blue circles)
and the single-layer TLIA model in the field H̃ = 0.1 (red squares).

where σi = ±1 denotes an Ising spin at site i of the triangular
lattice, representing a spin in the plane A in the bilayer
model, and the summation 〈ij 〉 runs over nearest neighbors.
The correspondence of the coupling constants is J̃ ∼ JA and
H̃ ∼ Heff . To demonstrate the effectiveness of the mapping,
we perform MC simulations of HTLIA for J̃ = −0.9 and
H̃ = 0.1 to compare the results with those for the bilayer
model with (JA,JB,JAB) = (−0.9,0.9,0.1). We focus on the
temperature range at T � Tc1 so that we can safely assume
H̃ ∼ Heff ≈ JAB (mB ≈ 1). Indeed, as shown in Fig. 13, both
the order parameter mo and the critical exponent ηeff

o almost
coincide with the respective results for the bilayer model.

The in-field TLIA model (15) has been investigated rather
extensively in the literature [34,36–40]. Induced by the
external field, a three-sublattice FR phase emerges with spins
in two sublattices pointing parallel and those in the other
antiparallel to the field, which can be directly associated with
the FR order in the plane A in the bilayer model. This field-
induced transition is in the three-state Potts universality class
at finite temperature [34], in agreement with our numerical
results on the FR transition driven by spins in the plane A.
Interestingly, however, Nienhuis and co-workers [36] showed

Δh = +2

Δh = -1

Δh = -1

(a)

Δh = +2

(b)

Δh = +2

Δh = +2

Δh = -2

Δh = -2 Δh = -2
q = +6

q = -6

FIG. 14. (a) The height rule (see the text). (b) A plaquette of three
parallel spins, which can be three up or three down, is a vortex (left)
or an antivortex (right) in the height description.

that the transition in the zero-temperature limit belongs to
the BKT universality class, based on the mapping to the 2D
Coulomb gas [35,36,41–43]. The crossover from the BKT
transition to the three-state Potts universality class induced by
thermally excited “vortices” (plaquettes of three parallel spins)
was also investigated [40].

The observation by Nienhuis et al. [36] is crucial for
explaining the BKT-type phenomena (ηeff

o ≈ 1
2 and its small

temperature variation with ηeff
o � 1

2 ) observed in the bilayer
model. The standard procedure that we follow to describe this
physics is to map the TLIA model (15) onto a height model,
also known as the solid-on-solid model [36,42]. By working
first on the GS manifold of the zero-field TLIA, namely, by
excluding configurations that contain vortices for the moment,
we assign an integer-valued height variable hi to each site i

of the triangular lattice. As illustrated in Fig. 14, by going
counterclockwise around each upward triangle, h changes by
�h = +2 for parallel spins and by �h = −1 for antiparallel
spins. This implies that for downward triangles, we should
follow the same rule though by going clockwise around them.
The fact that the zero-field GS manifold consists of triangles
with either up-up-down or down-down-up spins means that
the sum over the height increment �h around any single
triangle and therefore around any contractible loop is zero.
Thus, once the height at the origin is fixed, this prescription
leads to a single-valued consistent height map throughout the
whole lattice. Here, it is convenient to introduce a convention
that the height at the origin has to be an arbitrary even (odd)
integer if the spin is up (down). Then, the height rule implies
that an even (odd) height at any other site also corresponds
to a spin up (down), namely, σi = cos(πhi). At H̃ = 0, this
also implies that the height action must be invariant under the
global change hi → hi ± 1, ∀ i. If we take the continuum limit
at this point, we obtain the effective action

S vortex free =
∫

d2r

⎡
⎣πg(∇h)2 +

∑
1�p�6

wp cos
2πh

p

⎤
⎦, (16)

where g is the stiffness of the height field and the second term
contains various periodic potentials; those nonzero in the bare
theory are w1 representing the locking potential associated
with the discreteness of the height and w2 ∼ −H̃ /T (with
T → 0) representing the Zeeman term in the spin model. In
addition, the source field to compute φR [Eq. (7)] appears at
p = 6. wp with p > 6 is not allowed because the system is
invariant under the global height shift by ±6 [42].

