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Energy transfer in the nonequilibrium spin-boson model: From weak to strong coupling
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To explore energy transfer in the nonequilibrium spin-boson model (NESB) from weak to strong system-bath
coupling regimes, we propose a polaron-transformed nonequilibrium Green’s function (NEGF) method. By
combining the polaron transformation, we are able to treat the system-bath coupling nonperturbatively, thus in
direct contrast to conventionally used NEGF methods which take the system-bath coupling as a perturbation. The
Majorana-fermion representation is further utilized to evaluate terms in the Dyson series. This method not only
allows us to deal with weak as well as strong coupling regimes but also enables an investigation on the role of bias
in the energy transfer. As an application of the method, we study an Ohmic NESB. For an unbiased spin system,
our energy current result smoothly bridges predictions of two benchmarks, namely, the quantum master equation
and the nonequilibrium noninteracting blip approximation, a considerable improvement over existing theories.
In case of a biased spin system, we found a bias-induced nonmonotonic behavior of the energy conductance in
the intermediate coupling regime, resulting from the resonant character of the energy transfer. This finding may
offer a nontrivial quantum control knob over energy transfer at the nanoscale.
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I. INTRODUCTION

Over the last decades, energy transfer at the nanoscale
has attracted significant attention and has grown consider-
ably in importance. From an experimental perspective, the
fabrication of nanoscale conductors such as various molecular
junctions with desired properties can be achieved in the
chemistry laboratory [1,2], meanwhile several procedures have
been developed to measure energy transfer at a microscopic
level, such as time-domain thermoreflectance techniques [3],
scanning thermal microscopy [4], and laser Raman scattering
thermometry [5,6]. Such experimental advances stimulated a
surge of theoretical activity in understanding and controlling
energy transfer in nanoscale conductors [7,8].

The nonequilibrium spin-boson model (NESB), as a
minimum nontrivial molecular junction model, has its own
advantages in studying energy transfer at nanoscale. On the
one hand, the central two-level system has a diversity of
physical realizations [9–12]. On the other hand, the total
system is simple and tractable. As a result, its energy transfer
characteristics are now an established area of theoretical
research [13–15]. To date, various approaches have been
carried out to deal with energy transfer in the NESB.

Theoretically, energy transfer processes in the NESB are
usually investigated in two perturbative limits. When the
system-bath coupling is weak, we can treat it in a perturbative
manner. This treatment yields two eminent methods, namely,
the quantum master equation (QME) analysis [13,16–18]
and the nonequilibrium Green’s function (NEGF) technique
[19–21]. By adopting the Redfield approximation the QME
can describe incoherent sequential transfer process [13,16]
and it is even possible to include cotunneling process if the
generalized Fermi golden rule is utilized [17]. Although simple
and physically transparent analytical results are obtained, the
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QME is restricted to the weak coupling regime. The NEGF
provides an alternative approach that formulates a formally
exact expression for energy flux written in terms of the spin
Green’s functions (GFs). A perturbation expansion in the
system-bath coupling is adopted only in obtaining those GFs.
Velizhanin and coworkers [19] work out expressions for GFs
using the Redfield approximation, however their results violate
the energy conservation. In order to preserve conservation
laws, a Majorana-fermion diagrammatic method [22–25] is
further used in calculating GFs [21]. Compared with the QME,
the NEGF can be applied in the intermediate coupling regime,
but the strong coupling regime is still beyond its scope. In
the opposite limit, when the system-bath coupling is strong,
it is possible to choose the tunneling term as a perturbation.
Along this line, we have the nonequilibrium version of the
noninteracting blip approximation (NE-NIBA) [26,27] and a
nonequilibrium polaron-transformed Redfield equation (NE-
PTRE) method [28]. However, the NE-NIBA is valid only in
the strong coupling regime [29]. The NE-PTRE, although it
provides a correct picture for the NESB with super-Ohmic
environments, reduces to the NE-NIBA framework for the
NESB with Ohmic or sub-Ohmic ones [28] and thus faces the
same pathology.

To go beyond perturbation theories, exact numerical tech-
niques have been proposed, like multilayer multiconfiguration
time-dependent Hartree theory [30], influence functional path
integral techniques [31], and classical Monte Carlo simulations
[32]. However, numerical simulations can become time con-
suming in the strong coupling and low temperature regimes,
which limits their applicability.

So far, from both a theoretical and numerical point of
view, a systematic investigation on the energy transfer process
from weak to strong system-bath couplings for an unbiased
spin system embedded in Ohmic bosonic baths is still absent
[15]. Furthermore, little is known about the role that finite
bias plays in the energy transfer of such systems. Only until
very recently, the time-dependent energy transfer under the
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condition of a time-dependent bias has been studied within
an influence functional approach [33]. However, the steady
state properties still remain unknown. Note that the Ohmic
bath serves as a paradigm for the simulation of environments
with an abundance of low frequency modes, such as liquids,
proteins, and polymers [34]; it is thus of utmost interest to
introduce a systematic approach that allows for an arbitrary
system-bath coupling and handles finite bias, to study energy
transfer in NESB systems.

In this paper, we fill the gap and propose a unified theoretical
scheme. Our strategy is to combine the polaron transformation
(PT) [35] with the standard NEGF techniques, herein termed
the polaron-transformed NEGF (PT-NEGF) method. The PT
enables us to treat the system-bath coupling nonperturbatively
[36,37], thus we can study the impact of system-bath coupling
ranging from weak to strong regimes, in direct contrast to
previous NEGF methods. Furthermore, in order to evaluate
terms in the expansion series, we adopt the Majorana-fermion
representation such that standard Feynman diagram techniques
as well as the Dyson’s equation can be applied to spin
systems.

With the PT-NEGF, we investigate the energy transfer of
the NESB embedded in the Ohmic bosonic baths in detail.
For unbiased spin systems, our energy current result indeed
smoothly bridges results of the QME and the NE-NIBA,
two benchmarks which are valid in the weak and strong
coupling regime, respectively. We also show that the method
can cover a wide range of temperatures by comparing with
an exact result at the Toulouse point [38] as well as with
a noninteracting model, a fully harmonic thermal junction.
In case of finite bias, we further found a nonmonotonic
bias dependence of the conductance in an intermediate
coupling regime with moderate temperatures. We attribute
this dependence to the resonant character of the heat transfer.
These features thus make our theory stand out from previous
considerations.

The paper is organized as follows. We first introduce the
NESB model and its nonequilibrium environment in Sec. II.
In Sec. III, we present methodologies of the PT-NEGF. In
Sec. IV, we study the energy transfer of the NESB using the
PT-NEGF in detail. In Sec. V, we summarize our findings and
make some final remarks.

