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Parallel random target searches in a confined space
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We study a random target searching performed by N independent searchers in a d-dimensional domain of a
large but finite volume. Considering the two initial distributions of searchers where searchers are either uniformly
or point distributed, we estimate the mean time for the first of the searchers to reach the target and refer to
it as searching time. The searching time for the uniformly distributed searchers exhibits a universal power-
law dependence on N , irrespective of dimensionality and the target-to-domain size ratio. For point-distributed
searching, the searching time has a logarithmic dependence on N in the large N limit, while in the small N limit,
it shows qualitatively different behaviors depending upon r0, the initial distance of the searchers from a target. We
obtain a diagram by comparing the searching times of the two initial distributions in the parameter space (r0,N ) and
therein present the asymptotic lines separating three characteristic regions to explain numerical simulation results.
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I. INTRODUCTION

First-passage dynamics [1,2] provides the fundamental
understanding of many physical phenomena, ranging from
diffusion-limited reactions of molecules [3–7] to genetic drift
in a population of organisms occurring over generations [8].
In recent years, random target searching (RTS) has received a
great deal of attention in the context of first-passage dynamics
[9–19], which includes abundant examples such as animal
foraging, chemical reactions, and searching for a lost key or a
missing child without a clue and mental map. In RTS, central
quantity is the first-passage time (FPT), which is a measure of
how long it takes for a random walker or a diffusing particle
to first encounter a target [20–22]. The issue involves various
factors such as confinement effect [11], the dependence of
target location [11], mortality of searchers [19], mobility of
targets [6], and size and sequence of random walk [23].

When a group of N random walkers participates in the
target searching, the problem becomes more complicated
than in the presence of only a single searcher. Analyzing
the smallest value among FPTs recorded by N searchers is
important in this case, and it requires order statistics that can
be obtained through the full distribution of FPT. The order
statistics has been extensively studied in one-dimensional
space [10,19,24–26] in which the FPT distribution is available.
In two or higher dimensions, only approximate behaviors of
FPT distribution for a single searcher to reach a small target
are known [27,28], and the multisearcher problem has been
explored only in limited cases [9,14–16]. For instance, an
asymptotic expression for the moments of survival time of
a target was found in the large N limit when all searchers
start from the same origin [14], and the mean searching time,
also referred to as the mean target lifetime, was investigated
numerically [15]. Hence the current understanding is far from
complete, and it is still to be examined how the mean searching
time depends on the number and initial distribution of the
searchers for a wider range of N . In answering these questions,
it is reasonable to suppose a searching domain of a finite
size, which is relevant to most of the realistic situations: for
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example, chemical reactions of molecules usually occur in a
vessel, and animals are foraging within their living territories.

In this work, we consider parallel searching of a target
by N independent diffusing particles (called searchers) in
d-dimensional (d = 1,2,3) confined space. Here the volume
of the space is assumed much larger than the volume of the
target. We estimate the searching time as the mean searching
time of the searcher that arrives at the target first among
the N searchers. In the case of parallel searching by multiple
searchers, it is of great interest to study how the searching time
depends on the initial distribution of searchers. Modulating the
initial distributions of the searchers, one can in principle think
of infinitely many different searching strategies. Here we focus
on the two limiting searching strategies as possibly the simplest
and natural choices: the initial distribution of searchers is
uniform (uniformly distributed parallel searching, UPS), or
the searchers start their random motion at the same point
(point-distributed parallel searching, PPS). These strategies for
the two extremes of possible initial distributions of searchers
provide a useful starting point for the understanding of
searching times of arbitrary parallel searching strategies.

The main results of this study are first the analytical
behavior of the searching times. Using the dominance of
the lowest eigenvalue for the small N regime and mapping
onto the one-dimensional searching for the large N regime,
we obtain asymptotic expressions for the searching times.
For UPS, the searching time shows a universal behavior:
Regardless of dimensionality and ratio of target-to-domain
size, the searching time algebraically decays with increasing
N . Interestingly, there is a crossover of the decay exponent,
1 for small N and 2 for large N . For PPS, the searching time
for small N has a strong dependence on the initial target-
searcher distance, r0. In the large N limit, the first-passage
trajectories resemble random walks in one dimension, and
the searching time has a weak logarithmic dependence on N

in any dimension. We also perform the Langevin dynamics
simulations and find the results agree well with the analytic
predictions. Finally, by comparing the searching times, we
obtain a diagram in the parameter space of r0 and N in
which three regions are found to indicate which strategy is
more efficient, or whether both are similar. The crossover loci
determined from the asymptotic behaviors are observed to be
in qualitative agreement with simulation results.
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This paper is organized as follows: In Sec. II we describe
the problem to be considered in this work and introduce an
effective way to calculate the mean minimum FPT, based on
the lowest eigenvalue dominance in the survival probability.
In Sec. III we derive the analytic expressions of the searching
time for UPS and compare them with numerical simulations.
In Sec. IV the searching time of PPS is estimated analytically
in the asymptotic limits and also numerically. In Sec. V
we discuss which strategy performs better by comparing the
searching times and present a schematic diagram indicating a
better strategy, plotted in the space spanned by r0 and N . A
summary follows in Sec. VI.

