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Modulated phases in a three-dimensional Maier-Saupe model with competing interactions
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This work is dedicated to the study of the discrete version of the Maier-Saupe model in the presence of
competing interactions. The competition between interactions favoring different orientational ordering produces
a rich phase diagram including modulated phases. Using a mean-field approach and Monte Carlo simulations,
we show that the proposed model exhibits isotropic and nematic phases and also a series of modulated phases
that meet at a multicritical point, a Lifshitz point. Though the Monte Carlo and mean-field phase diagrams show
some quantitative disagreements, the Monte Carlo simulations corroborate the general behavior found within the
mean-field approximation.
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I. INTRODUCTION

Many condensed-matter systems, such as magnetic com-
pounds, polymers, and liquid crystals, exhibit interesting
phases with periodic structures [1]. Microscopically, this mod-
ular behavior can be understood as resulting from competing
interactions favoring different orderings [2]. Perhaps the most
simple and interesting example is the ANNNI (axial-next-
nearest-neighbor-Ising) model, with competing interactions
between first (ferromagnetic) and second (antiferromagnetic)
neighbors along one specific direction [3]. The phase diagram,
as a function of the temperature and the parameter regulating
the degree of competition between different interactions,
exhibits a paramagnetic and a ferromagnetic phase, as well
as an infinite series of modulated phases [4]. All these phases
meet at a special critical point called the Lifshitz point [5].
Because of its rich phase diagram, the ANNNI model has
been widely studied using different analytical and numerical
methods, and it also has experimental applications [6–8].

In the field of liquid crystals (LCs), there is also significant
interest in modulated phases [9–11]. The constituent molecules
of LCs have a rigid part, which is responsible for the
alignment of the molecules along a direction (described by
a director, an angle in the range [0,π ]), and a more flexible
part, which induces the fluidity. The different phases in this
state of matter depend on the preferential ordering of the
molecules, which in turn depends on the temperature. Their
characterizations are given by the underlying translational and
rotational symmetries and are usually classified as nematic,
smectic, or cholesteric (also known as the chiral or helical
phase). The uniaxial nematic phases are well established in
the phase diagram of a large number of LCs [12–18] as well
as the biaxial nematic phases and its stability [19–21].

In general, statistical formulations defined on lattices
describe satisfactorily many physical characteristics of ther-
motropic LCs, and their mean-field formulations can describe
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nematic phases and the related phase transitions [13–16].
The simplest and most important model is the Maier-Saupe
model, which has been successful not only in explaining
the orientational properties but also hosts an order-disorder
transition, i.e., a transition between nematic and isotropic
phases [17].

In this work, we consider a generalization of the Maier-
Saupe model on a 3D lattice, which includes competing
interactions along one specific direction, similar to the ANNNI
model. We show that this frustrated Maier-Saupe model hosts
a series of modulated phases that may be related to the
cholesteric phase observed in some in LCs [22,23]. Here, as a
first step to start exploring frustration effects in LCs, instead
of describing the molecules by continuously varying vector
degrees of freedom, we consider a discrete version first. Similar
to the standard discrete version of the Maier-Saupe model, the
“molecules” are discrete spins that can only take three different
orientations. This simiplification makes the model equivalent
to the 3D three-state ANNN-potts model. As far as we are
aware, even though there has been numerous works reported on
the standard 3D three-state potts model with nearest-neighbor
interactions [24,25], as well as a 2D ANNN-potts model
[26], no research has been done on this type of system in
3D. Thus, from either the view of understanding the rich
phases in LCs or the more general perspective of enriching
our knowledge of potts models, such a study is desirable. In
fact, even though this discrete version of Maier-Saupe model
with competitions cannot fully describe the complexity of
the cholesteric phase, our results still show that this model
produces modulated structures, with periodicity that depends
on the parameter regulating the competing interactions and the
temperature.

