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The scaling function F (s) in detrended fluctuation analysis (DFA) scales as F (s) ∼ sH for stochastic processes
with Hurst exponent H . This scaling law is proven for stationary stochastic processes with 0 < H < 1 and
nonstationary stochastic processes with 1 < H < 2. For H < 0.5, it is observed that the asymptotic (power-law)
autocorrelation function (ACF) scales as ∼ s1/2. It is also demonstrated that the fluctuation function in DFA is
equal in expectation to (i) a weighted sum of the ACF and (ii) a weighted sum of the second-order structure
function. These results enable us to compute the exact finite-size bias for signals that are scaling and to employ
DFA in a meaningful sense for signals that do not exhibit power-law statistics. The usefulness is illustrated by
examples where it is demonstrated that a previous suggested modified DFA will increase the bias for signals with
Hurst exponents 1 < H � 1.5. As a final application of these developments, an estimator F̂ (s) is proposed. This
estimator can handle missing data in regularly sampled time series without the need of interpolation schemes.
Under mild regularity conditions, F̂ (s) is equal in expectation to the fluctuation function F (s) in the gap-free case.
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I. INTRODUCTION

Detrended fluctuation analysis (DFA) was introduced in a
study of long-range dependence in DNA sequences [1]. It has
later been applied in a wide range of scientific disciplines [2].
Some recent examples are found in scientific studies of climate
[3], finance [4], and medicine [5]. The most common usage
of DFA is to estimate the Hurst exponent. The assumption is
then that the second moment of the fluctuations of the input
signal, after these have been averaged over a time scale s,
is a power-law function of s. This property is called scale
invariance, or just scaling. In the context of DFA, the scaling
assumption implies that the DFA fluctuation function F (s)
takes the form of a power law

EF 2(s) ∼ s2H , (1)

where E denotes the expectation, i.e., the ensemble mean.
Important examples of stochastic processes X(t) with

scaling properties are self-similar and multifractal models;
see, e.g., Ref. [6]. For this large class of models, the existing q

moments satisfy E|X(t + t0) − X(t0)|q ∝ t ζ (q). In particular,
if the variance is finite, the second moments are scaling and the
Hurst exponent H is defined by the relation ζ (2) = 2H − 2.
The power law of the DFA fluctuation function in this case (1 <

H < 2) has been established empirically. A mathematical
proof has not been published prior to this paper, except for
random walks (H = 1.5) [7,8].

For stationary stochastic processes X(t) with scaling second
moments, the Hurst exponent is in the range 0 < H < 1.
For H = 0.5, X(t) is white noise, while H �= 1/2 implies
an autocorrelation function (ACF) ρ(τ ) of the form [9]

ρ(τ ) ∼ H (2H − 1)τ 2H−2. (2)

For H < 1/2 the ACF is negative for all time lags τ �= 0, while
for H > 1/2 the ACF is positive. Moreover, in the persistent
case (H > 1/2), the ACF decays so slowly that the series∑∞

τ=−∞ ρ(τ ) diverges.
In the case of a stationary input signal X(t), with Hurst

exponent 0 < H < 1, Eq. (1) has been partially proven in the
past. Taqqu et al. [10] constructed a proof for DFA1. DFAm,

or DFA of order m, means that a mth order polynomial is
applied in the DFA algorithm (Sec. III A). For Hurst exponents
restricted to the range 0.5 < H < 1, the proof has been
extended to include higher order polynomials m � 1 [8]. In
this paper, another observation is made: For 0 < H < 0.5, in
order for Eq. (1) to be satisfied, only the exact autocovariance
function (acvf) gives the correct result. If the asymptotic acvf
is employed, then EF 2(s) ∼ s.

For stationary signals, Höll and Kantz [8] showed that the
squared DFA fluctuation function is equal in expectation to a
weighted sum of the acvf γ (·):

EF 2(s) = γ (0)G(0,s)s−1 + 2s−1
s−1∑
j=1

G(j,s)γ (j ), (3)

where the weight function G(j,s) will be defined in Sec. III.
In this paper, a more general result is presented:

EF 2(s) = −1

s

s−1∑
j=1

G(j,s)S(j ), (4)

where S(t) = E[X(t + t0) − X(t0)]2, which also holds for
nonstationary stochastic processes with stationary increments.
The quantity S(t) is known as the variogram. We note that the
relationship between DFA and the power spectral density was
derived, partly based on numerical calculations, by Heneghan
and McDarby [11].