In this notation, the scaling dimensions of the poten-
tial terms are �p = (2gp2)−1 at the Gaussian fixed point
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wp = 0. By using �6 = ηo/2 = 1
4 for the exact solution of

the zero-field TLIA, we can calibrate g = 1
18 for this case.

With this setup, Nienhuis et al. pointed out that the magnetic
field term w2 is irrelevant for small H̃ /T until it becomes
marginal at a critical reduced field corresponding to g = 1

16 .
In other words, below a critical value of H̃ /T , the effect
of the nonzero magnetic field is only to renormalize g in a
nonuniversal fashion, leading to a continuous variation of the
critical exponent ηo = 2�6 within the range

4
9 � ηo � 1

2 . (17)

This is associated with a line of Gaussian fixed points,
corresponding to the so-called “rough” phase of the height
map. At g = 1

16 , the system undergoes the field-induced BKT
transition [36,37,39,40]: w2 is relevant for g > 1

16 , where the
system is in the “flat” phase, corresponding to the three-
sublattice FR phase. We also note that w1 remains irrelevant
within this range.

So far, we have restricted our consideration to the GS
manifold of the zero-field TLIA. At T > 0, vortices and
antivortices can be thermally created in pair. As shown in
Fig. 14(b), they correspond to height dislocations with Burgers
vectors q = ∮

dh = ±6, violating the single valuedness of the
height profile. Thus, the meaningful local variable at T > 0 is
the gradient ∇h instead of h itself. In the language of the 2D
Coulomb gas, these topological defects are magnetic charges
whereas the locking potentials discussed above are electric
charges [35,41,43]. Specifically, the topological defects of q =
±6 have the scaling dimension �̃ = 18g [43]. Hence, within
the range 1

18 � g � 1
16 , these topological defects remain

relevant perturbation to the Gaussian fixed point. In fact, by
evaluating the correlation length ξ (L) of the order parameter
mo by MC simulations of HTLIA, we are able to detect both
the BKT-type behavior at short distances and the subsequent
crossover induced by vortices at larger distances. Here, we
evaluate the second-moment correlation length defined by

ξ (L) = 1

2 sin(π/L)

√
S(Q)

S(Q + �qL)
− 1, (18)

where S(q) is the spin structure factor with Q and Q + �qL

the ordering wave vector and its closest wave vector for the
given system size L, respectively. As shown in Fig. 15, while
the dimensionless measure ξ (L)/L for several system sizes
falls onto a single line for 0.22 � T � 0.3, as is suggestive
of a BKT-type behavior, this region becomes increasingly
narrower for larger L. This observation suggests that while
the short-distance behavior resembles a power law with a
nontrivial exponent, the genuine long-distance behavior is
not. Figure 16(a) shows the schematic renormalization group
(RG) flow diagram (see Fig. 1 in Ref. [40] for a more precise
phase digram of HTLIA). We note that this type of RG flow
diagram is rather widely seen among similar systems, aside
from important differences in details (see, e.g., Refs. [25,44]).

Going back to the bilayer model, we propose the following
explanation for the observed pseudocritical behavior. First,
the observation of ηeff

o ≈ 1
2 can be seen as an indication of

temperatures that are low enough relative to the excitation gap
of topological defects and also as an indication of the smallness
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FIG. 15. Normalized correlation length ξ/L, as functions of the
temperature, for several system sizes L for HTLIA. The inset shows
the behavior in a broader temperature range.

of the reduced effective field Heff/T � mBJAB/T induced by
the coupling to the layer B. As is obvious from this observation,
the possible reason for the latter is either the smallness of JAB