The paper is organized as follows: In Sec. II, we introduce
the Maier-Saupe model with competing interactions. Section
III is dedicated to an analytical calculation of the order
parameter and the free energy by means of a variational
mean-field approach, which is solved numerically to obtain
the phase diagram. Monte Carlo (MC) simulations aimed at an
unbiased determination of the phase boundaries are discussed
in Sec. IV, and final remarks are given in Sec. V.
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II. STATEMENT OF THE PROBLEM

To describe a LC statistically, it is appropriate to define
an order parameter in terms of a unitary director n that
corresponds the preferential ordering of the molecules. Due
to the quadrupole symmetry, the LCs are indistinguishable
under n → −n transformation and a natural order parameter
that takes it into account is given by the second-order tensor,

T μν = anμnν + bδμν, (1)

where a and b are arbitrary constants and nμ are components
of the director n, with μ,ν = {x,y,z}. The trace of the
tensor T does not contain any orientational information,
and a convenient order parameter to describe a nematic LC,
where the molecules have axial symmetry, can be defined by
eliminating the trace part as

Sμν ≡ T μν − δμν

3
Tr{T } = a

3
(3nμnν − δμν). (2)

In a lattice model, we can use the expectation value of the
elements of such a tensor order parameter at an arbitrary
site i,

Mμν = 〈
S

μν

i

〉 = 〈
1
2

(
3n

μ

i nν
i − δμν

)〉
, (3)

where n
μ

i are the components of the vector that defines the
preferred orientation of the molecule located on site i. In the
nematic phase, the order parameter must be nonzero and in
the isotropic phase it should vanish. In this way, we choose
a = 3/2 such that Mμν = 1 in the perfectly ordered phase.

The weak first-order transition between uniaxial nematic
and anisotropic phases is well understood from theoretical as
well as experimental investigations [27–30]. The transition is
well described by the mean-field Maier-Saupe theory, and,
following this approach, we will here implement competing
interactions in the Maier-Saupe model (also known as the
Lebwohl-Lasher model [31]). In analogy with the ANNNI
model, we consider interactions between first neighbors along
the x and y axes and competing interactions along the z axis,
and introduce the following Hamiltonian:

H = −J1

∑
μ,ν

∑
x,y,z

(
Sμν

xyzS
μν

x+1yz + Sμν
xyzS

μν

xy+1z

+ Sμν
xyzS

μν

xyz+1

) − J2

∑
μν

∑
xyz

Sμν
xyzS

μν

xyz+2. (4)

To achieve the desired competition, the couplings between
first neighbors, J1, and second neighbors, J2, should have
opposite signs. The lattice sites will be labeled by a suffix xyz,
where 1 � x,y,z � N ; i.e., the total number of sites is N3.
The reason for introducing the spatially anisotropic coupling
is that, once a layered structure has formed, there is no reason
for the effective couplings in the simplified lattice model to
be isotropic, and the analogy with the ANNNI model suggests
that the frustration only in the interaction between the layers
(our z direction) should be the simplest way to achieve the
modulated phases. The anisotropic interaction still also allows
for isotropic (disordered) and nematic phases.

A convenient explicit form for S
μ,ν
xyz is given by

Sμν
xyz = 1

2

(
3nμ

xyzn
ν
xyz − δμν

)
, (5)

and we will proceed using it to calculate the partition function
associated with the Hamiltonian Eq. (4). The partition function
is

Z =
∑
{n}

e−βH, (6)

where the sum is over all allowed directions of the vectors
ni allowed and β = 1/(kBT ), with T the temperature and
kB Boltzmann’s constant (which we set to 1 henceforth). A
considerable simplification, which we will adopt here, is to
consider a discrete version of the director as proposed by
Zwanzig [32], where the site directors can be oriented only
along three perpendicular directions,

ni =
⎧⎨
⎩

(0,0,1),
(0,1,0),
(1,0,0).

(7)

This approach works very well in the mean-field Maier-
Saupe model, where the fluctuations are not so relevant for
the main features of the phase diagram, and, despite the
discrete simplification, the usual Maier-Saupe model (without
competition) shows qualitatively the physical behavior of LCs
[33]. Because of the symmetries, the model is also equivalent
to a three-state frustrated Potts model [24,25], an extension
of the standard ANNNI model. While a generalized S = 1
ANNNI model (i.e., with three states per lattice site) has
been previously studied [34], the symmetries of this model are
different. To our knowledge, the Potts version of the ANNNI
model has not been studied previously.

When we turn on the competing interactions, the calculation
of the partition function is a formidable task even with the
discrete approximation. In the next section, we will first
employ a variational (mean-field) approach to obtain an
approximate analytical expression for the order parameter and
the free energy and obtain the phase diagram numerically. In
Sec. IV, we apply MC simulations and extract a phase diagram
and this is in good general agreement with the mean-field
version.