II. SYSTEM

Let us first consider a random target searching by a single
searcher in a confined domain. More specifically, we model
the random trajectories of a searcher by a Brownian motion of
a diffusing particle in a d-dimensional sphere of a volume V

(of a radius b), and the searcher performs a diffusive motion
until it reaches a target of size a at specified position rT .
The probability distribution of a searcher obeys the following
diffusion equation:

∂p(r,t ; r0)

∂t
= D∇2p(r,t ; r0) , (1)

where p(r,t ; r0) is the probability density that a searcher
is found in an infinitesimal volume element ddr located at
position r and time t for a given initial position r0. Here, D

denotes the diffusion constant, which is homogeneous over the
space. The presence of a target is considered as an absorbing
boundary condition, p(r ∈ ∂T ,t ; r0) = 0 at the target (T ), and
we also impose a reflecting boundary condition at the boundary
of the searching domain (D) as n̂ · ∇p(r ∈ ∂D,t ; r0) = 0,
with n̂ being a unit outward normal at the target boundary.
Throughout this work, we only consider a large volume limit
[or equivalently, a small target limit, (a/b)d � 1].

Solving Eq. (1) and getting p(r,t ; r0), we can estimate the
probability that the searcher is not absorbed on the target
surface until time t when the random searcher starts at r0

initially (t = 0):

S(t ; r0) =
∫
D\T

ddrp(r,t ; r0), (2)

where the integration is performed over the space unoccupied
by the target, D∗ = D \ T . This quantity, also known as
the target survival probability, is related to the probability
distribution of FPT, F (t ; r0), as

S(t ; r0) =
∫ ∞

t

dt ′ F (t ′; r0) , (3)

provided that the target is certainly found in the limit t → ∞,
i.e., limt→∞ S(t ; r0) = 0. Here F (t ; r0) is the probability that
a single searcher arrives at a target site for the first time at a
specified time t , and the mean first-passage time is given by
t (r0) ≡ ∫

dt t F (t ; r0), which depends on the initial position
of the single searcher. If averaging t (r0) over distribution of
r0, one obtains the global mean first-passage time, τ .

Now we consider the parallel searching process where N

searchers are performing independent random searches; they

neither physically interact nor communicate with one another.
Each searcher first reaches the target site and records its FPT.
We then have N random FPTs, say, (t (1),t (2), . . . ,t (N)). The
minimum first-passage time, tmin ≡ min[t (1),t (2), . . . ,t (N)],
should satisfy the probability distribution of minimum FPT,
FN , given as [24]

FN

(
tmin;

{
r(i)

0

}) =
N∑

i=1

F
(
tmin; r(i)

0

)∏
j 
=i

S
(
tmin; r(j )

0

)
, (4)

where {r(i)
0 } = (r(1),r(2), . . . ,r(N)) are the initial positions of N

searchers. This expression can be easily understood by looking
at, for example, the summand given by i = 1. It amounts to
the probability that the first passage event is hosted by the
first searcher with the probability F (tmin; r(1)

0 ), while other
searchers do not yet locate the target, as signified by the product
of the target survival probability, S(tmin; r(j )

0 ). When the initial
distribution of N searchers is given as p0({r(i)

0 }), the average
of minimum FPT for N -parallel searching, 〈tN 〉, is obtained
by [15]

〈tN 〉 =
N∏

i=1

∫
D∗

ddr(i)
0

∫ ∞

0
dt t FN

(
t ;

{
r(i)

0

})
p0

({
r(i)

0

})
. (5)

Let us introduce the quantities of our interest to com-
pare the two opposite searching strategies mentioned in the
Introduction. For PPS, we suppose that all searchers are
introduced into the searching space at the same position r0, i.e.,
p0({r(i)

0 }) = ∏
i δ(r(i)

0 − r0). The average of searching time,
defined as minimum FPT, 〈tp,N 〉, is determined by Eq. (5) as

〈tp,N 〉 =
∫ ∞

0
dt t FN (t ; r0)

= N

∫ ∞

0
dt t F (t ; r0)[S(t ; r0)]N−1, (6)

which upon using Eq. (3) and integrating by parts becomes

〈tp,N 〉 =
∫ ∞

0
dt [S(t ; r0)]N. (7)

As a second parallel searching strategy, we consider the
situation where the initial distribution of searchers is uniform
as p0({r(i)

0 }) = (1/V ∗)N , with V ∗ being the volume of the
entire domain, except for the region occupied by the target.
The average of minimum FPT, 〈tu,N 〉, for UPS can be obtained
from Eq. (5) as

〈tu,N 〉 =
∏

i

∫
D∗

(
ddr(i)

0

V ∗

)∫ ∞

0
dt t FN

(
t ;

{
r(i)

0

})
. (8)

Using Eqs. (3) and (4) and again integrating Eq. (8) by parts,
we obtain an expression for the average minimum FPT,

〈tu,N 〉 =
∫ ∞

0
dt

[
S(t)

]N
, (9)

where S(t) is the global survival probability, the survival
probability averaged over all possible initial positions:

S(t) = 1

V ∗

∫
D∗

ddr0 S(t ; r0). (10)
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The searching times, Eqs. (7) and (9), are the key quantities
of our analysis on the parallel searching strategy, and we are
going to scrutinize their dependence on N , initial location,
and dimensionality. For the sake of analytic treatment, it is
necessary to obtain the explicit expression of the survival
probability, an essential quantity to determine the searching
times. However, since it cannot be solved exactly, we must
consider an approximation to effectively describe the behavior
of the survival probability.