II. NONEQUILIBRIUM SPIN-BOSON SYSTEM

A. Model

The NESB model, consisting of a two level system in
contact with two bosonic reservoirs, is described by the general
Hamiltonian [9]

H = Hs + HI + HB, (1)

where the system Hamiltonian Hs = ε
2σz + �

2 σx with ε the
bias, � the tunneling between two levels, and σx,z the Pauli ma-
trices. Since the spectrum of the system Hamiltonian is a sym-
metric function of bias, here we only consider positive bias.
The bath part HB = ∑

v=L,R Hv
B = ∑

j,v=L,R ωj,vb
†
j,vbj,v and

the bilinear interaction term HI=σz

∑
j,v=L,R gj,v(b†j,v + bj,v)

with b
†
j,v(bj,v) the creation (annihilation) operator of the j th

harmonic mode in the v bosonic bath and gj,v the system-bath

coupling strength. Throughout the paper, we set h̄ = 1 and
kB = 1. The influence of the bath is contained in the spectral
density function:

Iv(ω) = 2π
∑
j∈v

g2
j,vδ(ω − ωj,v). (2)

For convenience, we make the specific choice [38]

Iv(ω) = παvω
sω1−s

c e−ω/ωc , (3)

where αv is the dimensionless system-bath coupling strength
between the v bath and the spin system, and ωc is the cutoff
frequency of the bath (we choose the same cutoff frequency for
two baths). The case s > 1(s < 1) corresponds to super-Ohmic
(sub-Ohmic) dissipation, and s = 1 represents the important
case of frequency-independent (Ohmic) dissipation. In this
paper, we limit ourselves to Ohmic dissipations.

B. Energy current and energy conductance

We utilize the following definition for the energy current
from the vth bosonic bath to the system:

Jv = − ∂

∂t
〈Hv

B〉 (4)

with Hv
B = ∑

j ωj,vb
†
j,vbj,v the Hamiltonian of the vth bosonic

bath. It is worthwhile to mention that the above definition
is consistent with the quantum thermodynamics and can be
applied in the strong coupling regime [39].

We introduce GFs of Pauli matrices on the Keldysh contour
[40,41]


αβ(t,t ′) = −i〈Tcσα(t)σβ(t ′)〉, α,β = x,y,z, (5)

where Tc is the contour-ordered operator responsible for the re-
arrangement of operators according to their contour time. The
earlier (later) contour time places operators to the right (left).
Its retarded, advanced, lesser, and greater components are
given by 
r

αβ(t,t ′) = −i�(t − t ′)〈[σα(t),σβ(t ′)]〉, 
a
αβ(t,t ′) =

i�(t ′ − t)〈[σα(t),σβ(t ′)]〉, 
<
αβ(t,t ′) = −i〈σβ(t ′)σα(t)〉, and


>
αβ(t,t ′) = −i〈σα(t)σβ(t ′)〉, respectively, where �(τ ) denotes

the Heaviside step function and σα(τ ) ≡ eiHτσαe−iHτ denotes
the operator in the Heisenberg picture.

Noting that in nonequilibrium steady states the Keldysh GFs
depend only on the time difference, t − t ′. Therefore, in terms
of Keldysh GFs defined above, a formally exact expression for
the energy current from the vth bosonic bath to the system can
be expressed as [21,32,42]

Jv = 1

2π

∫ ∞

0
dωωIv(ω)[2nv(ω)χ̃ ′′

z (ω) + Im
<
zz(ω)], (6)

where 
<
zz(ω) is the Fourier transform of the lesser Green’s

function 
<
zz(t − t ′), “Im” denotes the imaginary part, and

nv is the Bose-Einstein distribution of temperature Tv . χ̃ ′′
z (ω)

represents the imaginary part of the dynamical susceptibil-
ity; it is given by −Im
r

zz(ω), or equivalently [
<
zz(ω) −


>
zz(ω)]/2i.
By considering zero dimensionality of the spin system and

the conservation law of current JL + JR = 0, the above energy
current formula [Eq. (6)] can be cast into a Landauer-type
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form [32]:

JL = αξ

4π

∫ ∞

0
dωωχ̃ ′′

z (ω)Ĩ (ω)[nL(ω) − nR(ω)], (7)

where α = αL + αR , and ξ = 4αLαR/α2 is an asymmetry
factor; for Ohmic dissipations, we have Ĩ (ω) = πωe−ω/ωc .
We should emphasize that Eq. (7) is still exact. In the
linear response regime, the energy conductance defined by
κ ≡ dJL/dTL|TL→TR=T is given by

κ = αξ

4π

∫ ∞

0
dω χ̃ ′′

z (ω)
∣∣
TL=TR=T

Ĩ (ω)

[
ω/2T

sinh(ω/2T )

]2

. (8)

From Eqs. (7) and (8), we can see that the imaginary
part of the dynamical susceptibility χ̃ ′′

z (ω) determines the
energy transfer properties of the NESB. Therefore, a unified
description of χ̃ ′′

z (ω) results in a unified theory for energy
transfer. In the following section, we will show that by
developing a PT-NEGF method a quite general yet simple
expression for χ̃ ′′

z (ω) can be obtained.

III. POLARON TRANSFORMED NEGF METHOD

A. Polaron transformation

Since χ̃ ′′
z (ω) is of primary interest, we will mainly focus

on the calculation of the Keldysh GFs of σz in the following,
but the methodologies discussed below carry over easily to
other Keldysh GFs as well [43]. We principally work here in
the so-called nonadiabatic limit of �/ωc 	 1. For fast baths,
it has been demonstrated that the PT is suitable for the entire
range of system-bath coupling strength [35,37]. Thus we make
the PT with the unitary operator

U = exp[iσz�/2], � = 2i
∑
j,v

gj,v

ωj,v

(b†j,v − bj,v) (9)

on the Hamiltonian Eq. (1) such that

HT = U †HU = H̃0 + H̃I , (10)

where the total free Hamiltonian is H̃0 = H̃s + H̃B and the
transformed system Hamiltonian reads

H̃s = ε

2
σz, (11)

and the bath Hamiltonian remains unaffected, H̃B = HB . The
transformed interaction term, originating from the tunneling
term in Eq. (1), takes the following form:

H̃I = �

2
(σx cos � + σy sin �). (12)

It is evident that H̃I contains arbitrary orders of the system-bath
coupling strength by noting the form of � in Eq. (9).

In order that a perturbation theory can be developed for
HT , 〈H̃I 〉H̃0

= 0 should be fulfilled. For the bath spectral
function we choose [see Eq. (3)], it can be easily verified
that for s � 1 the expectation of H̃I will always approach
zero regardless of the system-bath coupling strength, while
for s > 1 the expectation is finite [28]. Therefore, in case of
Ohmic dissipations we consider here, H̃I can be safely treated
as a perturbation. The extension to the super-Ohmic dissipation

is quite straightforward, and we should adopt a fluctuation-
decoupling scheme [28,35] and choose H̃I − 〈H̃I 〉H̃0

as the
transformed interaction term. Noting H̃I is nonperturbative in
coupling strength α, we thus follow a totally different routine
to develop a NEGF method.