Equations (3) and (4) have applications beyond proving
Eq. (1). For instance, one can compute the exact finite-size
bias for scaling signals and make meaningful use of DFA
for signals that are not scaling. In Kantelhardt et al. [2], the
bias of DFA for stochastic processes with Hurst exponents in
the range 0.5 � H < 1 was found by means of Monte Carlo
simulations, using long time series of synthetically generated
fractional Gaussian noises. An analytical study of the behavior
of DFA for autoregressive processes of order 1 [AR(1)] was
investigated by Höll and Kantz [8]. In the present paper, the
usage of Eqs. (3) and (4) is demonstrated by simple extensions
of the aforementioned examples.
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An important application of the theoretical developments
presented in this paper is the construction of estimators
(modifications of the DFA fluctuation function) that can
handle missing data in regularly sampled time series. One
simple way of handling missing data is to apply linear
interpolation, random resampling, or mean filling. However,
this will typically destroy, or add, artificial correlations to the
time series under study. The effect on DFA using these three
gap-filling techniques was examined by Wilson et al. [12]
for signals with Hurst exponents 0 < H < 1. It was found
that these interpolation schemes introduce significant deviation
from the expected scaling. In contrast, the expected value of
the modified fluctuation proposed here is equal to the expected
value of the ordinary fluctuation function in the gap-free case.
For the wavelet variance, estimators that can handle missing
data in a proper statistical way were presented by Mondal
and Percival [13]. These wavelet variances are similar in
construction to the DFA estimators presented here.

This paper is organized as follows. In Sec. II, the definition
of Hurst exponent adopted in this paper is reviewed. Examples
of stochastic processes with well-defined Hurst exponents are
given. Section III presents the relationship between the DFA
fluctuation function and the acvf and variogram, and the proof
of Eq. (1). Examples of applications are given in Sec. III: bias
for scaling signals, DFA of Ornstein-Uhlenbeck processes, and
modification of the DFA fluctuation function to handle missing
data.

II. HURST EXPONENT

A. Definition and properties

Let X(t) be a stochastic process with mean EX(t) = 0. If
(i) X(t) is nonstationary with stationary increments and

E[X(t + t0) − X(t0)]2 ∝ t2H−2,

or (ii) X(t) is stationary and

E[Y (t + t0) − Y (t0)]2 ∝ t2H , Y (t) =
t∑

k=1

X(k),

then we define H to be the Hurst exponent of the process
X(t). The Hurst exponent determines the correlation at all
time scales. Assume that X(t) has Hurst exponent 1 < H < 2,
i.e., X(t) is nonstationary. Then,

2X(t)X(s) = X(t)2 + X(s)2 − {X(t) − X(s)}2.

By stationary increments,

E{X(t) − X(s)}2 = EX(|t − s|)2,

it follows that

EX(t)X(s) = σ 2

2
{|s|2h + |t |2h − |t − s|2h}, (5)

with EX(1)2 = σ 2 and h = H − 1. The increment process
�X(t) = X(t) − X(t − 1) has Hurst exponent h. The acvf
γ (τ ) of the increments follows from (5), and is given by

γ (τ ) = σ 2

2
(|τ + 1|2h − 2|τ |2h + |τ − 1|2h). (6)

TABLE I. Examples of stochastic processes with well-defined
Hurst exponents H . Finite variance is assumed in all examples.

Stochastic process Hurst exponent

White noise H = 1/2
Random walks H = 3/2
Fractional Gaussian noise 0 < H < 1
Fractional Brownian motion 1 < H < 2
h-self-similar processes H = h + 1
Scaling function ζ (q) H = ζ (2)/2 + 1

For h = 1/2, the increment process is white noise, while for
h �= 1/2 the acvf is asymptotically a power law,

γ (τ ) ∼ σ 2

2

d2

dτ 2
t2h = σ 2h(2h − 1)τ 2h−2,

as τ → ∞. Thus, h �= 1/2 implies dependent increments.
Choosing 0 < h < 1/2 results in negatively correlated in-
crements, while for h > 1/2 the increments are persistent.
Moreover, in the persistent case, the acvf decays so slowly
that the series

∑∞
τ=−∞ γ (τ ) diverges.