In general, the probability distribution function p(r,t ; r0),
the solution to the diffusion equation (1), is expressed in terms
of the eigenfunction expansion [29],

p(r,t ; r0) =
∞∑

n=1

φ∗
n(r)φn(r0)e−λnDt , (11)

where φn(r) and λn are the nth eigenfunction and eigenvalue
of the Laplace operator, respectively. Each eigenmode expo-
nentially decays in time t with respective decay time 1/(λnD).
The survival probability S(t ; r0) then reads as

S(t ; r0) =
∞∑

n=1

∫
D∗

ddrφ∗
n(r)φn(r0)e−λnDt

≡ (1 − q(r0))e−λ1Dt + q(r0)f (t ; r0), (12)

where λ1 is the smallest eigenvalue, λ1 < λn(n � 2). In the
above, terms are separated into the slowest decaying one with
λ1 and the other terms decaying faster with λn(n � 2). They
have the respective statistical weights of 1 − q(r0) and q(r0).
In the long-time limit, the eigenmode with the longest decay
time characterizes the diffusive dynamics, and the asymptotic
survival probability decays as a single exponential function of
time. For a random walk on dimensions greater than one (d �
2), the lowest eigenvalue gives the global mean first-passage
time τ of a single searcher as τ = 1/(Dλ1) [20], leading to the
following expression of the survival probability:

S(t ; r0) = [1 − q(r0)]e−t/τ + q(r0)f (t ; r0). (13)

For d � 2, this approximation, based on a time-scale sepa-
ration of the searching process, is useful and gives results
consistent with previous studies. For example, in Ref. [27] it
was found that in the large volume limit, the first-passage time
distribution shows a universal behavior such as

F (t ; r0) = �(r0)e−t/τ + [1 − �(r0)]δ

(
t

τ

)
, (14)

where the probability distribution is well described at the time
scales of τ by a long-time tail given by a single exponential
decay and by a short-time δ function. The so-called geometric
factor �(r0) represents the statistical weight of trajectories
touching the domain boundary before reaching the target.
Since the FPT distribution F (t ; r0) is related to the survival
probability through Eq. (3), the factor of 1 − q(r0) represents
the statistical weight of the same trajectories in the survival
probability and f (t ; r0) is given by a step function.

Using the results presented above, we will put forward an-
alytic formulations for minimum FPT, asymptotically valid in
the limiting cases of small or large N . For quantitative analysis
we will also perform numerical simulations in the following
sections, which explain well the analytic results. From now
on, we let the target position be at the origin, i.e., rT = 0.

III. PARALLEL SEARCHING BY UNIFORMLY
DISTRIBUTED SEARCHES

Consider a parallel search with N searchers uniformly
distributed over the searching space at t = 0. For analytic
treatments, we consider the asymptotic behaviors of survival
probability and averaged minimum FPT in the small or large
N limit, separately.

In the small N limit [N ≈ O(1)], the searching events are
expected to occur at the time scale comparable to τ , the global
mean FPT of a single searcher. For d � 2, all searchers are
expected to touch domain boundary before arriving at the target
and thus neglect the short-time contribution given by the step
function, f (t ; r0), by taking q(r0) → 0 in Eq. (13). This allows
an approximation,

S(t) = 1

V ∗

∫
D∗

dr0 S(t ; r0) ≈ e−t/τ , (15)

with τ = 1/(Dλ1), which leads to the minimum FPT for UPS
at the small N regime (for a more detailed derivation, see
Appendix A):

〈tu,<〉 =
∫ ∞

0
dt

[
S(t)

]N � τ

N
. (16)

Using the expressions for the global mean first-passage time
τ in terms of the system parameters given in Ref. [20],
the searching time [Eq. (16)] is explicitly written for each
dimension as

〈tu,<〉 �
{

V
2πDN

ln
(

b
a

)
for d = 2

V
4πDaN

for d = 3 ,
(17)

where V is the volume of searching domain in the respective
dimension, e.g., V = πb2 for d = 2 with radius b.

For one-dimensional searching, unlike the case of d � 2,
the condition that all searchers touch the domain boundary
before reaching the target is not valid, even if the target size
is negligible compared to the domain volume. We should use
the whole series of Eq. (11), instead of using only the lowest
eigenvalue term, in order to evaluate global mean FPT for
d = 1. Locating the target at the origin of the searching domain,
we obtain τ = (2b)2/12D, where 2b is the length of the one-
dimensional searching space. Inspired by the Eq. (16), we
suggest an approximate expression for the searching time in
the small N limit as

〈tu,<〉 ≈ b2

3DN
for d = 1, (18)

which is exact when N = 1 and is supposed to give a
reasonable estimation of the searching time if N ≈ O(1). The
validity of Eq. (18) for one-dimensional searching will be
confirmed shortly through numerical simulations.