III. VARIATIONAL APPROACH

Let F be the free energy of the system. To implement
the Bogoliubov variational method, we need to find the free
energy F0 corresponding to a trial Hamiltonian H0, satisfying
the inequality

F � F0 + 〈H − H0〉0 ≡ �. (8)

The notation 〈〉0 represents an average with respect to the parti-
tion function of the HamiltonianH0, that can be parameterized
as

H0 = −
∑
xyz

∑
μν

hμν
z Sμν

xyz. (9)

Here, hμν
z is a symmetric tensor that should be considered as a

variational parameter to minimize the free energy � in Eq. (8).
As shown below, from this approach it is possible to obtain
self-consistent analytical equations for the order parameter.
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We start by calculating the partition function Z0,

Z0 =
∑
{nxy1}

exp

[
β

∑
μν

(
S

μν

111 + · · · Sμν

NN1

)
h

μν

1

]
× · · ·

∑
{nxyN }

exp

[
β

∑
μν

(
S

μν

1,1,N + · · · Sμν

NNN

)
h

μν

N

]

=
N∏

z=1

⎧⎨
⎩

∑
nxyz

exp

[
β

∑
μν

Sμν
xyzh

μν
z

]⎫⎬
⎭

N2

. (10)

From this, taking into account that the director nxyz can assume six different values in accordance with Eq. (7), we obtain

Z0 =
N∏

z=1

{
2 exp

[
−β

2

∑
μ

hμμ
z

] ∑
ν

exp

(
3

2
βhνν

z

)}N2

(11)

and, consequently,

F0 = −N2

β

N∑
z=1

{
ln 2 − β

2

∑
ν

hνν
z + ln

[∑
ν

exp

(
3

2
βhνν

z

)]}
. (12)

In this case, the problem reduces to the calculation of 〈H − H0〉,
〈H − H0〉0 = −J1

∑
μν

∑
xyz

(〈
Sμν

xyzS
μν

x+1yz

〉
0 + 〈

Sμν
xyzS

μν

xy+1z

〉
0 + 〈

Sμν
xyzS

μν

xyz+1

〉
0

) − J2

∑
μν

∑
xyx

〈
Sμν

xyzS
μν

xyz+2

〉
0 +

∑
μν

∑
xyz

hμν
z

〈
Sμν

xyz

〉
0.

(13)

We need to determine the averages of the right side of Eq. (13). It is straightforward to show that 〈Sμν
xyzS

μν

xyz+1〉0
= 〈Sμν

xyz〉0〈Sμν

xyz+1〉0
and then it is sufficient to calculate 〈Sμν

xyz〉0:

〈
Sμν

xyz

〉
0 =

∑
nxyz

S
μν
xyz exp

(
β

∑
μν h

μν
z S

μν
xyz

)
∑

nxyz
exp

(
β

∑
μν h

μν
z S

μν
xyz

) = −δμν

2
+ 3

2

exp
(

3
2h

μν
z

)
δμν∑

γ exp
(

3
2βh

γγ
z

) . (14)

From this expression we see that 〈Sμν
xyz〉0 = 〈Sμν

x+1yz〉0 = 〈Sμν

xy+1z〉0. Since 〈Sμν
xyz+a〉0, with a = 0,1, or 2, there is no dependence

on the x and y variables, and we therefore we sum over these in the free-energy expression as follows:

�

N2
= − 1

β

N∑
z=1

{
ln 2 − β

2

∑
μ

hμμ
z + ln

[∑
μ

exp

(
3

2
βhμμ

z

)]}
− J1

N∑
z=1

∑
μ

[
2
(
Mμμ

z

)2 + Mμμ
z M

μμ

z+1

]