B. Examples

Hurst exponent in the range 1 < H < 2 and X(t) Gaussian
distributed defines the class of fractional Brownian motions
(fBm’s). The corresponding increment process is known as
a fractional Gaussian noise (fGn’s) [14]. An fBm is an
example of a self-similar process. By definition, self-similar
processes X(t), with self-similar exponent h, satisfy the the
scale invariance

X(at)
d= M(a)X(t), (7)

where M(a) = ah [15], and
d= denotes equality in finite-

dimensional distributions. The class of log-infinitely di-
visible multifractal processes [16,17] also satisfy Eq. (7),
but now M(a) is random variable with an arbitrarily log-
infinitely-divisible distribution. The scaling law Eq. (7) implies
E|X(t + t0) − X(t0)|q ∝ t ζ (q). Thus, if the second moments
exist, the Hurst exponent H is given by the relation ζ (2) =
2H − 2. These examples are summarized in Table I. We
emphasize that neither multifractality nor self-similarity is
needed to have a process with well-defined Hurst exponent.
An example is the class of smoothly truncated Lévy flights
(STLF’s) [18]. For STLF’s all moments exist, and the property
of stationary and independent increments implies a Hurst
exponent H = 1.5. The STLF behaves like a Lèvy flight on
small time scales, while on long time scales, the statistics
are close to Brownian motion [19]. Thus, it is clearly neither
self-similar nor multifractal, which was proven in Ref. [20].

III. DETRENDED FLUCTUATION ANALYSIS

A. DFA algorithm

Let X(1),X(2), . . . ,X(n) be the input to DFA. The first step
in DFA is to construct the profile

Y (t) =
t∑

k=1

X(k).
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For a given scale s, one considers windows of length s. In
each window, a polynomial of degree m is fitted to the profile.
Subtracting the fitted polynomial from the profile gives a set
of residuals. From these residuals the variance is computed.
We denote by F 2

t (s) the residual variance. The squared
fluctuation function F 2 is the average of F 2

t . To express the
residual variance mathematically, we introduce some notation.
Define the vector Y(t) = [Y (t + 1),Y (t + 2), . . . ,Y (t + s)]T .
Let B be the (m + 1) × s design matrix in the ordinary least
square (OLS) regression. That is, row k of B is the vector
(1k−1,2k−1, . . . ,sk−1). Define

Q = BT (BBT )−1B, (8)

which is known as the hat matrix in statistics. The residual
variance is given by

F 2
t (s) = 1

s
Y(t)T (I − Q)Y(t), (9)

where I is the (s × s) identity matrix.

B. How DFA relates to variogram and acvf

It is convenient to express the squared fluctuation function
explicitly in terms of the input series. Let X(t) = [X(t +
1),X(t + 2), . . . ,X(t + s)]T . We define the s × s matrix D by
letting element (i,j ) of D be unity if i � j and zero otherwise.
Left multiplying D with X(t) gives the vector of cumu-
lative sums (X(t + 1),X(t + 1) + X(t + 2), . . . ,

∑s
k=1 X(t +

k)). Define

A = DT (I − Q)D,

and let ak,j be element (k,j ) of the matrix A. The fluctuation
function can be written

F 2
t (s) = 1

s
X(t)T AX(t)

= 1

s

s∑
k=1

s∑
j=1

ak,jX(t + k)X(t + j ). (10)

In the definition of DFA, the profile is constructed for the
entire time series prior to windowing. Equation (10) states that
constructing the profile in each window gives the same residual
variance (squared fluctuation function). Another form of the
residual variance is

F 2
t (s) = − 1

2s

s∑
k=1,j=1

ak,j [X(t + k) − X(t + j )]2. (11)

The proofs of Eqs. (10) and (11) can be found in Appendix A.
In the sequel, we make the assumption that X(t) = T (t) +

Z(t), where Z(t) is a stochastic process with mean zero and
acvf γ (t,s). The deterministic part T (t) of the input signal is
a trend modeled as a polynomial of order q less than the order
m of DFA (see Appendix A for precise form of the trends).
For simplicity, we consider in this section the case T (t) = 0
and postpone showing that the results are valid also for trends
with q < m to Appendix A.

TABLE II. The weight function G(j,s) for DFA1 and DFA2.

m G(j,s)

1
(j−s−1)(j−s)(j−s+1)(3j2+9js−2s2+8)

30s(s2−1)

2 − (j−s−1)(j−s)(j−s+1)[10j4+30j3s+2j2(9s2+19)+2js(67−13s2)+3(s4−13s2+36)]
70s(s4−5s2+4)

By applying the expectation operator to Eq. (10), it is seen
that

EF 2
t (s) = 1

s

s∑
k=1

s∑
j=1

ak,j γ (t + k,t + j ). (12)

If we add the further restriction of stationarity of the process
X(t), Eq. (12) simplifies to Eq. (3), with γ (t) = γ (0,t) and

G(j,s) =
s−j∑
k=1

ak,k+j . (13)

While Eq. (12) appears to be time dependent when X(t) is
nonstationary with stationary increments, this is not the case.
To establish that EF 2

t (s) does not depend on the window t ,
one can apply the expectation operator to Eq. (11). The result
is Eq. (4), with G(j,s) being the weight function defined in
Eq. (13). Since EF 2

t (s) does not depend on the window t , it
follows that EF 2

t (s) = EF 2(s).
The weight functions G(j,s) can be computed exactly. In

this work, this has been done by means of MATHEMATICA.
The weight function for DFA1 and DFA2 are listed in Table II,
while the maps j �→ G(j,100) for DFA2 and DFA5 are shown
in Fig. 1.