On the other hand, in the large N (� 1) limit, the searching
time is much smaller than τ , and the previous approximation,
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Eq. (15), neglecting the short-time contribution is no longer
valid even for d � 2. Furthermore, when N → ∞, there are
always a finite number of searchers very close to the target
and almost instantaneously absorbed, in which only short
trajectories directly connecting the initial searcher positions
to the target, without touching a boundary, are dominant. As a
consequence, the short-time contribution to the survival prob-
ability becomes significant, and the first-passage trajectories
must resemble random walks in one dimension. Based on
this argument, we attempt to describe the searching dynamics
for large N in an arbitrary dimension as the first-passage
problem in one dimension. When searchers are uniformly
distributed in an infinite one-dimensional space with a given
density ρ ≡ N/V , the global survival probability in Eq. (10)
in the presence of N searchers is approximated by the survival
probability of a target [30]

[
S(t)

]N = exp

(
−4ρ

√
Dt

π

)
(19)

for the target presenting an absorbing boundary at the center.
In obtaining Eq. (19), we used the survival probability in
an infinite space, which is a valid approach despite the
finite searching domain considered in our work, because the
contribution of boundary-touching trajectories is negligible.
Using Eq. (9), we obtain the minimum FPT in one dimension
for large N � 1,

〈tu,>〉 = π

8Dρ2
, (20)

which is in agreement with the result of Ref. [24]. For other
dimensions, ρ in Eq. (20) should be replaced with the effective
one-dimensional density of searchers near the target when
N → ∞. The total number of searchers absorbed through
the target boundary per unit time is given by integrating
the flux over the target surface as −2D(∂ρ/∂x)∂T for d = 1
and −AD(∂ρ/∂n̂)∂T for d = 2,3, respectively. Here n̂ is
a unit outward normal at the target boundary and A is
the target surface area in d dimension, e.g., A = 2πa for
d = 2. Assuming a uniform initial distribution, this defines
the effective one-dimensional density as ρ = (N/V )(A/2).
The factor of 2 appears because we consider the situation in
Eq. (19) where the target is at the origin and the searchers
can be absorbed from both sides. According to Eq. (20), the
searching time is now expressed more explicitly for N � 1 as

〈tu,>〉 ≈

⎧⎪⎪⎨
⎪⎪⎩

π
2D

(
b
N

)2
for d = 1

π
8D

(
b
a

)2( b
N

)2
for d = 2

π
18D

(
b
a

)4( b
N

)2
for d = 3 .

(21)

Comparing 〈tu,<〉 and 〈tu,>〉 in Eqs. (17) and (21), we can
estimate the number of searchers where the N dependence of
average searching time is changed from the small N behavior
(∼1/N ) into the large N behavior (∼1/N2). This crossover
number N1 for the uniform searcher distribution is given by

N1 =

⎧⎪⎪⎨
⎪⎪⎩

3π
2 for d = 1

π
4

(
b
a

)2 1
ln(b/a) for d = 2

π
6

(
b
a

)3
for d = 3 .

(22)

FIG. 1. The searching times, defined as mean minimum FPT, for
UPS as a function of rescaled searcher number, N/N1. Symbols show
the simulation data for various ratios of domain-to-target size, b/a, in
d dimension (d = 1,2,3). All the simulation data coalesce to a single
curve, displaying the universal behaviors in the small (solid) or large
(dotted line) N limit given by Eq. (23).

For the estimation of N1, we assumed that for the small
N regime, 〈tu,<〉 follows τ/N even in the case of d = 1,
with the assumption of sharp time-scale separation, i.e., a
single exponential approximation for the survival probability
is not strictly valid in compact random walks. For d � 2,
the crossover number N1 roughly corresponds to the number
of lattices when the entire searching volume is divided
by a unit cell with the target volume. In one dimension,
N1 ≈ O(1), and the large N regime is realized for relatively
small N (> N1). Interestingly, when expressed in terms of
dimensionless variables that are normalized by τ and N1,
the mean searching time 〈tu,N 〉 shows a universal behavior,
irrespective of dimensionality, as follows:

N1
〈tu,N 〉

τ
≈

{
N1
N

for N < N1(
N1
N

)2
for N > N1 .

(23)

In Fig. 1 we present the numerical results from Langevin
dynamics simulations where the average of minimum FPT
is measured in a d-dimensional sphere with a target at the
origin. The simulations are performed for different values of
the ratio of the target-to-domain size in various dimensions
(d = 1,2,3). When rescaled by N1 and τ , the simulation
data for the searching time all fall on a single curve, clearly
demonstrating the universal behavior of Eq. (23). When N

is much smaller than the threshold value N1, the searching
time is indeed inversely proportional to N . As N increases,
the searching time shows crossover to 1/N2 behavior around
N � N1, as it is described by an effective one-dimensional
searching of the searchers close to the target. Despite the
absence of the clear time-scale separation, the numerical
results obtained for one-dimensional random searching show a
good agreement with the universal behavior, which motivated
us to introduce the approximate expression of Eq. (18) even
for the one-dimensional case.
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IV. PARALLEL SEARCHING BY POINT-DISTRIBUTED
SEARCHERS

Now we consider the opposite searching strategy where all
searchers start their random searching from the same position
r0. The minimum FPT of PPS is then described by Eq. (7)
using the survival probability.