Furthermore, since [σz,U ] = 0, expressions for the energy
current as well as the heat conductance [see Eqs. (7) and (8)]
are unchanged after the PT. Therefore, we still only need to
evaluate the Keldysh GFs of σz with respect to the transformed
Hamiltonian HT .

B. Majorana-fermion representation

Note that spin operators do not satisfy the Wick theorem.
In order to overcome this difficulty, the so-called Majorana-
fermion representation (MFR) [44] is utilized in the method
such that standard Feynman diagram techniques as well as the
Dyson equation can be used. Technically, the MFR involves the
introduction of a triplet of real fermions ηα (with α = x,y,z)
that satisfy [23]

ηαηβ = −ηβηα (α 
= β), η2
α = 1, (13)

which leads to a representation of spin operators:

σα = −i
∑
βγ

εαβγ ηβηγ . (14)

Noting the crucial property of the MFR 〈σα(τ )σβ〉 =
〈ηα(τ )ηβ〉 [22,23,25], if we introduce the Keldysh GFs of
Majorana fermions

Gαβ(t,t ′) ≡ −i〈Tcηα(t)ηβ(t ′)〉, (15)

then Keldysh GFs of spin operators can be rewritten in terms
of the greater and lesser Keldysh GF of Majorana fermions,
namely, 
<

αβ(t,t ′) = −G<
αβ(t,t ′), 
>

αβ(t,t ′) = G>
αβ(t,t ′),


r
αβ(t,t ′) = �(t − t ′)[G>

αβ(t,t ′) + G<
αβ(t,t ′)], 
a

αβ(t,t ′) =
−�(t ′ − t)[G>

αβ(t,t ′) + G<
αβ(t,t ′)]. Thus the evaluation of

Keldysh GFs 
αβ turns into an evaluation of Keldysh GFs Gαβ .
The latter enables a standard diagrammatic method. For later
convenience, we denote Gη ≡ Gzz, Gηx

≡ Gxx , Gηy
≡ Gyy .

C. Evaluation of Keldysh Green’s functions

By introducing the contour ordering, Keldysh GFs are for-
mally and structurally equivalent to equilibrium counterparts
[40,41]. So the Keldysh GF Gη(t,t ′) satisfies a Dyson-like
equation:

Gη(t,t ′) = Gη,0(t,t ′) +
∫

dt1

∫
dt2Gη,0(t,t1)

×�η(t1,t2)Gη(t2,t
′), (16)

where Gη,0(t,t ′) is the free Keldysh GF of Majorana fermions,
and �η(t1,t2) corresponds to the self-energy due to the
system-bath interaction. Once the information on Gη,0(t,t ′)
and �η(t1,t2) is known, we can obtain Gη(t,t ′) via the above
equation.

1. Free Keldysh Green’s functions

We first consider free Keldysh GFs for Majorana fermions.
In the MFR, the transformed system Hamiltonian Hs can be
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expressed as

H̃s = −i
ε

2
ηxηy. (17)

Clearly we have [H̃s,ηz] = 0, so ηz is time independent. We
find in steady states (τ = t − t ′) that

G
r/a

η,0(τ ) = ∓2i�(±τ ), (18)

which yields

G
r/a

η,0(ω) = 2

ω ± iξ
(19)

with ξ → 0+ in the frequency domain.
We also need greater and lesser components of Gηx,0 and

Gηy,0 in the calculations for self-energies below. From the
Hamiltonian [Eq. (17)], equations of motion that ηx and ηy

satisfy are given by ηy(t) = ηy cos εt + ηx sin εt and ηx(t) =
ηx cos εt − ηy sin εt , respectively. With a nonzero bias, the
spin-down and spin-up states of σz are no longer degenerate;
for self-consistence and convenience, we choose the ground
state, namely, the spin-down state (since ε > 0 by default) as
the initial condition such that

G>
ηx,0(ω) = G>

ηy,0(ω) = −i2πδ(ω − ε),

G<
ηx,0(ω) = G<

ηy,0(ω) = i2πδ(ω + ε). (20)

It is worthwhile to mention that if we only consider negative
values of bias (due to the symmetry, we can consider either
positive or negative bias), we should take the spin-up state (the
corresponding ground state) as the initial state, but the resulting
final expressions remain the same forms with those obtained
below, implying that our results are symmetric functions
of the bias as expected. The independence of our results
on the initial conditions should also be understood in this
manner.

We then turn to free Keldysh GFs for bath operators.
According to Eq. (12), we introduce compact notations B ≡
(cos �, sin �)T and B† ≡ (cos �, sin �) and define a matrix
Keldysh GF for steady states:

GB,0(τ ) ≡ −i〈TcB(τ )B†〉. (21)

Since the retarded and advanced components are totally
determined by the lesser and greater ones, we only need
G>

B,0(τ ) = −i〈B(τ )B†〉 and G<
B,0(τ ) = −i〈B†B(τ )〉. In order

to simplify the calculation of matrix elements, we fur-
ther introduce correlation functions �nm(τ ) ≡ �2

4 〈eni�(τ )emi�〉
and �̃nm(τ ) ≡ �2

4 〈eni�emi�(τ )〉 = �nm(−τ ) with n,m = ±. In
terms of those correlation functions, we can rewrite matrix
elements of G

>,<
B,0 ; for instance, we have

〈cos �(τ ) cos �〉 = 1

�2
[�++(τ ) + �+−(τ )

+�−+(τ ) + �−−(τ )] (22)

for an element of G>
B,0. By replacing �nm(τ ) with �̃nm(τ ), we

can obtain results for elements of G<
B,0.

By assuming the two reservoirs are at their own thermal
equilibrium states characterized by temperature Tv (v = L,R),
�nm(τ ) and �̃nm(τ ) can be evaluated by using the techniques

of Feynman disentangling of operators [36]. For example, we
have [12,38]

�+−(τ ) = �2

4
exp

[
−

∑
v=L,R

[
Qv

2(τ ) + iQv
1(τ )

]]
(23)

with Qv
1(τ ) = 2

π

∫ ∞
0 dω Iv (ω)

ω2 sin ωτ and Qv
2(τ ) = 4

π

∫ ∞
0 dω

Iv(ω)
ω2 coth ( ω

2Tv
) sin2 (ωτ

2 ). The additive forms in exponential
functions can be understood by noting the additive form of �

for two baths [see Eq. (9)]. Similarly, we can find �̃+−(τ ) =
�̃−+(τ ) = �∗

+−(τ ), �++(τ ) = �−−(τ ), and �̃++(τ ) =
�̃−−(τ ). By noting, for instance, 〈cos �(τ ) sin �〉 =
i

�2 [�+−(τ ) − �++(τ ) + �−−(τ ) − �−+(τ )], we deduce that
the nondiagonal elements of G

>,<
B,0 are vanishing, so G

>,<
B,0 are

actually diagonal matrices.

