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Transition probability generating function of a transitionless quantum parametric oscillator
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The transitionless tracking (TT) algorithm enables the exact tracking of quantum adiabatic dynamics in an
arbitrary short time by adding a counterdiabatic Hamiltonian to the original adiabatic Hamiltonian. By applying
Husimi’s method originally developed for a quantum parametric oscillator (QPO) to the transitionless QPO
achieved using the TT algorithm, we obtain the transition probability generating function with a time-dependent
parameter constituted with solutions of the corresponding classical parametric oscillator (CPO). By obtaining the
explicit solutions of this CPO using the phase-amplitude method, we find that the time-dependent parameter can
be reduced to the frequency ratio between the Hamiltonians without and with the counterdiabatic Hamiltonian,
from which we can easily characterize the result achieved by the TT algorithm. We illustrate our theory by
showing the trajectories of the CPO on the classical phase space, which elucidate the effect of the counterdiabatic
Hamiltonian of the QPO.
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I. INTRODUCTION

Suppose that we can change a parameter of a system
to control it. The dynamics of the system under a change
of the control parameter that is slow enough compared to
the intrinsic time scale of the system is called an adiabatic
process. An adiabatic invariant is a quantity that is conserved
in the limit of infinitely slow change of the control parameter.
Adiabatic invariants appear in both classical and quantum
mechanics. A classical example of an adiabatic invariant is
the area enclosed by a trajectory in a classical phase space.
A quantum analog of the adiabatic invariant is the principal
quantum number, which labels different energy levels. Ideally,
a quantum system exhibits no transition between energy levels
during an adiabatic process. However, in a realistic process
carried out for a finite duration, the adiabatic invariant is
not conserved, and transition between different energy levels
occurs in a quantum scenario.

A controlled quantum system is described as follows.
Suppose that the system obeys a Hamiltonian Ĥ ad

t = Ĥ ad(λt ),
which is a function of an external time-dependent parameter
λt . The instantaneous eigenstate |n; λt 〉 satisfies Ĥ ad

t |n; λt 〉 =
En,t |n; λt 〉. The quantum adiabatic theorem [1,2] ensures that
the solution of the time-dependent Schrödinger equation is
approximated with the instantaneous eigenstate if the initial
state is an instantaneous eigenstate and the parameter λt varies
slowly enough. Under this adiabatic approximation, the solu-
tion of the Schrödinger equation ih̄ d

dt
|ψn(t)〉 = Ĥ ad

t |ψn(t)〉 is
given as

|ψn(t)〉 � eiξn,t |n; λt 〉, (1)

where the phase ξn,t ∈ R is

ξn,t ≡ − 1

h̄

∫ t

t0

dt ′Ead
n,t ′ + i

∫ t

t0

dt ′〈n; λt ′ | d

dt ′
|n; λt ′ 〉. (2)
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The first and second terms of ξn,t are the dynamical phase and
geometric phase, respectively.

Husimi described this quantum adiabatic theorem in terms
of classical adiabatic invariants [3]. For a quantum parametric
oscillator (QPO), he developed a method with which the
propagator of the quantum system can be expressed using
linearly independent solutions of equations of motion for a
corresponding classical parametric oscillator (CPO). From the
propagator, one can calculate transition probabilities between
two arbitrary states from a transition probability generating
function. Husimi found that the transition probability gen-
erating function of a QPO is characterized by a parameter
Q∗

t . Moreover, he found that the value of Q∗
t is unity if and

only if no transitions occur between arbitrary instantaneous
eigenstates. Hence, we call Q∗

t as Husimi’s measure of
adiabaticity. Husimi also found that Q∗

t is a function of
two adiabatic invariants of a CPO [Eq. (23)]. Each adiabatic
invariant is defined in terms of each solution of a CPO
[Eqs. (26) and (27)].

Naively, an adiabatic process takes an infinitely long time.
Hence, it is natural to seek a method for achieving the
same final state of this process in a finite duration. Various
methods have been proposed as shortcuts to adiabaticity [4],
such as the assisted adiabatic passage [5,6], transitionless
tracking algorithm [7], fast-forward method [8–12], Lewis-
Riesenfeld invariant-based inverse engineering [13,14], scale-
invariant driving [15], generator of adiabatic transport [16],
and quantum brachistochrone [17–19]. These methods have
received much attention recently for both theoretical interest
and experimental relevance.

Among the various methods, the transitionless track-
ing (TT) algorithm introduces a counterdiabatic Hamilto-
nian Ĥ cd

t for canceling the deviation from exact tracking
along instantaneous eigenstates of the original adiabatic
Hamiltonian Ĥ ad

t [7]. The counterdiabatic Hamiltonian is
defined as

Ĥ cd
t ≡ ih̄

∞∑
n=0

(1̂ − |n; λt 〉〈n; λt |)d|n; λt 〉
dt

〈n; λt |. (3)
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In this method, it is assumed that the system obeys the
total Hamiltonian Ĥ TT

t ≡ Ĥ ad
t + Ĥ cd

t , which we call the TT
Hamiltonian. Then the state vector of Eq. (1) is an exact
solution of the Schrödinger equation for the Hamiltonian
Ĥ TT

t . For a case in which the original Hamiltonian Ĥ ad
t is a

QPO, the counterdiabatic Hamiltonian Ĥ cd
t has been calculated

explicitly [20]. Hence, the exact tracking of adiabatic dynamics
in an arbitrary short time has been achieved for a QPO.