In the small N limit, we consider the approximate ex-
pression of the survival probability S(t ; r0), Eq. (13), and
neglect the short-time contribution f (t ; r0) to S(t ; r0) when
the target size is sufficiently small compared to the size of
the searching domain, which is valid for d � 2. For the case
of PPS, the survival probability has a strong initial position
dependence through the factor of 1 − q(r0) in Eq. (13) because
the trajectories of all the searchers start at the same initial
position. In fact, the factor q(r0) has asymptotic behaviors,
q(r0) → 1 for r0 → a, and q(r0) → 0 for r0 � a, which will
be explicitly shown later. Here, r0 = |r0 − rT | = |r0|. Due to
the asymptotic behaviors of q(r0), it is reasonable to conjecture
the survival probability for the two limiting cases as

SN (t ; r0) ≈
{
e−Nt/τ for r0 � a

[1 − q(r0)]Ne−Nt/τ for r0 → a.
(24)

This suggests that depending upon the quality of the initial
guess, i.e., how close the initial searcher position is to the target
location, the mean searching time shows two qualitatively
different N dependences (for a more detailed derivation, see
Appendix A):

〈tp,<〉 �
{〈tu,<〉 for r0 � a

(1 − q(r0))N 〈tu,<〉 for r0 → a .
(25)

We note that the above expression is derived by assuming the
dominance of the lowest eigenvalue in the survival probability,
which is valid only in dimensions of d � 2.

In the large N limit, we first consider the one-dimensional
case. When N searchers are initially located at r0 away from
the target in an infinite one-dimensional space, the average
minimum FPT is given as [19]

〈tp,>〉 =
∫ ∞

0
dt erfN

(
r0√
4Dt

)
. (26)

It can further be approximated for large N as [19]

〈tp,>〉 � τD

ln N
, (27)

where τD ≡ r2
0 /4D is a characteristic diffusion time, which

is defined as a time scale for a particle to diffuse over the
initial target-searcher distance, r0. For the three-dimensional
case, an explicit form of f (t ; r0) based on a pseudopotential
approximation by Isaacson and Newby [18] is given in the
limit of small target size as

f (t ; r0) � 1 − D

H (0|r0)

∫ ∞

0
dt ′K(0,t ′|r0,0)

= erf

(
r0√
4Dt

)
, (28)

where the free space form of the propagator is given by
K(0,t ′|r0,0) = exp [−r2

0 /(4Dt)]/(4πDt)3/2, and the pseudo-

Green’s function H (r|r0) satisfies

−∇2H (r|r0) = δ(r − r0) − 1

V
. (29)

In the large N regime, the survival probability is approximated
as

S(t ; r0) ≈ 1 − q(r0) erfc(r0/
√

4Dt), (30)

and we obtain (details are shown in Appendix B)

〈tp,>〉 ≈ τD

ln[Nq(r0)]
, (31)

which with Nq(r0) replaced by N turns out to be identical to
the searching time in one dimension, Eq. (27). Consistently
with our previous conjecture, this result suggests that at the
large N regime, the first-passage trajectories are described by
the one-dimensional random walk, except that the effective
number of searchers is renormalized into Nq(r0). We regard
this weak logarithmic N dependence of searching time as
a common feature of PPS for N � 1 and assume that the
searching time in two dimension follows the same equation,
Eq. (31). A similar result was obtained for the escaping
problem of N (�1) random walkers starting from the same
place: the mean escape time that it takes one of the random
walkers to touch the boundary first is given by Eq. (27)
up to leading order, inversely proportional to ln N , showing
the one-dimensional feature [31–34]. This similarity can be
understood by considering that in the large N limit, the
minimum FPT is determined by the shortest path connecting
the initial searcher position and the absorbing boundary,
irrespective of whether the absorbing boundary is a pointlike
target or multidimensional hypersphere boundary.

The explicit form of q(r0) can be obtained from the
approximation adopted by Condamin et al. [35], in which
the authors approximate the first-passage time density F (t ; r0)
as a summation of a δ function and an exponential function.
Evaluating the survival probability, Eq. (3), by the use of
Eq. (53) of Ref. [35] and comparing the result with Eq. (13),
we obtain

q(r0) = H (rT |r0)

G0(a) + H ∗(rT |rT )
, (32)

while G0(r) is Green’s function in free space, and H ∗(r|r0) =
H (r|r0) − G0(|r − r0) is the regular part of the pseudo-
Green’s function. The vector rT refers the target position,
which is the origin for our case. Especially for the spherical
space with a small target of our interest, we get

q(r0) �
{

ln(b/r0)/ ln(b/a) for d = 2
a/r0 for d = 3.

(33)

The validity of decomposition of F (t ; r0) into a short-time
δ function and a long-time exponential function depends on
the dimensionality. In one dimension, all the eigenvalues
contribute to the probability distribution in Eq. (11) and the
approximation of clear time-scale separation becomes poor,
which makes it difficult to define q(r0) for d = 1 properly.