2. Self-energy

We now focus on the extraction of the fermionic self-
energies. In the MFR, the interaction part can be rewritten as

H̃I ≡ −i
�

2
(ηyηz cos � + ηzηx sin �). (24)

For such a weak interaction, the spin dynamics should, in
principle, be well described by the lowest-order self-energies.
The lowest nonvanishing correction to Gη,0 is

i

2

∫
dt1

∫
dt2Tr{ρ0Tc[ηz(t)ηz(t

′)H̃I (t1)H̃I (t2)]} (25)

with ρ0 as the initial total density matrix. In what follows, we
choose a factorized initial condition, namely, ρ0 = ρB ⊗ ρs .
Both reservoirs are prepared in canonical-equilibrium states
with temperatures Tv ≡ β−1

v :

ρB =
∏

v=L,R

e−βvH
v
B

Zv
B

, Zv
B = Tre−βvH

v
B . (26)

The spin system H̃s is prepared in a spin-down state. From
the above correction form, the leading order self-energy �η is
obtained with both fermionic and bosonic lines given by the
free propagators

�η(t1,t2) = i
�2

4
[11GB,0(t1,t2)Gηy,0(t1,t2)

+ 22GB,0(t1,t2)Gηx,0(t1,t2)] (27)

with 11GB,0 ≡ (1 0)GB,0(1
0) and 22GB,0 ≡ (0 1)GB,0(0

1).
Using the Langreth theorem [41] and expressions for the

free Keldysh GFs, we find the greater and lesser components of
the self-energy �η can be written as �>

η (ω) = −i�+−(ω − ε)
and �<

η (ω) = i�̃+−(ω + ε), respectively. Noting the property
�r

η − �a
η = �>

η − �<
η , we have

Im
[
�r/a

η (ω)
] ≡ ∓ 1

2�(ω) (28)

with �(ω) ≡ [�+−(ω − ε) + �̃+−(ω + ε)]. In order to cap-
ture correct physics in the strong coupling regime, the real part
� of self-energies �

r/a
η (ω), usually ignored in previous per-

turbation theory, should also be taken into account. Together
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with Eq. (27) and Langreth theorems, we have

2� = �r
η(ω) + �a

η (ω)

= i
�2

4

[ ∑
α=11,22

(
αGr

B,0 +α Ga
B,0

) ◦ (
iImGr

ηy,0 + G<
ηy,0

)

+
∑

α=11,22

(αG>
B,0 +α G<

B,0) ◦ ReGr
ηy,0

]
, (29)

where “Im” and “Re” denote the imaginary and real part,
respectively, and “◦” denotes the convolution in the frequency
domain. Introducing the Laplace transform for an arbitrary
function A(τ ),

A(λ) =
∫ ∞

0
A(τ )e−λτ dτ, (30)

and noting the Kramers-Kronig relations, we finally get

�(ω) = Im[�̃+−(λ)]|λ=−i(ω+ε) + Im[�+−(λ)]|λ=−i(ω−ε),

(31)

where �+−(λ) and �̃+−(λ) are bath correlations in the Laplace
space. The sum of the greater and lesser self-energies gives the
Keldysh component of self-energy:

�K
η (ω) = i[�̃+−(ω + ε) − �+−(ω − ε)]. (32)

D. Expression for χ̃ ′′
z (ω)

Inserting free Keldysh GFs G
r/a

η,0 (ω) and self-energies

�
r/a
η (ω) into Eq. (16), we have

Gr/a
η (ω) = 2

ω − 2� ± i�
. (33)

The above results together with Eq. (32) lead to the following
Keldysh component of Gη:

GK
η (ω) = 4i[�̃+−(ω + ε) − �+−(ω − ε)]

(ω − 2�)2 + �2
. (34)

Since χ̃ ′′
z (ω) = [
<

zz(ω) − 
>
zz(ω)]/2i, we have

χ̃ ′′
z (ω) = i

2
GK

η = 2
�+−(ω − ε) − �̃+−(ω + ε)

(ω − 2�)2 + �2
. (35)

The above expression is one of the main results of this paper.

IV. RESULTS AND DISCUSSION

In this section we shall apply the formal results of Eq. (35)
to study the energy transfer for the case of Ohmic dissipation,
that is, s = 1 in the spectral density Eq. (3).

A. Unbiased system

We first consider unbiased spin systems with ε = 0. In this
situation, Eq. (35) reduces to

χ̃ ′′
z (ω) = 2

�+−(ω) − �̃+−(ω)

(ω − 2�)2 + �2
(36)

with 2� and � now the imaginary and real part of
2[�+−(λ) + �̃+−(λ)]|λ=−iω, respectively. For later conve-
nience, we introduce the correlation function of the vth bosonic

bath:

Cv(τ ) = �

2
exp

[−Qv
2(τ ) − iQv

1(τ )
]
, (37)

therefore the bath correlation functions can be expressed as

�+−(τ ) = CL(τ )CR(τ ),

�̃+−(τ ) = CL(−τ )CR(−τ ), (38)

and clearly the two baths are involved nonadditively.
In the nonadiabatic limit of ωc/Tv � 1, Eq. (37) has the

following explicit form [12,38,45,46]:

Cv(τ ) = �

2
exp[−iπαv sgn(τ )]

(
πTv

ωc sinh(πTv|τ |)
)2αv

.

(39)
Taking the weak coupling limit of the above expression, after
a straightforward calculation we find

χ̃ ′′
z (ω) � 2

�2 ∑
v Iv(ω)

(ω2 − �2)2 + ω2
( ∑

v Iv(ω) coth ω
2Tv

)2 . (40)

Inserting the above expression into Eq. (7) yields

JL = 2

π

∫ ∞

0
dωω

IL(ω)IR(ω)�2[nL(ω) − nR(ω)]

(ω2 − �2)2 + ω2
( ∑

v Iv(ω) coth ω
2Tv

)2 ,

(41)

which is exactly the result obtained by a previous NEGF
method [21]. When the bath temperature TL/R is comparable
to or larger than the energy spacing � of the spin, the
incoherent sequential process becomes the dominant heat
transfer mechanism [17], thus the integrand of Eq. (41) with
frequencies around � contributes the most to the heat current.
As a result, Eq. (41) can be reduced to the result of QME [21]:

JL = �
IL(�)IR(�)[nL(�) − nR(�)]

IL(�)[2nL(�) + 1] + IR(�)[2nR(�) + 1]
. (42)

Thus our energy current formula can describe the weak
coupling regime, in contrast to the NE-NIBA, the result [26,27]

JL = 1

4π

∫ ∞

−∞
ω[CR(ω)CL(−ω) − CR(−ω)CL(ω)]dω (43)

of which can only be applied to the strong coupling
regime [29].