− J2

∑
z

∑
μ

Mμμ
z M

μμ

z+2 +
∑

z

∑
μ

hμμ
z Mμμ

z , (15)

with M
μν
z ≡ 〈Sμν

x,y,z〉0.
The equation defining the adjustable parameter h

μν
z is

obtained by free-energy minimization,

hμν
z = 4J1M

μν
z + J1

(
M

μν

z+1 + M
μν

z−1

) + J2
(
M

μν

z+2 + M
μν

z−2

)
,

(16)

since M
μν
z is a function of h

μν
z , Eq. (14). According to Eq. (14),

M is traceless, consequently,
∑

μ h
μμ
z = 0, and we use the

standard parametrization,

Mz =
⎛
⎝− 1

2 (Qz + ηz) 0 0
0 − 1

2 (Qz − ηz) 0
0 0 Qz

⎞
⎠ (17)

and

hz =
⎛
⎝− 1

2 (Hz + ϕz) 0 0
0 − 1

2 (Hz − ϕz) 0
0 0 Hz

⎞
⎠. (18)

We then obtain the self-consistent equations for the order
parameters:

Qz = 1 − exp
(− 9

4βHz

)
cosh

(
3
4βϕz

)
1 + 2 exp

(− 9
4βHz

)
cosh

(
3
4βϕz

) (19)

and

ηz = 3e− 9
4 βHz sinh

(
3
4βϕz

)
1 + 2 exp

(− 9
4βHz

)
cosh

(
3
4βϕz

) , (20)

with

Hz = 4J1Qz + J1(Qz+1 + Qz−1) + J2(Qz+2 + Qz−2) (21)

and

ϕz = 4J1ηz + J1(ηz+1 + ηz−1) + J2(ηz+2 + ηz−2). (22)

To study competing interactions we consider J1 > 0 and
J2 < 0, where we defined the coupling ratio regulating the
competing interactions (competition parameter), p = −J2/J1,
whence p is positive. So, from Eqs. (19) and (20), the free
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FIG. 1. Phase diagram of the Maier-Saupe model with competing
interactions, with J1 > 0, J2 < 0, and p = −J2/J1, obtained by
numerically minimizing the free energy with different imposed
periodicities of the order parameter. We have identified isotropic,
nematic, and modulated (with 4, 6, and 8 periodicity) phases. The
nematic and modulated phases meet the isotropic phase at the Lifshitz
point located at p ≈ 0.35 and t ≈ 4.27.

energy, �, is given in terms of the parameters Qz and ηz by

�

N2J1
= −t

N∑
z=1

{
ln 2 + ln

[
e
− 3

4tJ1
(Hz+ϕz)

+ e
− 3

4tJ1
(Hz−ϕz)+e

3
2t

Hz
J1

]}
+ 3

2

N∑
z=1

(
2Q2

z + QzQz−1 − pQzQz−2
)

+ 1

2

N∑
z=1

(
2η2

z + ηzηz−1 − pηzηz−2
)
, (23)

with t ≡ 1/(βJ1).
From Eqs. (19), (20), and (23) it is possible to obtain the

thermodynamic phases as a function of the temperature and
the competition parameter. To do so, at each point (t , p),
we take an initial guess about the periodicity as our initial
condition (here the periodicity is defined as the number of
layers after which the system repeats itself. Take a simple case
as an example, if molecules have only two states, + or −,
and along the z axis, if molecules are aligned with the pattern
+ + − − + + − − . . . , then we say that the periodicity of
this system is 4). However, eventually the initial condition
converges to a final configuration based on the iterative
equations, Eqs. (19)–(22), irrespective of the initial guess. For
some cases, the final configuration may vary depending on
different initial conditions. In such cases, we compare their
energies based on Eq. (23) to find the ground state.

To evaluate Eqs. (19) and (20), we used the iterative method
(fixed points) for lattices sufficiently large to accommodate the
periodicity of each phase studied (using periodic boundary
conditions). Although the competing interactions can be
expected to give rise to an infinite series of modulated phases,
as in magnetic systems [35–38], the phase diagram displayed
in Fig. 1 has been constructed by analyzing the free energies
only of the isotropic (disordered), nematic (ordered), and

modulated phases with periodicity 4, 6, and 8. For our purposes
this is enough, since we are not aiming at describing in
detail the transitions that occur between different modulated
phases. The results already point to the existence of a Lifshitz
point. We see that, beyond the isotropic-nematic transition,
the model exhibits a transition between the nematic and
modulated as well as between the isotropic and modulated
phases. Considering m(z) as the order parameter in each
layer, we note that the period-4 state is special, in that the
structure of the modulated order in a unit cell (along the z

axis), m(1),m(2),m(3),m(4), is such that m(1) = m(2) and
m(3) = m(4), while for the larger periodicities m(z) shows
a smooth variation. Therefore, the period-4 phase should be
considered a different “bilayer” phase separate from the series
of modulated phases. We will confirm this picture with MC
simulations.