In Fig. 2, the simulation results are compared with analytic
predictions. If the initial starting position of searchers is far
distant from the target [see Fig. 2(a) for a � r0 ≈ b], the
searching time shows the same behavior with UPS (〈tp,<〉 �
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FIG. 2. The minimum searching times of parallel searching
performed by point-distributed searchers as functions of (rescaled)
searcher number Nq(r0) for d = 2,3 and N for d = 1: (a) when the
initial position of the searcher is far from the target, a � r0 ≈ b, and
(b) when the searchers are initially close to the target, a ≈ r0 � b.
Simulation data (symbols) are in good agreement with the asymptotic
behaviors given by Eq. (25) for the small N limit (solid lines) and
Eq. (31) for the large N limit (dotted lines). The theoretical (solid)
lines for small N are presented only for d = 2,3, because Eq. (25) is
valid for d � 2 (see the text).

〈tu,<〉) at small N , but as N increases, the unique feature
of PPS manifests itself as the logarithmic dependence on
N . If the starting position of searchers happens to be close
to the target [see Fig. 2(b) for a ≈ r0 � b], the minimum
first-passage time has a strong initial position dependence,
〈tp,<〉 � [1 − q(r0)]N 〈tu,<〉, at small N , before entering into
the weak logarithmic N dependence at the large N regime.
As mentioned, q(r0) cannot be defined for d = 1 in the same
way as for higher dimensions. However, in order to emphasize
the universal feature of logarithmic N dependence for large
N [compare Eq. (27) and Eq. (31)], we present the simulation
data for all dimensions together using a common x axis, i.e., as
a function of Nq(r0), which should be read as N for d = 1. It is
interesting to notice that for the large N regime, the simulation
data for 〈tp,N 〉 indeed collapse on a single curve and show the
universal behavior, regardless of dimensionality.

V. DISCUSSION

Using the searching times, defined as the mean minimum
FPTs, obtained in the previous sections, we compare the two
parallel searching strategies for a given number of searchers
and initial searcher-target distance and discuss which one
outperforms in terms of the searching time. In this section, we
focus our discussion on searching in two or three dimensions,
relevant to most of the practical applications of random target
searching. Let us first summarize the results obtained in the
previous sections: As N increases, the searching time of UPS
shows a crossover from 1/N to 1/N2 behavior [Eq. (23)].
The crossover occurs at N1 given by Eq. (22). On the other
hand, as shown in Eq. (25), the searching time of PPS
displays qualitatively different behaviors, depending upon r0,
along with a universal behavior as 〈tp,>〉 ≈ τD/ ln[Nq(r0)] for
large N .

We first consider the regime where the initial searcher
position is far distant from the target (r0 � a). In this regime,
solving 〈tp,<〉|N2 = 〈tp,>〉|N2 , we can determine the crossover
point N2 at which the small N behavior changes into the
large N behavior. Neglecting the logarithmic N dependence
of 〈tp,>〉, it is found that N2 ≈ τ/τD , or more explicitly,

N2 ≈
{(

b
r0

)2
ln

(
b
a

)
for d = 2(

b
r0

)2( b
a

)
for d = 3 ,

(34)

from which one can find that (N2/N1)2 ≈ (a/r0)2 � 1, and
hence N2 much smaller than N1, the crossover number for
UPS, in the considered regime of r0 � a. Figure 3(a) is the
schematic presentation to compare the searching times: For
N < N2, because 〈tp,<〉 ≈ 〈tu,<〉 [see Eq. (25) for r0 � a],
both strategies are indistinguishable in terms of searching time.
For N > N2, 〈tp,>〉 is a logarithmically decaying function, and
therefore the searching time of UPS, algebraically decreasing,
is shorter than PPS.

Next, we consider the opposite regime where the searchers
are initially located close to the target (r0 ≈ a). In this
regime, since 〈tp,<〉 ≈ [1 − q(r0)]N 〈tu,<〉 for small N , 〈tp,<〉
has strong dependence on N and rapidly decreases far below
〈tu,<〉 as N increases. However, if N increases above N2, PPS
enters the large N regime, which is universally characterized
by the weak dependence of 〈tp,>〉 on N as described by
Eq. (31). This behavior of searching time of PPS is presented
in Fig. 3(b). The crossover point of N2 can be determined
by solving 〈tp,<〉 = 〈tp,>〉 for N , and one can also show that
N2 � ln N1 � N1. As increasing N further above N2, 〈tp,>〉
becomes larger than 〈tu,<〉 at a certain number of searchers,
say, N3, which can be obtained from 〈tp,>〉|N3 = 〈tu,<〉|N3 [and
by assuming 〈tp,>〉 ∼ τD] as

N3 ∼
{(

b
r0

)2
ln

(
b
a

)
for d = 2(

b
r0

)2( b
a

)
for d = 3 .

(35)

We note that N3 is given by the same equation for N2 for
r0 � a and gives the upper bound of N at which PPS is the
better strategy. We can also determine the lower bound N4,
above which 〈tp,<〉 is smaller than 〈tu,<〉 by a certain factor α.
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FIG. 3. Schematic diagram of 〈tp,N 〉 and 〈tu,N 〉 as a function
of N when (a) r0 � a or (b) r0 ≈ a. N1 is the crossover searcher
number from the small N to the large N regime for UPS, while N2

is for PPS. N3 and N4 correspond to the upper and lower boundaries
of the region where PPS gives smaller searching times than UPS.
(c) Schematic diagram indicating which parallel searching strategy
performs better in parameter space of r0 and N . Lines represent the
analytic predictions on the domain boundaries, i.e., Eqs. (34)–(36).