C. Proof of DFA scaling

We are now in a position to prove

EF 2(s) ∼ λm,H s2H (14)

for input signals X(t) with Hurst exponent H ∈ {(0,1) ∪
(1,2)}. We assume EX(t)2 = 1. In Appendix B, we derive
the asymptotic weight function Gasym(j,s) ∼ G(j,s), which
takes the form

Gasym(j,s) =
{∑2m+3

q=0 s2−qjqdq if j > 0,

d0s
2 if j = 0.

Expressions for the coefficients {dq} can be found in Ap-
pendix B. The values of {dq} for orders m � 6 are listed in
Table III.

For H > 1, using Eq. (4) and the asymptotic weight
function yields the asserted scaling:

EF (s)2 ∼ −s2H

2m+3∑
q=0

s1−qdq

s−1∑
j=1

jq+2H−2

∼ −s2H

2m+3∑
q=0

dq

q + 2H − 1
.
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FIG. 1. Map j �→ G(j,100) for (a) DFA2 and (b) DFA5. The
weight function G(j,s) is defined in the text.

In the stationary case 0 < H < 1, using Eq. (3), we find

EF 2(s) ∼ s d0γ (0) + 2
2m+3∑
q=0

s1−qdq

s−1∑
j=1

jqγ (j ). (15)

White noise (H = 1/2) is trivial:

EF (s)2 ∼ s d0.

For 1/2 < H < 1, in Eq. (15) the second term dominates the
first term. Coupled with the asymptotic form of the acvf we
have

EF (s)2 ∼ 2H (2H − 1)
2m+3∑
q=0

s1−qdq

s−1∑
j=1

jq+2H−2

∼ s2H 2H (2H − 1)
2m+3∑
q=0

dq

q + 2H − 1
.

TABLE III. The coefficients {dq} for DFA of order m = 1,2, . . . ,6.

q 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m = 1 1
15 − 1

2 1 − 2
3 0 1

10

m = 2 3
70 − 1

2
3
2 − 3

2 0 3
5 0 − 1

7

m = 3 2
63 − 1

2 2 − 8
3 0 2 0 − 8

7 0 5
18

m = 4 5
198 − 1

2
5
2 − 25

6 0 5 0 −5 0 25
9 0 − 7

11

m = 5 3
143 − 1

2 3 −6 0 21
2 0 −16 0 15 0 − 84

11 0 21
13

m = 6 7
390 − 1

2
7
2 − 49

6 0 98
5 0 −42 0 175

3 0 −49 0 294
13 0 − 22

5

For 0 < H < 1/2, the leading terms in Eq. (15) scale as
s, but those leading terms cancel and we end up with the
same formula as above. To see this, denote by ρ(τ ) the
autocorrelation function (ACF), i.e., ρ(τ ) = γ (τ )/γ (0). It
is well known that

∑∞
j=−∞ ρ(τ ) = 0 (e.g., Ref. [9]). Since

ρ(0) = 1, and the ACF is a symmetric function, we have
−γ (0)/2 = ∑∞

j=1 γ (τ ). Thus

EF (s)2 ∼ −2d0s

∞∑
j=s

γ (j ) + 2
2m+3∑
q=1

s1−qdq

s−1∑
j=1

jqγ (j )

∼ −2d0sH (2H − 1)
∞∑

j=s

j 2H−2

+ 2H (2H − 1)
2m+3∑
q=1

s1−qdq

s−1∑
j=1

jq+2H−2

∼ s2H 2H (2H − 1)
2m+3∑
q=0

dq

q + 2H − 1
.

IV. APPLICATION

A. Bias for scaling signals

In Kantelhardt et al. [2], the bias (of the DFA fluctuation
function) for Hurst exponents H = 0.5,0.65,0.9 was found
by means of Monte Carlo simulations. From this bias they
proposed the modified DFA fluctuation function

F 2
mod(s) = F 2(s)

K2(s)
, (16)

with

K2(s) = EF 2(s)τ 2H

EF 2(τ )s2H
.

If we assume τ is large, such that EF 2(τ ) = λm,H τ 2H holds
(approximately), then

K2(s) = EF 2(s)

λm,H s2H
, (17)

which implies EF 2
mod(s) = λm,H s2H .