IV. MONTE CARLO SIMULATIONS

For the purpose of MC simulations, we now write the
effective Hamiltonian in Eq. (4) as

H = −J
∑
(i,j )

(ni · nj )2 + pJ
∑

((k,k′))

(nk · nk′)2 + JN (3 − p)

3
,

(24)

where ni is an orientational degree of freedom that can be
along the directions (0,0,1) or (0,1,0) or (1,0,0), according to
the three possible orientations of the liquid crystal molecule.
The first term stands for the ferromagnetic interactions
between the nearest neighbors along the x, y, and z directions,
while the second term represents the interactions between the
second-nearest neighbors only along the z axis. The third term
is a constant, consistent with the original Maier-Saupe model
(without frustration), and N is the total number of molecules;
for a system with linear size L, N = L3. Compared to the
Hamiltonian defined for the mean-field calculations by Eq. (4),
the coupling strengths in these two Hamiltonians differ by
a factor J = (9/4)J1, which we will adjust for later when
comparing the phase diagrams. In the following, we set J = 1
and the parameter p will be the ratio of the two competing
couplings.

Similar to the study of the 3D ANNNI model [39], when
analyzing Eq. (24) at T = 0 it is expected that the ground-
state energy corresponds to a nematic phase when p < 0.5,
while for p > 0.5, the ground state corresponds to a modulated
phase, which has the bilayer structure, as seen in Fig. 2, which
are example configurations of the bilayer structure. Figure 2(a)
shows a stack of three bilayers with three different molecule
orientations, while Fig. 2(b) shows an alternating structure
of bilayers with two different orientations. There is a large
ground-state degeneracy, as any bilayer structure maintains
the same lowest energy as long as two adjacent bilayers have
perpendicular orientations. Therefore, at T = 0 it is clear that
pc = 1/2 is the transition point separating the nematic phase
from the bilayer-structured phase. However, for T > 0, it is not
clear which state the system will stay in, as the entropy plays
an important role at finite temperatures. To draw a complete
phase diagram, we applied MC simulation to this system. In
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FIG. 2. Bilayer structure of liquid crystal molecules. (a) and (b)
are two examples of the bilayer structure: (a) shows a stack of three
bilayers with three different molecule orientations; (b) shows an
alternating structure of bilayers with two different orientations.

this section, we will discuss the simulation method as well as
the main numerical results obtained.

In our MC simulations, we primarily consider an 8 × 8 × 8
cubic lattice. We used a rather small size here, as this model is
very difficult to equilibrate and the simulation rapidly becomes
much harder for larger sizes (as is well known for frustrated
systems). Nevertheless, for the purpose of obtaining a semi-
quantitative view of the phase transitions of the system, we
will argue that the system size is sufficient. We have also done
some calculations with a 12 × 12 × 12 lattice and will discuss
the finite-size effects based on comparing the two sizes. For
each value of p, the ratio of the two competing interactions, we
simulated the system at different temperatures within the range
T ∈ [2.5,0.5], in steps of 
T = 0.01. We studied coupling
ratio p ∈ [0,1] in steps of 0.1. At each T, we start from random
initial configurations. To equilibrate the system, 106 MC
sweeps of N random local updates were performed according
to the Metropolis algorithm. The final results came from a bin-
average of 20 bins with each bin containing the average of 105

measurements.
Figure 3 shows the behavior of the energy versus the

temperature. As discussed previously, at low temperatures the
system stays in the nematic phase for p < 0.5 and the energy
density (per site) then approaches to E = (2p − 6)/3 when
T → 0, while for p > 0.5 the system is in a modulated phase
with bilayer structure, where the energy density approaches
E = −(9 + 2p)/6. This behavior confirms that p = 0.5 is the
transition point at T = 0.