[as in the case (i) mentioned in the beginning of this section]
or that of mB [as in the case (ii) mentioned in the same place
for T ≈ Tc1], or the combination of both. However, since the
topological defects give rise to the RG relevant perturbation
to the Gaussian theory, the genuine long-distance behavior
should deviate from the power law, which is the reason why
we refer to it as pseudocritical. Nevertheless, the average
separation between vortices and antivortices (≈ξ ) grows
exponentially at low temperatures, meaning that the “short-
range” behavior under the strong influence of the Gaussian
fixed point can actually extend up to a rather large length
scale. As T is lowered further, the gradually enhanced Heff/T

is expected to give rise to the nonuniversal renormalization
of the effective stiffness and hence the variation of ηeff

o � 1
2 .

This crossover seems to be the origin of the slow temperature
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L
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(no vortices)
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FIG. 16. (a) Schematic projected RG flow diagram including
three isolated fixed points (FPs) and a line of Gaussian FPs at T = 0.
The dashed line indicates a typical trajectory of the system as T

is lowered. (b) Schematic picture illustrating the situation where
the pseudocritical behavior is observed. The system parameters
are in proximity of the line of Gaussian FPs and the average
vortex-antivortex separation ≈ξ well exceeds the size L of the system
(the area represented by the filled square).
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variation of ηeff
o , which approximately corresponds to the range

given in Eq. (17). Because ξ becomes even larger at low
T , the total average number of vortices within the system
size can be very close to zero. Thus, the spin correlation in
the plane A is expected be almost perfectly dominated by
a Gaussian behavior corresponding to the range of Eq. (17)
[see Fig. 16(b)]. We note that this scenario also provides a
natural explanation on why the singularity associated with
the FR transition is smeared out when there is a preemptive
pseudocritical behavior: the critical behavior is suggested to
be dominated by the BKT type with very weak singularities if
the system is away from the transition point even by a small
degree.

VI. CONCLUSIONS

We studied magnetic and critical properties of an Ising
bilayer system corresponding to a heterostructure of frustrated
and unfrustrated triangular-lattice layers, with antiferromag-
netic (AF) and ferromagnetic (FM) intralayer interactions
for the layer A and the layer B, respectively, which are
coupled by the interlayer interaction JAB. We showed that
the interplay of the ordering tendency in the unfrustrated
FM plane and the quasidegenerate low-energy manifold in
the geometrically frustrated AF plane leads to intriguing
phenomena, not observed in the separate planes. Our results
are summarized in the phase diagrams shown in Fig. 5 for
(JA,JB,JAB) = (−J,J,1 − J ) with 0 � J � 1 and Fig. 11 for
(JB,JAB) = (0.4,0.6) with JA < 0 varied, where we work on
the unit JB + JAB = 1. In addition, in the limiting cases where
the planes are strongly coupled together (JAB � |JA|,JB), the
ordering behavior of the entire bilayer is governed by the plane
with the dominant intralayer coupling.

In the first case with |JA| = JB, the bilayer system has the
FM order below Tc1 and the ferrimagnetic (FR) order below Tc2

(<Tc1) in the AF layer for J > 1
7 . The FM transition is in the

universality class of the 2D Ising model, whereas the transition
into the FR state is in the 2D three-state Potts universality
class, both of which are consistent with the broken symmetry
groups (Z2 and Z3). The order parameter in the former
(latter) case is mB (mo). When the interlayer coupling is small
enough (i.e., for J ≈ 1), the system exhibits pseudocritical
Berezinskii-Kosterlitz-Thouless (BKT)-type behaviors prior
to the FR transition, and the crossover from the BKT transition

appears just above the FR phase. In the second case, where
JA < 0 is varied with fixed (JB,JAB) = (0.4,0.6), the FR order
in the AF plane is replaced by the FM order in the ground state
for |JA| < (1/6)JAB, induced by the interlayer coupling to the
FM order in the layer B. On the other hand, for |JA| � JB,
short-range order is formed in the AF plane even before the
FM transition takes place driven by spins in the plane B. This
provides another route to an extended pseudocritical regime
appearing prior to the FR transition.