In order to see the performance of our result in a wide
range of the coupling strength, a comparison between various
theoretical predictions for the energy current is shown in Fig. 1.
From the figure, it is expected that our formula matches the
results of the QME and the NEGF in the weak coupling
regime, while the NE-NIBA underestimates values of the heat
current. As the coupling strength increases, our result depicts
a “turnover” behavior which is in accord with exact numerical
results [30] as well as the NE-NIBA’s prediction, thus our
result is distinct from results of the QME and NEGF. This
turnover phenomenon results from a renormalization effect
of tunneling between two spin states in the strong coupling
regime. In the strong coupling regime, the profile of our
formula almost coincides with the result of the NE-NIBA.
We attribute this agreement to the fact that approximations
underlying our theory bear a close resemblance to that of
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α
10-3 10-2 10-1 100

J
/Δ

2

10-6

10-5

10-4

10-3

10-2

10-1

100

QME
NEGF
NE-NIBA
PT-NEGF

FIG. 1. Comparison between theoretical results on the energy
current. The pink dashed line denotes the result of the QME [Eq. (42)],
the blue dash-dotted line denotes the result of the NE-NIBA [Eq. (43)],
the red dash-dotted line denotes the result of a previous NEGF method
[Eq. (41)], and the green solid line denotes the result of the present
PT-NEGF method [Eq. (7) together with Eq. (36)]. Parameters are
TL/� = 1.4, TR/� = 1.2, αL = αR = α, ωc/� = 30 such that the
nonadiabatic limit is fulfilled.

the NIBA framework for unbiased spin systems as has been
noted in equilibrium cases [37]. These features indicate that
our theory indeed provides a comprehensive and unified
interpretation for energy transfer over a wide range of the
coupling strength, a considerable improvement over existing
theories.

Although our heat current formula can be applied to
arbitrary temperature differences, it is still of primary interest
to look at the behaviors in the linear response regime where
some exact results can be adopted for comparison. We first
consider the influence of the energy spacing � of the spin
system on the energy conductance. According to the definition,
κ is totally determined by χ̃ ′′

z (ω)|
TL=TR=T

; in order to evaluate
it, we only need Laplace transforms of bath correlations
[Eq. (23)] at equilibrium states since all Fourier transforms
can be expressed as Laplace transforms. In the scaling limit of
ωc/T � 1, we have [38,45]

�+−(λ) = �2

4ωc

e−iπα �(1 − 2α)�(α +|,λ/2πT )

�(1 − α + λ/2πT )

(
2πT

ωc

)2α−1

= �̃∗
+−(λ). (44)

Results for κ depicted in Fig. 2 show a turnover behavior
as a function of the energy spacing �, which is in accor-
dance with the findings of the multilayer multiconfiguration
time-dependent Hartree theory [30] as well as the influence
functional path integral method [15]. This dependence is due
to the resonant character of energy transfer. The energy transfer
is most efficient if the energy scale of the bridge subsystem
is comparable to the temperature of the bath, as can be found
that the value of � corresponding to the turnover point for
T/ωc = 0.02 is almost double that for T/ωc = 0.01.

Δ/ωc

0 0.1 0.2 0.3

κ
/ω

2 c

×10-3

0

0.6

1.2

1.8
T/ωc = 0.01
T/ωc = 0.02

FIG. 2. Dependence of the energy conductance on the energy
spacing � of the spin system for different temperatures. We choose
α = 0.1, TL = TR = T .

We next consider the temperature dependence of the energy
conductance as shown in Fig. 3. In the weak coupling regime
[Fig. 3(a)], we found our results match very well with those
of the fully harmonic thermal junction, which has a simple
harmonic oscillator (SHO) as the intermediate system [42] in
the very low temperature regime. This is expected since at
the low temperature limit the SHO is generally confined to
its two lowest energy levels, thus it behaves like a two-level
system [21,47]. When increasing the temperature, our formula
reduces to the QME as demonstrated before. In the strong
coupling regime, we consider the so-called Toulouse point
with α = 0.5 as an example, since the exact expression for
equilibrium χ̃ ′′

z (ω) exists, which reads [38]

χ̃ ′′
z (ω) = Im

[
2

πω

γ

ω + iγ
�(ω)

]
, (45)

where γ = π�2/(2ωc), �(ω) = 2ψ(x) − 2ψ(x − iβω/2π )
with ψ the digamma function and x = 1

2 (1 + 1
2γβ). As can be

FIG. 3. Temperature dependence of the energy conductance with
(a) α = 0.01 and (b) α = 0.5 (Toulouse point). We choose ωc/� =
20, TL = TR = T .

012135-6



ENERGY TRANSFER IN THE NONEQUILIBRIUM SPIN- . . . PHYSICAL REVIEW E 96, 012135 (2017)

seen from Fig. 3(b), our perturbation theory can approximate
the exact results in a wide range of temperature; deviations
only appear in the extreme low temperature regime due to the
shortcomings of the PT [35]. Nevertheless, from the figure we
clearly demonstrate that our theory is valid in a wide range of
temperature in both the weak and strong system-bath coupling
regime.

B. Biased system

In this subsection we turn to the biased spin system.
Although its dissipative dynamics has been extensively studied
[9,38,48–52], a thorough understanding of its energy transfer
characteristic is limited to the time-dependent case [33]. So
far, no numerical methods could address effects of a finite bias
at steady states. On the theoretical side, only the QME and
NE-NIBA can involve bias in their formula [15]. However,
their validity regimes are limited. It is then of necessity and
interest to explore the energy transfer behaviors of the NESB
model with a finite bias using our approach.

For biased systems, the QME framework predicted that [15]

JQ = �2

ω0

IL(ω0)IR(ω0)[nL(ω0) − nR(ω0)]

IL(ω0)[1 + 2nL(ω0)] + IR(ω0)[1 + 2nR(ω0)]
(46)

with ω0 ≡ √
�2 + ε2 the energy spacing of the spin. While

the energy current of the NE-NIBA reads [26,27]

JN = 1

2π

∫ +∞

−∞
ωdω[P1CR(ω)CL(ε − ω)

−P0CR(−ω)CL(ω − ε)], (47)

where Cv(ω) is the Fourier transform of Eq. (37), P0,1

denote the steady-state population of the spin states which
are determined by the Fourier transform of bath correlation
functions [Eq. (38)]:

P0 = �+−(ε)

�+−(ε) + �̃+−(ε)
,

P1 = �̃+−(ε)

�+−(ε) + �̃+−(ε)
. (48)

Results for the energy current are shown in Fig. 4. From the
figure, we found that the PT-NEGF scheme still agrees with
the QME in the weak coupling regime. Increasing the coupling
strength, the QME predicts an almost linearly increasing κ

which is qualitatively incorrect, whereas our results and the
NE-NIBA show turnover behaviors, although the turnover
point differs. In the strong coupling regime, the PT-NEGF
approaches the NE-NIBA. Thus the PT-NEGF can describe
the energy transfer in biased systems.