The simplest order parameter that describes the isotropic-
nematic transition is given by

m =
〈

1

N

∑
i

(3 cos2 θi − 1)

2

〉
, (25)

where θi is the angle between the central axis of the ith
molecule and the global director n. Because of symmetry,
we can simply choose a reference director to be along z

direction. This order parameter m easily differentiates between
the nematic (m 	= 0) and the isotropic (m = 0) phases. The
transition between these two phases is known to be first

0.5 1 1.5 2 2.5
T

-2

-1.5

-1

-0.5

E

p=0.0
p=0.2
p=0.4
p=0.6
p=0.8
p=1.0

FIG. 3. Temperature dependence of energy density at various
coupling ratios p for system size L = 8. As expected, at low
temperatures, for system with p < 0.5 energy approaches to E =
(2p − 6)/3, while for p > 0.5 it approaches E = −(9 + 2p)/6. The
apparent anomalies seen for p = 0.4 at around T = 1.4 and p = 0.6
around T = 1.1 comes from the second phase transition taking place
for this range of p.

order in the standard (p = 0) Maier-Saupe model. The order
parameter defined in Eq. (25) is not good for describing a
modulated phase in MC simulations, however, because in
modulated phases with different orientation of the directors in
different planes, it can acquire any value between 0 � m � 1,
depending on the values of p and t , and it cannot differentiate
the modulated phase from either the isotropic phase or the
nematic phase.

To circumvent this problem, we define a layer order
parameter, mz, with z ∈ [0,L − 1], in each xy plane along
the z direction:

mz =
〈

1

L2

L2∑
i

(3 cos2 θi − 1)

2

〉
xy plane

. (26)

If there is no preferential ordering within the layers, then for
finite but reasonably large system size, mz is close to zero in all
layers; thus, m ≈ 0 and mz ≈ 0 defines an isotropic phase. If
m ≈ 1 and mz ≈ 1, and furthermore mz has the same value for
all z, it signals a nematic phase. However, if 0 < m,mz � 1,
and at the same time mz varies in different layers, then we
identify the behavior as that of a modulated phase. Within the
class of modulated phases, we here find two kinds: one is the
bilayer-structured phase already discussed and illustrated with
the configurations shown in Fig. 2; in this phase, m < 1 and
mz ≈ 1. The other kind of modulated phase has no bilayer
structure and we refer to it as a single-layer modulated phase.
In this case, the molecules align more chaotically and mz

varies from layer to layer with 0 < m,mz < 1. We associate
this disorder in the z direction with incommensurate ordering
that cannot be realized on the small lattices considered here.
In addition, in this regime the behavior is clearly impacted by
the discreteness of the director in our model.

Figure 4 shows the behavior of order parameter at various p

values for system size L = 8. From high to low temperatures,
systems with p < 0.5 transition from the high-T isotropic
phase to the low-T nematic phase, while for p � 0.5 the
systems change from the high-T isotropic phase to the
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FIG. 4. Temperature dependence of order parameter at various
ratios p for system size L = 8. The inset shows the layer order
parameter averaged over the layers for p � 0.5.

low-T bilayer-structured phase. The inset shows the layer
order parameter for three cases with p > 0.5. The order
parameter 0 < m < 1, while mz ≈ 1 clearly reveals the fact
that in each layer the molecules align, but overall the layers
align randomly along the z axis. However, in the course of
the evolution from the isotropic to the nematic phase for
p < 0.5, as well as that from isotropic to bilayer structure
for p > 0.5, we observe that, for a certain range of p,
there is another phase that the system has to go through,
which is the single-layer-structured modulated phase. For if
examined carefully, there are obvious abnormal behaviors of
the order parameter for p = 0.4 and p = 0.6, in addition,
we can also see features beyond the statistical noise in the
energy behavior at around T = 1.3 and T = 1.1, respectively,
for the two p values. We believe that these anomalies arise
from a second phase transition in the system. For p = 0.4,
the system first undergoes the transition from the isotropic
phase to the single-layer modulated phase, and at lower
temperature it goes through the second phase transition, which
is from the single-layer-structured phase to the nematic phase.
For p = 0.6, the system goes through the first isotropic to
single-layer transition, followed by the second transition from
the single-layer-structured to the bilayer-structured phase. As
mentioned above, this single-layer-structured phase has mz

varying along each different layer (i.e., the director is aligned
differently in adjacent layers); however, it does not exhibit
any aligned structure in the z direction, in analogy with the
configurations shown in Fig. 2 in the case of the bilayer phase.
In the following, we will provide more evidence for the two
phase transitions and construct the phase diagram.