Solving 〈tp,<〉|N4 = 〈tu,<〉|N4/α with α > 1, we get

N4 = − ln α

ln[1 − q(r0)]
. (36)

The above discussions can be summarized using a
schematic diagram in Fig. 3(c), presenting the efficient
searching strategy yielding shorter searching times. In the
upper plane of r0 → b, both PPS and UPS are comparable
for N < N2, while UPS gives the better result for N > N2.
The boundary between different regions is given by the locus
of N2. In the lower plane of r0 → a, both are almost equivalent
for N < N4. PPS is superior for N4 < N < N3, and UPS is the
method of choice for N > N3. The crossover loci are described
by N3 and N4 lines.

For quantitative comparisons, we perform Langevin dy-
namics simulations and measure the average of searching
times of the two searching strategies. The simulation results
are shown in Fig. 4, where the average searching times are
compared in the parameter space of the number of searchers
and the initial target-searcher distance. Here, we adopt three
categories to judge effective searching strategies: if 〈tu,N 〉/α <

〈tp,N 〉 < α〈tu,N 〉 is satisfied, the searching times are considered
to be similar and both strategies are equivalent (triangles). If
〈tp,N 〉 < 〈tu,N 〉/α, PCS outperforms UCS (circles), while if
〈tu,N 〉 < 〈tp,N 〉/α, UCS surpasses PCS (crosses). In Fig. 4, we
use different symbols (in the parenthesis) to indicate which

FIG. 4. Diagrams comparing 〈tu,N 〉 and 〈tp,N 〉, obtained from
simulations, as a function of N/N1 and r0/b for (a) d = 2 and
(b) d = 3. The symbols represent three different regions where
〈tu,N 〉/〈tp,N 〉 < 1/α (red crosses), 1/α � 〈tu,N 〉/〈tp,N 〉 � α (black
triangles), and α < 〈tu,N 〉/〈tp,N 〉 (blue circles) with α = 3. Lines
indicate boundaries between different regions, analytically predicted
based on the asymptotic expressions, i.e., using Eqs. (34)–(36).
Small target size is realized by letting b/a = 2.5×103 for d = 2 and
2.5×102 for d = 3. The data are obtained from 101–108 ensembles,
depending upon N , of Langevin dynamic simulations.

category corresponds to the search times calculated at given
locations r0 and N . The boundary of different regions in the
numerical phase diagram can be seen to be well explained by
the analytic lines of Eqs. (34)–(36).

Using the results of analysis shown above, we can determine
which strategy should be employed when the number of
available searchers is given. Overall, PPS is better if the target
position can be precisely predicted, while UPS outperforms if
N is substantially large. However, information on the target
position is not available in advance of performing the searches.
In this case, if we have N less than N2(r0 = b), PPS should be
the method of choice, because either it yields shorter searching
times or the difference in expected searching times is insignifi-
cant for any initial target-searcher distance. On the other hand,
if N > N3(r0 = a) ≈ N1, UPS is always better than PPS. In
the intermediate range of N [N2(r0 = b) < N < N3(r0 = a)],
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it depends on r0, a strategy which performs better. At
higher dimensions, the region where both searching
strategies are comparable expands since the initial position
dependence of searching time becomes weak in noncompact
searches.

VI. SUMMARY

We have addressed the problem of parallel random target
searching where a set of N particles perform independent
searching by diffusion for a small target in d-dimensional
(d = 1,2,3) bounded space. The searching time is defined
as the mean time for the first of N searchers to reach the
target. For parallel random target searching, it is one of the
important questions, especially in the context of the searching
strategy to be chosen, how the searching time depends on
the initial searcher distribution. In answering the question,
we have compared two prototypes of searching strategies:
uniformly distributed parallel searching (UPS) and point-
distributed parallel searching (PPS). When rescaled into a
dimensionless quantity, the searching time of UPS, 〈tu,N 〉,
shows a universal behavior, i.e., crossover from ∼1/N for
small N to ∼1/N2 for large N regimes. The universal
behavior is in excellent agreement with the Langevin dynamics
simulation results obtained for various domain-to-target sizes
in different dimensions. On the other hand, for PPS, the
searching time 〈tp,N 〉 shows a logarithmic dependence on
N in the large N limit, while in the small N limit, it has a
stronger dependence on the initial target-searcher distance r0

as r0 becomes of the order of a. These analytic predictions
were also confirmed by the numerical results. Finally, we have
drawn a diagram where the ratio of searching times of UPS to
PPS is plotted in terms of r0 and N . The parameter spaces are
divided into three regions in which 〈tu,N 〉 is much smaller than,
similar to, or much larger than 〈tp,N 〉. Based on the asymp-
totic expressions, we analytically determined boundaries
between the regions, which qualitatively explain the simulation
results.