In the intermediate coupling regime, we further notice
an interesting phenomenon that the energy conductance is
a nonmonotonic function of the bias as can be seen from
Fig. 5. Such a dependence is directly in contrast to the NE-
NIBA’s prediction κ ∝ ε/ sinh(ε/T ) for α = 0.1–0.5 [15].
Note that for the spin system with fixed �, the energy
spacing ω0 increases as bias increases, so the nonmonotonic
dependence of κ on ε at moderate couplings is similar to the
results presented in Fig. 2. Therefore we can attribute this
nonmonotonic behavior to the energy resonance between the
bath and the spin. The NE-NIBA fails to capture this behavior,

0 0.3 0.6 0.9
0

0.002

0.004

0.006

0.008

0.01

α

J
/Δ

2

QME: dashed−dotted lines

NE−NIBA: dashed lines

PT−NEGF: solid lines

ε/Δ = 1
ε/Δ = 2

FIG. 4. Behaviors of the energy current with varying bias (blue
denotes ε = 1, red denotes ε = 2) as a function of coupling strength.
We compare PT-NEGF results (solid lines) to QME [Eq. (46)]
(dash-dotted line) and NE-NIBA [Eq. (47)] (dashed lines). The
inset shows the dependence of heat conductance on the bias for
different coupling strengths predicted by the PT-NEGF. We choose
TL/� = 1.4, TR/� = 1.2, αL = αR = α, ωc/� = 30 such that the
nonadiabatic limit is fulfilled.

thus it is invalid in the intermediate coupling regime in the
presence of bias; only in the strong coupling regime can we
observe predicted monotonic behaviors of κ as shown in the
figure.

In accordance with such a nonmonotonic dependence, we
would expect that if ω0 is always smaller (larger) than the
bath temperature T , κ should be a monotonically increasing
(decreasing) function of ε at moderate couplings. To verify
this, we choose appropriate temperatures and vary bias. Results

ε/Δ
0 1 2 3 4 5

κ
/
Δ

2

0

0.01

0.02

0.03

0.04
α = 0.1
α = 0.3
α = 0.5
α = 0.7

FIG. 5. The dependence of energy conductance on the bias for
different coupling strengths predicted by the PT-NEGF. We choose
TL/� = TR/� = 1.2, ωc/� = 30 such that the nonadiabatic limit is
fulfilled.
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FIG. 6. Behaviors of the heat conductance with varying bias as
a function of coupling strength for (a) T/� = 0.3 and (b) T/� = 6.
The inset shows details of κ in the strong coupling regime. We choose
TL = TR = T and ωc/T = 30 such that the nonadiabatic limit is
fulfilled.

are shown in Fig. 6. As can be seen from the figure, the
dependence of κ on ε in the intermediate coupling regime
indeed meets our expectation. We also observe that κ is always
a monotonically decreasing function of ε in the strong coupling
regime, regardless of values of temperature, since this regime
is dominated by the strong dissipation from the bath. Noting
that values of the bias can be adjusted by changing the applied
magnetic field, the interplay of the temperature, the bias, and
the coupling strength may offer a nontrivial quantum control
knob over heat transfer at the nanoscale. Our future work will
address this aspect in more detail.

V. SUMMARY

We formulate a PT-NEGF to investigate energy transfer
in nonequilibrium spin-boson models. In contrast to previous
NEGF methods treating the system-bath interaction as a
perturbation, our PT-NEGF method treats the system-bath
coupling nonperturbatively. Furthermore, in order to evaluate
terms in the expansion series, we adopt the Majorana-fermion
representation such that standard Feynman diagram techniques
as well as the Dyson equation can be applied to spin systems.
By doing so, our theoretical scheme goes beyond existing
methods; it can tackle the strong coupling regime and include
effects of a finite bias.

To demonstrate the utility of the approach, we first consider
unbiased spin systems. Our analysis shows that the PT-NEGF
method can give a comprehensive and unified interpretation for
energy transfer over wide ranges of the coupling strength as
well as temperature, a considerable improvement over existing
theories. The predicted behavior of energy conductance as a
function of the energy spacing of the spin is in accord with
exact numerical simulations. When a finite bias plays a role,
we found the energy conductance endows a nonmonotonic
bias dependence at moderate coupling strengths, which is not
reported in the present literature. We attribute this phenomenon
to the resonant character of energy transfer in such systems. To
verify our interpretation, we further consider different temper-
ature regimes and obtain self-consistent results. These features
make our theory stand out from previous considerations.

ACKNOWLEDGMENTS

The authors thank J. Cao, H. Zhou, and J. Ren for highly
useful discussions, and Chang-Yu Hsieh for reading the paper.
Support from National Natural Science Foundation of China
Grant No. 11574050 is gratefully acknowledged.

[1] M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour,
Science 278, 252 (1997).

[2] N. J. Tao, Nat. Nanotech. 1, 173 (2006).
[3] Y. K. Koh and D. G. Cahill, Phys. Rev. B 76, 075207 (2007).
[4] S. Lefévre and S. Volz, Phys. Sci. Instrum. 76, 033701 (2005).
[5] E. Chávez-Ángel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner,

J. Cuffe, B. Gracykowski, A. Shchepetov, H. Jiang, M. Prunnila,
J. Ahopelto, F. Alzina, and C. M. S. Torres, APL Mater. 2,
012113 (2014).

[6] J. S. Reparaz, E. Chavez-Angel, M. R. Wagner, B.
Graczykowski, J. Gomis-Bresco, F. Alzina, and C. M. S. Torres,
Rev. Sci. Instrum. 85, 034901 (2014).

[7] J.-S. Wang, J. Wang, and J. T. Lü, Eur. Phys. J. B 62, 381 (2008).
[8] Y. Dubi and M. Di Ventra, Rev. Mod. Phys. 83, 131 (2011).
[9] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.

Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
[10] Y. Fukai, The Metal-Hydrogen System (Springer-Verlag, Berlin,

2005).
[11] P. W. Anderson, B. I. Halperlin, and C. M. Varma, Philos. Mag.

25, 1 (1972).
[12] S. Dattagupta and S. Puri, Dissipative Phenomena in Condensed

Matter (Springer-Verlag, Berlin, 2004).

[13] D. Segal and A. Nitzan, Phys. Rev. Lett. 94, 034301 (2005).
[14] J. Ren, P. Hänggi, and B. Li, Phys. Rev. Lett. 104, 170601 (2010).
[15] N. Boudjada and D. Segal, J. Phys. Chem. A 118, 11323 (2014).
[16] D. Segal, Phys. Rev. B 73, 205415 (2006).
[17] T. Ruokola and T. Ojanen, Phys. Rev. B 83, 045417 (2011).
[18] J. Thingna, H. Zhou, and J.-S. Wang, J. Chem. Phys. 141, 194101

(2014).
[19] K. A. Velizhanin, M. Thoss, and H. Wang, J. Chem. Phys. 133,

084503 (2010).
[20] J.-S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Front. Phys.

9, 673 (2013).
[21] Y. Yang and C. Wu, Europhys. Lett. 107, 30003 (2014).
[22] W. Mao, P. Coleman, C. Hooley, and D. Langreth, Phys. Rev.