Figure 5 shows the behavior of specific heat Cv versus
temperature for several coupling ratios p < 0.5
(p = 0.0, 0.36, 0.38). Specific heat is defined as

Cv = Nβ2(< E2 > − < E >2), β = 1

T
. (27)

For 0.0 < p < 0.36, we observe only a single peak, indicating
that the system changes from the isotropic phase directly to the
nematic phase. However, a second peak starts to show up for
p = 0.36 and becomes obvious for p = 0.38, indicating that
dual phase transitions appear for p � 0.36, where the systems
go through the isotropic—single-layer transition, followed
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FIG. 5. Temperature dependence of the specific heat for p = 0.0,
0.36, and 0.38. There is only one peak for p = 0, indicating the
isotropic-nematic phase transition, however, a second peak emerges
for p = 0.36 and becomes obvious for p = 0.38, indicating that dual
phase transitions occur at these p values.

by the single-layer—nematic phase transition. The crossover
between the single to dual transitions takes place close to p =
0.36 (within ±0.01 from this point). Similarly, Fig. 6 shows the
behavior of the specific heat for several ratios p > 0.5 (p =
0.75, 0.8, 0.9). For p � 0.9, there is only one peak, indicating
that the systems change from the isotropic phase directly into
the bilayer-structured phase. However, for 0.5 < p � 0.8 the
specific heat again exhibits two peaks, indicating that systems
go through the dual isotropic—single-layer—bilayer phase
transitions. The crossover here occurs at p ≈ 0.8.

Not only does the specific heat show evidence for dual
phase transitions, but there are also corresponding anomalies
in the behavior of the order-parameter fluctuations. In analogy
with the susceptibility in a magnetic system, we define a
“susceptibility” χ for our model as

χ = Nβ(〈m2〉 − 〈m〉2), (28)

and this quantity should diverge at any of the ordering
transitions discussed. Figure 7 shows the behavior of the
susceptibility versus temperature at p = 0.6 for both L = 8
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FIG. 6. Temperature dependence of the specific heat for p =
0.75, 0.8, and 0.9. There are two peaks for p = 0.75 and p = 0.8,
while only one peak for p = 0.9, indicating that the dual phase
transition disappears between p = 0.8 and p = 0.9.
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FIG. 7. Temperature dependence of χ at p = 0.6 for L = 8 and
L = 12. The peak near T ≈ 1.44 indicates the isotropic—single-layer
phase transition, while the anomaly at around T = 1.14 corresponds
to the transition from single-layer-structure to bilayer-structure.
Comparing the results for the two cases, we can see the finite-size-
effect playing some role in the L = 8 systems, but we believe that the
overall effects on the phase boundaries are minor.

and L = 12. In both cases, two well-separated peaks can be
seen, indicating the two phase transitions take place with
both lattices. Moreover, comparing the results for the two
cases, we can see that the peaks become higher and narrower
with increasing size, as expected for peaks diverging in the
thermodynamic limit, and the peak positions shift by only
about 5%. While the finite-size-effect is, thus, playing some
role in the L = 8 systems, we believe that the overall effects
on the phase boundaries are minor.

We finally, in Fig. 8, present the phase diagram drawn based
on our MC simulations. By fitting the specific heat results to
high-order polynomials in the peak regions, we can locate the
transition temperature Tc for various values of p. We estimate
error bars by fitting multiple times through the bootstrapping
method. As discussed above, the system has four different
phases: isotropic phase, nematic phase, single-layer-structured
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BILAYER
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FIG. 8. Phase diagram of the discrete Maier-Saupe model with
competing interactions, obtained on the basis of MC simulations with
8 × 8 × 8 lattices. The red star point indicates the Lifshitz point (LP)
based on our MC results, while the magenta diamond shows the
LP based on mean-field results in Fig. 1 adjusted by the factor 9/4
relating the two versions of the Hamiltonian.

modulated phase as well as bilayer-structured modulated
phase. For a certain range of p (0.36 < p < 0.8), the system
goes through two phase transitions as the temperature is
lowered, as it has to go through the single-layer-structured
modulated phase as an intermediate state before reaching the
nematic state or the bilayer-structured state at low temperature.
The red star in the phase diagram represents the Lifshitz point
(LP), located at p ≈ 0.36, T ≈ 1.42. Recall that the mean-field
calculations found LP at pMF ≈ 0.35 and tMF ≈ 4.27, since the
coupling strengths in the two Hamiltonians differs by a factor
of 9/4, converting t used there to the the temperature defined
in the MC simulation, we obtain TMF = (4/9)tMF ≈ 1.90. The
magenta diamond in the MC phase diagram shows the LP
based on mean-field calculation for comparison.