In both cases mentioned above, the BKT-type phenomena
can be explained by invoking a mean-field treatment of the
interlayer coupling. This approach maps the bilayer system
to the monolayer AF triangular-lattice Ising model in an
effective magnetic field Heff ≈ mBJAB by neglecting spin
fluctuations in the plane B. Then, a two-component Coulomb
gas treatment [36] suggests that the reduced field Heff/T

gives rise to a renormalization of the effective stiffness for
the AF layer in a nonuniversal fashion, which leads to
the temperature-dependent small variation of the effective
exponent ηeff

o for the spin-spin correlation function within the
range 4

9 � ηeff
o � 1

2 . In this way, a line of Gaussian fixed points
controls the “short-range” behavior, which extends up to ξ

exponentially increasing in ∝|JA|/T . Meanwhile, the genuine
long-distance behavior beyond ξ is affected by thermally
excited topological defects, which induce deviations from the
pseudocritical behavior towards the one associated with an
ultraviolet fixed point.

In this study we considered the AF-FM bilayer. A further
appealing extension could involve multilayers formed by
stacks of a finite number of the AF and FM planes. It would be
interesting to see how the ordering effects from the FM layer
propagate through the stack of AF layers, the nature of the
critical behavior of which may be additionally controlled by
its thickness [25].
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Y. Miyazaki, M. Sorai, R. Podgajny, T. Korzeniak, and B.
Sieklucka, Phys. Rev. B 78, 174409 (2008).

[3] W. Shi, R. Liang, S. Xu, Y. Wang, C. Luo, M. Darwish, and
S. K. Smoukov, J. Phys. Chem. C 119, 13215 (2015).

[4] K. Shimazaki, S. Ohnuki, H. Fujiwara, and N. Ohta, J. Magn.
Magn. Mater. 104-107, 1017 (1992).

[5] T. W. Capehart and M. E. Fisher, Phys. Rev. B 13, 5021 (1976).
[6] L. de Jongh, in Introduction to Frustrated Magnetism, edited by

L. de Jongh (Kluwer, Dordrecht, 1990).
[7] A. M. Ferrenberg and D. P. Landau, J. Appl. Phys. 70, 6215

(1991).

[8] P. L. Hansen, J. Lemmich, J. H. Ipsen, and O. G. Mouritsen,
J. Stat. Phys. 73, 723 (1993).

[9] T. Horiguchi and N. Tsushima, Phys. A (Amsterdam) 238, 295
(1997).

[10] A. Lipowski, Phys. A (Amsterdam) 250, 373 (1998).
[11] Z. B. Li, Z. Shuai, Q. Wang, H. J. Luo, and L. Schcbclke,

J. Phys. A: Math. Gen. 34, 6069 (2001).
[12] B. Mirza and T. Mardani, Eur. Phys. J. B 34, 321 (2003).
[13] M. Ghaemi, B. Mirza, and G. A. Parsafar, J. Theor. Comput.

Chem. 03, 217 (2004).
[14] J. L. Monroe, Phys. A (Amsterdam) 335, 563 (2004).
[15] K. Szałowski and T. Balcerzak, Phys. A (Amsterdam) 391, 2197

(2012).