Lett. 91, 207203 (2003).
[23] A. Shnirman and Y. Makhlin, Phys. Rev. Lett. 91, 207204 (2003).
[24] S. Florens, A. Freyn, D. Venturelli, and R. Narayanan,

Phys. Rev. B 84, 155110 (2011).
[25] P. Schad, Y. Makhlin, B. Narozhny, G. Schön, and A. Shnirman,

Ann. Phys. 361, 401 (2015).
[26] L. Nicolin and D. Segal, J. Chem. Phys. 135, 164106 (2011).
[27] L. Nicolin and D. Segal, Phys. Rev. B 84, 161414(R) (2011).
[28] C. Wang, J. Ren, and J. Cao, Sci. Rep. 5, 11787 (2015).

012135-8

https://doi.org/10.1126/science.278.5336.252
https://doi.org/10.1126/science.278.5336.252
https://doi.org/10.1126/science.278.5336.252
https://doi.org/10.1126/science.278.5336.252
https://doi.org/10.1038/nnano.2006.130
https://doi.org/10.1038/nnano.2006.130
https://doi.org/10.1038/nnano.2006.130
https://doi.org/10.1038/nnano.2006.130
https://doi.org/10.1103/PhysRevB.76.075207
https://doi.org/10.1103/PhysRevB.76.075207
https://doi.org/10.1103/PhysRevB.76.075207
https://doi.org/10.1103/PhysRevB.76.075207
https://doi.org/10.1063/1.1857151
https://doi.org/10.1063/1.1857151
https://doi.org/10.1063/1.1857151
https://doi.org/10.1063/1.1857151
https://doi.org/10.1063/1.4861796
https://doi.org/10.1063/1.4861796
https://doi.org/10.1063/1.4861796
https://doi.org/10.1063/1.4861796
https://doi.org/10.1063/1.4867166
https://doi.org/10.1063/1.4867166
https://doi.org/10.1063/1.4867166
https://doi.org/10.1063/1.4867166
https://doi.org/10.1140/epjb/e2008-00195-8
https://doi.org/10.1140/epjb/e2008-00195-8
https://doi.org/10.1140/epjb/e2008-00195-8
https://doi.org/10.1140/epjb/e2008-00195-8
https://doi.org/10.1103/RevModPhys.83.131
https://doi.org/10.1103/RevModPhys.83.131
https://doi.org/10.1103/RevModPhys.83.131
https://doi.org/10.1103/RevModPhys.83.131
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1080/14786437208229210
https://doi.org/10.1080/14786437208229210
https://doi.org/10.1080/14786437208229210
https://doi.org/10.1080/14786437208229210
https://doi.org/10.1103/PhysRevLett.94.034301
https://doi.org/10.1103/PhysRevLett.94.034301
https://doi.org/10.1103/PhysRevLett.94.034301
https://doi.org/10.1103/PhysRevLett.94.034301
https://doi.org/10.1103/PhysRevLett.104.170601
https://doi.org/10.1103/PhysRevLett.104.170601
https://doi.org/10.1103/PhysRevLett.104.170601
https://doi.org/10.1103/PhysRevLett.104.170601
https://doi.org/10.1021/jp5091685
https://doi.org/10.1021/jp5091685
https://doi.org/10.1021/jp5091685
https://doi.org/10.1021/jp5091685
https://doi.org/10.1103/PhysRevB.73.205415
https://doi.org/10.1103/PhysRevB.73.205415
https://doi.org/10.1103/PhysRevB.73.205415
https://doi.org/10.1103/PhysRevB.73.205415
https://doi.org/10.1103/PhysRevB.83.045417
https://doi.org/10.1103/PhysRevB.83.045417
https://doi.org/10.1103/PhysRevB.83.045417
https://doi.org/10.1103/PhysRevB.83.045417
https://doi.org/10.1063/1.4901274
https://doi.org/10.1063/1.4901274
https://doi.org/10.1063/1.4901274
https://doi.org/10.1063/1.4901274
https://doi.org/10.1063/1.3483127
https://doi.org/10.1063/1.3483127
https://doi.org/10.1063/1.3483127
https://doi.org/10.1063/1.3483127
https://doi.org/10.1007/s11467-013-0340-x
https://doi.org/10.1007/s11467-013-0340-x
https://doi.org/10.1007/s11467-013-0340-x
https://doi.org/10.1007/s11467-013-0340-x
https://doi.org/10.1209/0295-5075/107/30003
https://doi.org/10.1209/0295-5075/107/30003
https://doi.org/10.1209/0295-5075/107/30003
https://doi.org/10.1209/0295-5075/107/30003
https://doi.org/10.1103/PhysRevLett.91.207203
https://doi.org/10.1103/PhysRevLett.91.207203
https://doi.org/10.1103/PhysRevLett.91.207203
https://doi.org/10.1103/PhysRevLett.91.207203
https://doi.org/10.1103/PhysRevLett.91.207204
https://doi.org/10.1103/PhysRevLett.91.207204
https://doi.org/10.1103/PhysRevLett.91.207204
https://doi.org/10.1103/PhysRevLett.91.207204
https://doi.org/10.1103/PhysRevB.84.155110
https://doi.org/10.1103/PhysRevB.84.155110
https://doi.org/10.1103/PhysRevB.84.155110
https://doi.org/10.1103/PhysRevB.84.155110
https://doi.org/10.1016/j.aop.2015.07.006
https://doi.org/10.1016/j.aop.2015.07.006
https://doi.org/10.1016/j.aop.2015.07.006
https://doi.org/10.1016/j.aop.2015.07.006
https://doi.org/10.1063/1.3655674
https://doi.org/10.1063/1.3655674
https://doi.org/10.1063/1.3655674
https://doi.org/10.1063/1.3655674
https://doi.org/10.1103/PhysRevB.84.161414
https://doi.org/10.1103/PhysRevB.84.161414
https://doi.org/10.1103/PhysRevB.84.161414
https://doi.org/10.1103/PhysRevB.84.161414
https://doi.org/10.1038/srep11787
https://doi.org/10.1038/srep11787
https://doi.org/10.1038/srep11787
https://doi.org/10.1038/srep11787


ENERGY TRANSFER IN THE NONEQUILIBRIUM SPIN- . . . PHYSICAL REVIEW E 96, 012135 (2017)

[29] T. Chen, X.-B. Wang, and J. Ren, Phys. Rev. B 87, 144303
(2013).

[30] K. A. Velizhanin, H. Wang, and M. Thoss, Chem. Phys. Lett.
460, 325 (2008).

[31] D. Segal, Phys. Rev. B 87, 195436 (2013).
[32] K. Saito and T. Kato, Phys. Rev. Lett. 111, 214301 (2013).
[33] M. Carrega, P. Solinas, M. Sassetti, and U. Weiss, Phys. Rev.