There are a number of open problems related to the target
searching by multiple searchers. For example, it would be
intriguing to study the order statistics of PPS and UPS where
one is interested in estimating the first-passage time of the
j th walker that arrives at the target. What was considered
in this work is a special case (with j = 1) of the general
problem. Because the one-dimensional mapping of the first-
passage trajectory is no longer valid even for large N when j

is not a small number, the extension of the present study to the
general problem of the order statistics is nontrivial and poses
an important question to be explored in the future.
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APPENDIX A: DERIVATION OF 〈tu,<〉 AND 〈t p,<〉
FOR TWO OR THREE DIMENSIONS

Here we present a derivation of the searching times for
d � 2 in small target and small N limits (a/b → 0 and N ≈
1). Consider parallel searching of N searchers with an initial
position distribution given as p0(r0). The average of minimum
FPT of this N parallel searching is evaluated from Eq. (5) as

〈tN 〉 =
∫ ∞

0
dt

[∫
D∗

ddr0S(t ; r0)p0(r0)

]N

, (A1)

where we performed the integration by parts. The quantity in
the square brackets of Eq. (A1) corresponds to average survival
probability and will be denoted as S̃(t). Using the eigenfunc-
tion expansion of Eq. (12), S̃(t) can be written in series form as

S̃(t) =
∞∑

n=1

cne
−λnDt , (A2)

where the coefficient cn is given as

cn ≡
∫
D∗

ddr0

∫
D∗

ddrφ∗
n(r)φn(r0)p0(r0). (A3)

The searching time 〈tN 〉 is now obtained by inserting
Eq. (A2) into (A1):

〈tN 〉 =
∫ ∞

0
dt

[ ∞∑
n=1

cne
−λnDt

]N

=
∫ ∞

0
dt

∑
{kn}

(
N !

∞∏
n=1

1

kn!
ckn

n e−knλnDt

)

= N !cN
1

λ1D

∑
{kn}

( ∞∏
n=1

ckn
n

kn!ckn

1

)
1

∞∑
n=1

kn
λn

λ1

, (A4)

where multinomial theorem is used in the second equality and
summation with {kn} runs over all possible combinations of
non-negative integers kn with a constraint of

∑∞
n=1 kn = N . It

can be shown in the small target limit that when d � 2, the
principal eigenvalue converges to zero as [20]

lim
a/b→0

λ1 = 0, (A5)

while the other eigenvalues remain finite. Accordingly, the ra-
tio λn
=1/λ1 diverges, which implies that the only nonvanishing
term in Eq. (A4) satisfies k1 = N and kn
=1 = 0. Therefore, the
searching time is obtained as

〈tN 〉 = cN
1

Nλ1D
. (A6)

For UPS, the coefficient c1 can be evaluated by putting
n = 1 and p0(r0) = (V ∗)−1 in Eq. (A3). When d � 2, the
asymptotic behavior of the principal eigenfunction is given in
the small target limit as [20]

lim
a/b→0

φ1(r) = 1√
V

. (A7)
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Note that V ∗ converges to V in the small target limit, which
leads to lima/b→0 c1 = 1. Now, we obtain the mean minimum
FPT for UPS in the small N limit as

〈tu,<〉 = 1

Nλ1D
, (A8)

which becomes Eq. (16) with the relation τ = 1/(Dλ1).
For PPS, the initial position distribution is given as the δ

function p0(r0) = δ(r0 − ri), and the coefficient c1 attains an
initial position dependence as c1(ri). Comparing Eqs. (12) and
(A2), we rewrite c1(ri) as

c1(r0) = 1 − q(r0), (A9)

where we substitute r0 for ri . Combining Eqs. (A6) and (A9),
the mean minimum FPT for PPS in the small N limit is
obtained as

〈tp,<〉 = (1 − q(r0))N 〈tu,<〉. (A10)

Similarly to the case of UPS, the value of q(r0) in a small
target limit can be evaluated by using the asymptotic behavior
of the principal eigenfunction shown in Eq. (A7), which
leads to lima/b→0 q(r0) = 0 for r0 � a. If r0 is of the order
of a, however, q(r0) does not necessarily converge to zero
but remains finite [e.g., see Eq. (33)]. Taking these obser-
vations into consideration, we write the equation for 〈tp,<〉
as follows:

〈tp,<〉 �
{〈tu,<〉 for r0 � a

(1 − q(r0))N 〈tu,<〉 for r0 → a .

APPENDIX B: DERIVATION OF 〈t p,>〉
FOR A THREE-DIMENSIONAL SEARCH

The three-dimensional searching time for PPS in the large
N regime can be written as

〈tp,>〉 =
∫ ∞

0
dtSN (t ; r0)

=
∫ ∞

0
dt

[
1 − q(r0)erfc

( |r0|√
4Dt

)]N

,

by using Eqs. (7) and (30). In the small target size limit, q(r0)
is a very small number since it is proportional to a. Using the
smallness of q(r0), we convert SN (t ; r0) as follows:

SN (t ; r0) � exp

[
N ln

{
1 − q(r0)erfc

( |r0|√
4Dt

)}]

� exp

[
−Nq(r0)erfc

( |r0|√
4Dt

)]

� exp

[
Nq(r0) ln

{
erf

( |r0|√
4Dt

)}]

= erfNq(r0)

( |r0|√
4Dt

)
. (B1)

Comparing Eqs. (26) with Eq. (B1), we find that a three-
dimensional searching time can be obtained by replacing
N with Nq(r0) from the one-dimensional searching time,
Eq. (27). As a result, we obtain Eq. (31):

〈tp,>〉 ≈ τD

ln[Nq(r0)]
.
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