According to the phase diagram of the 3D ANNNI model
from MC simulation, it is known that the paramagnetic-
ferromagnetic phase transition is continuous, while both the
paramodulated and ferromodulated transitions are first order
[40]. For our model, which is equivalent to the 3D three-state
ANNN-Potts model, the isotropic-nematic phase transition is
first order (just as the case in the standard 3D three-state Potts
model). For the nemetic-modulated and isotropic-modulated
phase transitions, we are not certain but we think they are most
likely first-order phase transitions as well. Potentially, if we
have data from more system sizes, we can test this conclusion
through finite-size analysis.

Compared to the phase diagram from the mean-field
calculations (Fig. 1), the MC phase diagram shows no clear
signs of modulation in the modulated phase (in the case of the
single-layer structure as well as the double-layer structure).
Instead, the interlayer orientation always appears random and
we cannot detect any meaningful correlations. Most likely, this
is an indication of incommensurate ordering pitch that cannot
be realized on the small lattices considered here and with the
discreteness of the director. Nevertheless, the regime marked
as phase with periodicity 4 in the mean-field phase diagram
represents exactly the bilayer structure in Fig. 2(b). In this
sense, despite some quantitative difference, in general the two
phase diagrams are very consistent with each other.

V. FINAL CONSIDERATIONS

In this work, we have investigated the phase diagram of
an extended version of the discrete Maier-Saupe model with
competing interactions between nearest and second-nearest
neighbors in one direction. The model also corresponds to a
three-state Potts version of the ANNNI model. Initially, we
carried out the studies by means of mean-field calculations.
Even with a variational mean-field approach, the compet-
ing interactions produce a phase diagram with modulated
structures. By applying numerical methods to find the order
parameter, we obtained the transition lines between isotropic-
nematic, isotropic-modulated, and nematic-modulated phases.
To compare with the mean-field results we also employed MC
simulations. In this case, the order parameter in Eq. (25) is not
able to distinguish the modulated phase of the isotropic and
nematic phases, thus we introduced a modified layer-order
parameter to distinguish the phases in more detail. With the
MC results, we were then able to identify four phases of the
system and construct the full phase diagram. In addition to a

012137-7



P. F. BIENZOBAZ, NA XU, AND ANDERS W. SANDVIK PHYSICAL REVIEW E 96, 012137 (2017)

nematic-isotropic transition, which are present in the absence
of competing interactions, the model shows both transitions
between isotropic-modulated and nematic-modulated phases.
Although one cannot expect the mean-field phase diagram to
be quantitatively correct, the MC simulations still corroborate
the general pattern of the mean-field phase diagram, and even
quantitatively the Lifshits point appears almost at the same
coupling ratio as in the mean-field phase diagram, and at a
temperature only about 25% lower.

We stress that, even with the discretized version of the
Maier-Saupe model considered here, its phase diagram shows
an interesting rich structure. To make definite statements
about the relevance of our results to LCs, the model should
be extended to continuous degrees of freedom; classical
Heisenberg spins taking continuous values over a unit sphere.
We regard our study of the discrete model as a first step on
the path to future studies of frustrated models of LCs. Most
likely the modulated phases we have found here will survive
with continuous degrees of freedom, though details such as
the phase boundaries and the pitch of the modulation with the

frustration parameter and the temperature may shift. We also
expect that such a more refined model might be able to capture
elements of more complex liquid crystalline phase transitions,
such as the isotropic-smectic C* and isotropic-cholesteric
transitions. In this last case, it should be pointed out that it
is necessary to further generalize the Hamiltonian Eq. (4),
including odd-chirality terms, which are important to take into
account the striking feature of handedness observed in the
cholesteric phase.
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