012145-12

https://doi.org/10.1016/0378-4363(76)90187-X
https://doi.org/10.1016/0378-4363(76)90187-X
https://doi.org/10.1016/0378-4363(76)90187-X
https://doi.org/10.1016/0378-4363(76)90187-X
https://doi.org/10.1103/PhysRevB.78.174409
https://doi.org/10.1103/PhysRevB.78.174409
https://doi.org/10.1103/PhysRevB.78.174409
https://doi.org/10.1103/PhysRevB.78.174409
https://doi.org/10.1021/acs.jpcc.5b01065
https://doi.org/10.1021/acs.jpcc.5b01065
https://doi.org/10.1021/acs.jpcc.5b01065
https://doi.org/10.1021/acs.jpcc.5b01065
https://doi.org/10.1016/0304-8853(92)90468-4
https://doi.org/10.1016/0304-8853(92)90468-4
https://doi.org/10.1016/0304-8853(92)90468-4
https://doi.org/10.1016/0304-8853(92)90468-4
https://doi.org/10.1103/PhysRevB.13.5021
https://doi.org/10.1103/PhysRevB.13.5021
https://doi.org/10.1103/PhysRevB.13.5021
https://doi.org/10.1103/PhysRevB.13.5021
https://doi.org/10.1063/1.349999
https://doi.org/10.1063/1.349999
https://doi.org/10.1063/1.349999
https://doi.org/10.1063/1.349999
https://doi.org/10.1007/BF01054347
https://doi.org/10.1007/BF01054347
https://doi.org/10.1007/BF01054347
https://doi.org/10.1007/BF01054347
https://doi.org/10.1016/S0378-4371(96)00445-1
https://doi.org/10.1016/S0378-4371(96)00445-1
https://doi.org/10.1016/S0378-4371(96)00445-1
https://doi.org/10.1016/S0378-4371(96)00445-1
https://doi.org/10.1016/S0378-4371(97)00551-7
https://doi.org/10.1016/S0378-4371(97)00551-7
https://doi.org/10.1016/S0378-4371(97)00551-7
https://doi.org/10.1016/S0378-4371(97)00551-7
https://doi.org/10.1088/0305-4470/34/31/302
https://doi.org/10.1088/0305-4470/34/31/302
https://doi.org/10.1088/0305-4470/34/31/302
https://doi.org/10.1088/0305-4470/34/31/302
https://doi.org/10.1140/epjb/e2003-00227-y
https://doi.org/10.1140/epjb/e2003-00227-y
https://doi.org/10.1140/epjb/e2003-00227-y
https://doi.org/10.1140/epjb/e2003-00227-y
https://doi.org/10.1142/S0219633604000994
https://doi.org/10.1142/S0219633604000994
https://doi.org/10.1142/S0219633604000994
https://doi.org/10.1142/S0219633604000994
https://doi.org/10.1016/j.physa.2003.12.018
https://doi.org/10.1016/j.physa.2003.12.018
https://doi.org/10.1016/j.physa.2003.12.018
https://doi.org/10.1016/j.physa.2003.12.018
https://doi.org/10.1016/j.physa.2011.11.058
https://doi.org/10.1016/j.physa.2011.11.058
https://doi.org/10.1016/j.physa.2011.11.058
https://doi.org/10.1016/j.physa.2011.11.058


ORDERING PHENOMENA IN A HETEROSTRUCTURE OF . . . PHYSICAL REVIEW E 96, 012145 (2017)

[16] K. Szałowski and T. Balcerzak, Thin Solid Films 534, 546
(2013).

[17] X. P. Phu, V. T. Ngo, and H. Diep, Surf. Sci. 603, 109 (2009).
[18] G. H. Wannier, Phys. Rev. 79, 357 (1950).
[19] A. N. Berker, G. S. Grest, C. M. Soukoulis, D. Blankschtein,

and M. Ma, J. Appl. Phys. 55, 2416 (1984).
[20] D. Blankschtein, M. Ma, A. N. Berker, G. S. Grest, and C. M.

Soukoulis, Phys. Rev. B 29, 5250 (1984).
[21] S. N. Coppersmith, Phys. Rev. B 32, 1584 (1985).
[22] Frustrated Spin Systems, edited by H. T. Diep (World Scientific,

Singapore, 2013).
[23] V. T. Ngo and H. T. Diep, Phys. Rev. B 75, 035412 (2007).
[24] X. T. Pham Phu, V. T. Ngo, and H. T. Diep, Phys. Rev. E 79,

061106 (2009).
[25] S.-Z. Lin, Y. Kamiya, G.-W. Chern, and C. D. Batista,

Phys. Rev. Lett. 112, 155702 (2014).
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