Equation (3) can be used to compute the bias, i.e., the
difference between the fluctuation function and asymptotic
scaling, for signals with Hurst exponents 0 < H < 1. An
example is shown in Fig. 2(a), where we have used H = 0.9.
This gives a result similar to that provided by Kantelhardt
et al. [2] [see their Fig. 2(a)] since the only difference between
the analytical and Monte Carlo method is the negligible error
caused by finite sample length for the latter.

Equation (4) can also be used to compute the bias for signals
with Hurst exponents 1 < H < 2. Fluctuation functions with
corresponding asymptotic scaling for H = 1.1 are shown in
Fig. 2(b).

The correction functions Eq. (17) for H = 0.9 and H =
1.1 are shown in Fig. 3. A practical problem is that K(s)
depends on the (unknown) Hurst exponent. In Ref. [2], this
dependence was found to be weak for H = 0.5,0.65,0.9.
Based on this finding, the authors suggested using Eq. (16)
with the correction function for H = 0.5. While using this
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FIG. 2. Detrended fluctuation analysis for input signals with
Hurst exponent (a) H = 0.9 and (b) H = 1.1. In both panels (a) and
(b), the graphs from bottom to top correspond to DFA of increasing
order m, from m = 1 (bottom) to m = 6 (top). Dashed lines are
the asymptotic scaling λ

1/2
m,H sH (see text). The squared fluctuation

functions have been shifted by factors 10m−1.

modified DFA will improve the scaling for 0.5 � H < 1, it
will actually increase the bias for signals with Hurst exponents
1 < H � 1.5. For H = 0.9 and H = 1.1, this can be seen
from Figs. 2 and 3, while the results (as in Fig. 2) for a
higher resolved set of exponents are found in the Supplemental
Material [21]. We observe that the bias has different signs for
0.5 � H < 1 and 1 < H � 1.5 and is greater (in absolute
value) for Hurst exponents close to unity.

B. Ornstein Uhlenbeck processes

Another application is to study the behavior of DFA for
signals that are not scaling. Here we consider the class of
Ornstein-Uhlenbeck (OU) processes. An OU is the solution to
the Langevin equation

dX(t) = − 1

τ
X(t)dt + σdB(t), (18)

where B(t) is a standard [EB(1)2 = 1] Brownian motion,
σ > 0 is a scale parameter, and τ > 0 is the characteristic
correlation time. We choose initial condition such that X(t) is
stationary. This implies that the autocovariance function takes

FIG. 3. The correction function K(s) for input signals with Hurst
exponent (a) H = 0.9 and (b) H = 1.1 In both panels (a) and (b), the
graphs from bottom to top correspond to DFA of decreasing order m,
from m = 6 (bottom) to m = 1 (top). The correction functions has
been shifted by factors 1.36−m.

the form

EX(t)X(s) = exp(−|t − s|/τ )

2σ 2
. (19)

Again, we can use Eq. (3) to compute the expected value of
the squared DFA fluctuation. An example is shown in Fig. 4.

While OU processes do not have well-defined Hurst
exponents as defined in Sec. II, the second moment scales
asymptotically: On long time scales (τ → ∞), X(t) is white
noise, while on short time scales (τ → 0), X(t) converges to
a Brownian motion. Thus, for the DFA fluctuation function,
we should expect a scaling exponent close to H = 0.5 on
long time scales. It is seen in Fig. 4 that this holds. On small
time scales, there exists bias in DFA for signals that exhibit
scaling behavior. Relevant here is the bias for random walks
(H = 1.5). In Fig. 4, it is seen that the OU DFA fluctuation
function, with τ = 20, is consistent with random walks on
small time scales.

We note that an AR(1) is an discretized OU process, and
more results on the AR(1) DFA fluctuation function can be
found in Ref. [8].
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FIG. 4. Detrended fluctuation analysis of order 1 for Ornstein-
Uhlenbeck process with characteristic correlation time τ = 20 (blue
curve). The red points are DFA1 for random walks (Hurst exponent
H = 1.5). The slope of the black line is unity, while the slope of the
magenta line is zero.

C. Missing data

Based on Eq. (11), we can modify DFA to handle
missing data. Define δ(t) to be zero if X(t) is missing and
unity otherwise. We make the assumption that at least one
X(t + k)X(t + j ) is nonmissing. A sufficient, but not neces-
sary, condition for this to hold is that at least one window
contain no gaps. Let

pk,j = # of windows

# of nonmissing X(t + k)X(t + j )
.

We propose the estimator

F̂ 2
t (s) = − 1

2s

s∑
k=1,j=1

pk,j ak,j

×[X(t + k) − X(t + j )]2δ(t + k)δ(t + j ). (20)

We define F̂ 2(s) to be the average of F̂ 2
t (s) (averaging over the

different windows t used). Without missing data, the modified
fluctuation function F̂ (s) is the same as the fluctuation function
F (s) in the gap-free case. For a time series with gaps, F̂ (s) is
equal in expectation to F (s).