Lett. 116, 240403 (2016).
[34] D. E. Makarov and N. Makri, Chem. Phys. Lett. 221, 482 (1994).
[35] C. K. Lee, J. Moix, and J. Cao, J. Chem. Phys. 136, 204120

(2012).
[36] G. D. Mahan, Many-Particle Physics (Plenum, New York, 2000).
[37] J. Liu, H. Xu, and C.-Q. Wu, Chem. Phys. 481, 42 (2016).
[38] U. Weiss, Quantum Dissipative Systems (World Scientific,

Singapore, 2012).
[39] M. Esposito, M. A. Ochoa, and M. Galperin, Phys. Rev. Lett.

114, 080602 (2015).
[40] J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).

[41] H. Haug and A. P. Jauho, Quantum Kinetics in Transport and
Optics of Semiconductors (Springer-Verlag, Berlin, 1996).

[42] T. Ojanen and A.-P. Jauho, Phys. Rev. Lett. 100, 155902
(2008).

[43] P. Schad, A. Shnirman, and Y. Makhlin, Phys. Rev. B 93, 174420
(2016).

[44] A. M. Tsvelik, Phys. Rev. Lett. 69, 2142 (1992).
[45] S. Dattagupta, H. Grabert, and R. Jung, J. Phys.: Condens. Matter

1, 1405 (1989).
[46] R. Görlich and U. Weiss, Phys. Rev. B 38, 5245 (1988).
[47] B. K. Agarwalla and D. Segal, New J. Phys. 19, 043030 (2017).
[48] U. Weiss and M. Wollensak, Phys. Rev. Lett. 62, 1663 (1989).
[49] R. Görlich, M. Sassetti, and U. Weiss, Europhys. Lett. 10, 507

(1989).
[50] U. Weiss and H. Grabert, Europhys. Lett. 2, 667 (1986).
[51] H. Grabert and U. Weiss, Phys. Rev. Lett. 54, 1605 (1985).
[52] M. P. A. Fisher and A. T. Dorsey, Phys. Rev. Lett. 54, 1609

(1985).

012135-9

https://doi.org/10.1103/PhysRevB.87.144303
https://doi.org/10.1103/PhysRevB.87.144303
https://doi.org/10.1103/PhysRevB.87.144303
https://doi.org/10.1103/PhysRevB.87.144303
https://doi.org/10.1016/j.cplett.2008.05.065
https://doi.org/10.1016/j.cplett.2008.05.065
https://doi.org/10.1016/j.cplett.2008.05.065
https://doi.org/10.1016/j.cplett.2008.05.065
https://doi.org/10.1103/PhysRevB.87.195436
https://doi.org/10.1103/PhysRevB.87.195436
https://doi.org/10.1103/PhysRevB.87.195436
https://doi.org/10.1103/PhysRevB.87.195436
https://doi.org/10.1103/PhysRevLett.111.214301
https://doi.org/10.1103/PhysRevLett.111.214301
https://doi.org/10.1103/PhysRevLett.111.214301
https://doi.org/10.1103/PhysRevLett.111.214301
https://doi.org/10.1103/PhysRevLett.116.240403
https://doi.org/10.1103/PhysRevLett.116.240403
https://doi.org/10.1103/PhysRevLett.116.240403
https://doi.org/10.1103/PhysRevLett.116.240403
https://doi.org/10.1016/0009-2614(94)00275-4
https://doi.org/10.1016/0009-2614(94)00275-4
https://doi.org/10.1016/0009-2614(94)00275-4
https://doi.org/10.1016/0009-2614(94)00275-4
https://doi.org/10.1063/1.4722336
https://doi.org/10.1063/1.4722336
https://doi.org/10.1063/1.4722336
https://doi.org/10.1063/1.4722336
https://doi.org/10.1016/j.chemphys.2016.07.003
https://doi.org/10.1016/j.chemphys.2016.07.003
https://doi.org/10.1016/j.chemphys.2016.07.003
https://doi.org/10.1016/j.chemphys.2016.07.003
https://doi.org/10.1103/PhysRevLett.114.080602
https://doi.org/10.1103/PhysRevLett.114.080602
https://doi.org/10.1103/PhysRevLett.114.080602
https://doi.org/10.1103/PhysRevLett.114.080602
https://doi.org/10.1103/RevModPhys.58.323
https://doi.org/10.1103/RevModPhys.58.323
https://doi.org/10.1103/RevModPhys.58.323
https://doi.org/10.1103/RevModPhys.58.323
https://doi.org/10.1103/PhysRevLett.100.155902
https://doi.org/10.1103/PhysRevLett.100.155902
https://doi.org/10.1103/PhysRevLett.100.155902
https://doi.org/10.1103/PhysRevLett.100.155902
https://doi.org/10.1103/PhysRevB.93.174420
https://doi.org/10.1103/PhysRevB.93.174420
https://doi.org/10.1103/PhysRevB.93.174420
https://doi.org/10.1103/PhysRevB.93.174420
https://doi.org/10.1103/PhysRevLett.69.2142
https://doi.org/10.1103/PhysRevLett.69.2142
https://doi.org/10.1103/PhysRevLett.69.2142
https://doi.org/10.1103/PhysRevLett.69.2142
https://doi.org/10.1088/0953-8984/1/8/003
https://doi.org/10.1088/0953-8984/1/8/003
https://doi.org/10.1088/0953-8984/1/8/003
https://doi.org/10.1088/0953-8984/1/8/003
https://doi.org/10.1103/PhysRevB.38.5245
https://doi.org/10.1103/PhysRevB.38.5245
https://doi.org/10.1103/PhysRevB.38.5245
https://doi.org/10.1103/PhysRevB.38.5245
https://doi.org/10.1088/1367-2630/aa6657
https://doi.org/10.1088/1367-2630/aa6657
https://doi.org/10.1088/1367-2630/aa6657
https://doi.org/10.1088/1367-2630/aa6657
https://doi.org/10.1103/PhysRevLett.62.1663
https://doi.org/10.1103/PhysRevLett.62.1663
https://doi.org/10.1103/PhysRevLett.62.1663
https://doi.org/10.1103/PhysRevLett.62.1663
https://doi.org/10.1209/0295-5075/10/6/001
https://doi.org/10.1209/0295-5075/10/6/001
https://doi.org/10.1209/0295-5075/10/6/001
https://doi.org/10.1209/0295-5075/10/6/001
https://doi.org/10.1209/0295-5075/2/9/002
https://doi.org/10.1209/0295-5075/2/9/002
https://doi.org/10.1209/0295-5075/2/9/002
https://doi.org/10.1209/0295-5075/2/9/002
https://doi.org/10.1103/PhysRevLett.54.1605
https://doi.org/10.1103/PhysRevLett.54.1605
https://doi.org/10.1103/PhysRevLett.54.1605
https://doi.org/10.1103/PhysRevLett.54.1605
https://doi.org/10.1103/PhysRevLett.54.1609
https://doi.org/10.1103/PhysRevLett.54.1609
https://doi.org/10.1103/PhysRevLett.54.1609
https://doi.org/10.1103/PhysRevLett.54.1609