The equality EF̂ 2(s) = EF 2(s) holds if the input signal
is stationary or nonstationary with stationary increments:
Applying the expectation operator on Eq. (20), we have

EF̂ 2
t (s) = − 1

2s

s∑
k=1,j=1

pk,j ak,j S(|k − j |)

×δ(t + k)δ(t + j ),

and since at least one δ(t + k)δ(t + j ) is assumed nonzero,
the equality EF̂ 2(s) = EF 2(s) follows. Whereas the ordinary
fluctuation function is always non-negative, the modified
fluctuation function can become negative. Practically, one can
resolve this problem by letting the fluctuation function be
undefined if negative values occur.

Examples of time series with gaps are some of the regional
temperatures analyzed in Løvsletten and Rypdal [3]. We
use one of these time series, from the HADCRUT4 data

product [22], to demonstrate the usage of the modified DFA
to handle missing data. The chosen time series is the surface
temperature in the tropical Pacific and is shown in Fig. 5(a).
The modified DFA of this series is presented in Fig. 5(b). In
this work, we use nonoverlapping windows starting from the
left and (modified) DFA of order m = 2. We observe that the
fluctuation function is rather poorly approximated by a power
law. This is an expected result since in Ref. [3] we showed that
an AR(1) model is significantly better than an fGn (power-law)
model for this temperature series due to the influence of the El
Niño southern oscillation (see discussion in Ref. [3]).

Using the same gap sequence as in Fig. 5(a), we compare
the modified DFA with the ordinary DFA by computing the
fluctuation function from an ensemble of 500 fGn’s with Hurst
exponent H = 0.7 and sample size n = 1368 [same sample
size as in Fig. 5(a)]. For each ensemble member, data points
are omitted to construct the same gap sequence as in Fig. 5(a),
and then the modified DFA fluctuation function is computed.
In Fig. 5(c), the results are presented in form of ensemble
means and 90% confidence intervals. The ensemble means
are visually indistinguishable for the modified and ordinary
fluctuation functions, while the uncertainty of the former is
increased due to the gaps.

The increased uncertainty is also seen in the estimated Hurst
exponents; see Fig. 5(e). Here, the estimators are the slopes
from linear regression of log F (s) [and log F̂ (s)] against log s.
The sample means of the estimated Hurst exponents are, from
ordinary and modified DFA respectively, ¯̂Hord = 0.700 and
¯̂Hmod = 0.696.

The same Monte Carlo experiment, with the ordinary and
modified DFA, and using an ensemble of fBm’s with Hurst
exponent H = 1.1, yields results similar to those presented
in Figs. 5(d) and 5(f). In this case, the sample means of
the estimated Hurst exponents are ¯̂Hord = 0.968 and ¯̂Hmod =
0.965.

An alternative estimator, based on Eq. (10), is

F̃ 2
t (s) = 1

s

s∑
k=1,j=1

pk,j ak,j

×X(t + k)X(t + j )

×δ(t + k)δ(t + j ), (21)

and F̃ 2(s) is defined as the average of F̃ 2
t (s). It is straight-

forward to verify that EF̃ 2(s) = EF 2(s) for stationary input
signals. However, for input signals that are nonstationary
with stationary increments, F̃ (s) does not have the desirable
property of equality in expectation to the fluctuation function
F (s) in the gap-free case. As an example, consider a input
signal with Hurst exponent 1 < H < 2. In the gap-free case,
the time-dependent part of the expected squared fluctuation
vanishes, i.e.,

EF 2
t (s) = 1

s

s∑
k=1

s∑
j=1

ak,j (|t + k|2h + |t + j |2h) = 0,

[see Eq. (A1) in Appendix A]. For F̃ 2
t (s) the time-dependent

part will not, in general, vanish. This is due to the additional
multiplicative factors pk,j δ(t + k)δ(t + j ) in Eq. (21).

012141-6



CONSISTENCY OF DETRENDED FLUCTUATION ANALYSIS PHYSICAL REVIEW E 96, 012141 (2017)

FIG. 5. (a) Monthly reconstructed temperature for the 5◦ × 5◦ grid centered at 7.5◦ S, 172.5◦ W. (b) Modified detrended fluctuation analysis
of the time series in panel (a). [(c)–(f)] The results of the Monte Carlo study of DFA explained in Sec. IV C. In panels (c) and (d), the blue
points are the ensemble means of the ordinary fluctuation functions, the magenta crosses are the ensemble means of the modified fluctuation
functions, blue is the 90% confidence interval for the ordinary fluctuation function, and magenta plus blue is the 90% confidence interval for
the modified fluctuation function. [(e), (f)] Blue plus gray is the probability density function (PDF) of ensembles of estimated Hurst exponents
according to the modified DFA, while yellow plus gray is the PDF according to the ordinary DFA.

V. CONCLUDING REMARKS

In this paper, several new propositions for DFA have been
formulated and proven. These include the relationship between
the DFA fluctuation function and the acvf and variogram,
derived from the sample forms in Eqs. (10) and (11). The
results were derived under the assumption that the input signal
in DFA is either stationary or nonstationary with stationary
increments, or one of these superposed on a polynomial trend
of order less than the order of DFA (results on trends not
accounted for by DFA can be found in Hu et al. [23] and

Kantelhardt et al. [2]). For these classes of input signals, the
present paper has established that the residual variance in
different windows are equal in expectation. The power-law
scaling of the DFA fluctuation function has been rigor-
ously proven for stochastic processes with Hurst exponents
H ∈ {(0,1) ∪ (1,2)}.

It has also been demonstrated for these classes of signals
that the new developments of the DFA method can be used
to compute analytically the bias of the DFA estimate. For
this purpose, we used the weight functions and asymptotic
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weight functions. The MATHEMATICA code for these functions
is found in the Supplemental Material [21]. Therein, it is
demonstrated that the modified fluctuation function proposed
by Kantelhardt et al. [2] degrades the scaling property for
scaling input signals with Hurst exponent greater than unity
(1 < H � 1.5).

From an applied physics point of view, the most useful
result of this study may be the method of handling missing
data in DFA proposed in Eq. (20). For ensemble averages, the
modified DFA fluctuation function with missing data is the
same as the DFA fluctuation function without missing data.

Some of the theory presented in this paper is probably
a suitable starting point to prove the correctness of the
multfractal DFA introduced by Kantelhardt et al. [24], as well
as the variance and limiting distribution of the DFA fluctuation
function.
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APPENDIX A: SIMPLE PROOFS

Recall the definition of the weight matrix

A = DT (I − Q)D

and hat matrix

Q = BT (BBT )−1B.

Since Q is a projection matrix, vectors v that are in the row
space of B will be mapped to itself, i.e., Qv = v, and thus
(I − Q)v = 0.

(9) ⇔ (10): Let 1 be a (s × 1) vector of ones. For t > 0 :

Y(t) = DX(t) + 1Y (t).

The proof is completed by noting that 1 is in the the row space
of B.

(10)⇔(11): This equality holds if

s∑
k=1,j=1

ak,j [X(t + k)2 + X(t + j )2] = 0. (A1)

Fix k and consider the sum
s∑

j=1

ak,jX(t + k)2,

which is element k of the vector A1X(t + k)2. We have D1 =
(1,2, . . . ,n)T , which is in the row space of B. Thus A1X(t +
k)2 = 0. Since this holds for all k = 1,2, . . . s, we can conclude
that

s∑
k=1,j=1

ak,jX(t + k)2 = 0.

Since A is a symmetric matrix, we also have

s∑
k=1,j=1

ak,jX(t + j )2 = 0.

In the sequel, it is shown that the relationships between
the DFA fluctuation function and the acvf and variogram
estimators, Eqs. (12) and (4), and the power-law scaling of
the DFA fluctuation function Eq. (14), remain valid when a
polynomial trend is superposed on the signal. Let Z(t) be
a stochastic process with mean zero and acvf γ (t,s). It is
assumed that Z(t) is either stationary or nonstationary with
stationary increments. Define

T (t) = β0 + β1t + · · · + βqt
q, t = 1, . . . ,n,

where q is an integer in the range 0 � q � m − 1. Let

X(t) = T (t) + Z(t).

By Eq. (10), we have

F 2
t (s) = 1

s

s∑
k=1,j=1

ak,jZ(t + k)Z(t + j )

+ 1

s

s∑
k=1,j=1

ak,jZ(t + k)T (t + j )

+ 1

s

s∑
k=1,j=1

ak,j T (t + k)Z(t + j )

+ 1

s

s∑
k=1,j=1

ak,j T (t + k)T (t + j ). (A2)

Since EZ(t) = 0, the middle terms vanish in expectation, and
thus

EF 2
t (s) = 1

s

s∑
k=1,j=1

ak,j γ (t + k,t + j )

+ 1

s

s∑
k=1,j=1

ak,jT (t + k)T (t + j ). (A3)

We have
s∑

k=1,j=1

ak,j T (t + k)T (t + j ) = T(t)T AT(t), (A4)

where T(t) = [T (t + 1), . . . ,T (t + s)]T . One can use the
formulas for sums of powers, e.g., Ref. [25], to verify that
DT(t) is in the row space of B. Hence

s∑
k=1,j=1

ak,jT (t + k)T (t + j ) = 0,

and thus

EF 2
t (s) = 1

s

s∑
k=1,j=1

ak,j γ (t + k,t + j ).
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APPENDIX B: ASYMPTOTIC WEIGHT FUNCTION

The weight matrix can be written

A = DT D − DT QD,

where Q is the hat matrix defined in Eq. (8). Element (i,j ) of
D is one if i � j and zero otherwise. Thus, element (i,j ) in
the first matrix product is

(DT D)i,j = s + 1 − max{i,j}.
Summing the j th (sub)diagonal yields

s−j∑
k=1

(DT D)k,k+j =
s−j∑
k=1

[s + 1 − (k + j )]

= s2/2 − sj + s/2 + j 2/2 − j/2

∼ s2/2 − sj + j 2/2. (B1)

Computing the term DT QD is more tedious, but straight-
forward. The starting point is the hat matrix Q. Denote by
(BBT )−1

i,j element (i,j ) of the inverse of BBT . By observing
that column j of B is (j 0,j 1, . . . ,jm), it is seen that

Qp,q =
m+1∑

d=1,l=1

pd−1ql−1(BBT )−1
d,l ,

[DT QD]i1,i2 =
s∑

k1=i1

s∑
k2=i2

Qk1,k2

=
s∑

k1=i1

s∑
k2=i2

m+1∑
d=1,l=1

kd−1
1 kl−1

2 (BBT )−1
d,l

∼
m+1∑

d=1,l=1

(
sd − id1

)(
sl − il2

)
/(dl)(BBT )−1

d,l .

(B2)

Using the asymptotic expression of BBT ,

(BBT )i,j =
s∑

t=1

t i+j−2 ∼ si+j−1

i + j − 1
,

one can use the definition of the inverse matrix to verify that

(BBT )−1
d,l ∼ c̃d,l/s

d+l−1. (B3)

Inserting Eq. (B3) into Eq. (B2) yields

[DT QD]i1,i2 ∼
m+1∑

d=1,l=1

(
sd − id1

)(
sl − il2

)
cd,l/s

d+l−1,

where we have defined cd,l = c̃d,l/(dl). Summing the j th
(sub)diagonal yield

s−j∑
k=1

(DT QD)k,k+j

∼
s−j∑
k=1

m+1∑
d=1,l=1

(sd − kd )(sl − (k + j )l)cd,l/s
d+l−1

∼
m+1∑

d=1,l=1

cd,l

(
s2 − sj − s2

l + 1
+ s1−lj l+1

l + 1

)
(B4)

−
m+1∑

d=1,l=1

cd,l

s−d+1(s − j )d+1

d + 1
(B5)

+
m+1∑

d=1,l=1

cd,l

l∑
r=0

(
l

r

)
(s − j )d+l+1−r j r

(d + l + 1 − r)sd+l−1
(B6)

=
2m+3∑
q=0

s2−qjqbq. (B7)

The terms (B4)–(B6) can be written

2m+3∑
q=0

s2−qjqb(k)
q , k = 1,2,3,

respectively. This implies the equality Eq. (B7), with

bq = b(1)
q + b(2)

q + b(3)
q .

The coefficients b(k)
q , found by reorganizing terms, are given

by

b(1)
q =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑m+1
d=1,l=1 cd,l − cd,l

1
l+1 if q = 0,

−∑m+1
d=1,l=1 cd,l if q = 1,

1
q

∑m+1
d=1 cd,q−1 if 2 � q � m + 2,

0 if q > m + 2.

b(2)
q =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∑m+1
d=1,l=1

cd,l

d+1 if q = 0,∑m+1
d=1,l=1

cd,l

d+1

(
d+1
d

)
if q = 1,

(−1)q−1 ∑m+1
d=q−1,l=1

cd,l

d+1

(
d+1

d+1−q

)
if 2 � q � m + 2,

0 if q > m + 2,

b(3)
q =

m+1∑
d + l � q − 1,

d � 1,l � 1

a(d,l)
q cd,l,

a
(d,l)
k =

min {l,k}∑
r=0

(
l

r

)
(−1)k−r

d + l + 1 − r

(
d + l + 1 − r

d + l + 1 − k

)
.

Using Eq. (B1) and (B7), the coefficient follows:

dq =

⎧⎪⎨
⎪⎩

1/2 − b0 if q = 0,

−1 − b1 if q = 1,

1/2 − b2 if q = 2,

−bq if q > 2.
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