On the other hand, Husimi showed that an adiabatic
process of a usual QPO is characterized by the transition
probability generating function with a parameter that is a
function of adiabatic invariants. Then it is natural to ask what
type of parameter characterizes the adiabatic process of the
transitionless QPO driven by the TT Hamiltonian including
the counterdiabatic term. For answering this question, it is
necessary to calculate the probability generating function of
the transitionless QPO by applying Husimi’s method to this
system.

In the present study, we characterize the transitionless QPO
with the TT Hamiltonian by using a transition probability
generating function with a new parameter. By introducing
an instantaneous eigenstate of the TT Hamiltonian, we
apply Husimi’s method to the transitionless QPO to obtain
the propagator expressed with independent solutions of the
corresponding CPO. By using this propagator, we obtain
the probability generating function with the time-dependent
parameter as the main result [Eqs. (16) and (20)], from which
the adiabatic process in an arbitrary short time achieved
by the TT algorithm is easily characterized. We obtain this
parameter by solving the equations of the CPO by using
the phase-amplitude method [21]. We illustrate our theory by
exhibiting some trajectories of the solutions of the CPO of a
specific case, which visualize the effect of the counterdiabatic
term of the QPO on the classical phase space.

The remainder of this paper is organized as follows. In
Sec. II we introduce the transitionless QPO and its propagator
based on Husimi’s method. In Sec. III we present the transition
probability generating function with the new parameter that
characterizes the TT algorithm as our main result. A specific
case is also presented in this section to illustrate our theory.
We conclude the paper in Sec. IV.

II. PRELIMINARIES

A. Transitionless quantum parametric oscillator

Let ωt ,M,x̂, and p̂ be, respectively, the frequency at time
t , mass, position operator, and momentum operator, where x̂

and p̂ satisfy the canonical commutation relation [x̂,p̂] = ih̄.
For the QPO, the TT Hamiltonian Ĥ TT

t is given by [20]

Ĥ TT
t = p̂2

2M
+ M

2
ω2

t x̂
2 − 1

2

ω̇t

ωt

x̂p̂ + p̂x̂

2
, (4)

where the first two terms are part of the adiabatic Hamiltonian
Ĥ ad

t and the third term is part of the counterdiabatic Hamilto-
nian Ĥ cd

t . Hereafter, we denote the time derivative by a dot.
We rewrite Ĥ TT

t of the QPO in Eq. (4) with the instantaneous
ladder operator b̂t as

Ĥ TT
t = h̄�t

(
b̂
†
t b̂t + 1

2

)
, (5)

where

�t ≡
√

ω2
t − 1

4

ω̇2
t

ω2
t

, (6)

b̂t ≡
√

M�t

2h̄

(
ζt x̂ + ip̂

M�t

)
, (7)

with ζt ≡ 1 + 1
2i�t

ω̇t

ωt
. Since b̂t satisfies the Boson commu-

tation relation [b̂t ,b̂
†
t ] = 1, Ĥ TT

t can be regarded as the
Hamiltonian of a certain type of harmonic oscillator with the
energy-level interval h̄�t under the assumption of �t > 0.
We adopt the Schrödinger picture to interpret these ladder
operators b̂t and b̂

†
t at time t . They annihilate and create

different instantaneous eigenstates, respectively, and do not
commute in general with different time labels.

Let |n; �t 〉 be an instantaneous nth excited energy eigen-
state of Ĥ TT

t in Eq. (5) that satisfies
√

n!|n; �t 〉 = b̂
†n
t |0; �t 〉

and b̂
†
t b̂t |n; �t 〉 = n|n; �t 〉, where the vacuum state |0; �t 〉 is

defined as b̂t |0; �t 〉 ≡ 0. The instantaneous nth excited energy
eigenfunction for position x is given by (see Appendix A)

〈x|n; �t 〉

= 1√
2nn!

(
M�t

πh̄

)1/4

Hn

(√
M�t

h̄
x

)
exp

(
−ζtM�t

2h̄
x2

)
,

(8)

where Hn(·) is the nth-degree Hermite polynomial.

B. Propagator based on Husimi’s method

We consider the transition from an initial state |n; �t0〉 at
initial time t0 to a certain state |m; �t 〉 at time t (t0 � t � tf),
characterized by the transition probability P

m,n
t,t0 defined as

P m,n
t,t0

≡
∣∣∣∣
∫∫

R2
dx dx0〈m; �t |x〉Ut,t0 (x|x0)〈x0|n; �t0〉

∣∣∣∣2, (9)

where Ut,t0 (x|x0) is the propagator. The TT algorithm usually
imposes the boundary condition ω̇t0 = ω̇tf = 0 (Ĥ cd

t0
= Ĥ cd

tf
=

0) at the initial and final times t = t0 and tf , respectively, such
that the instantaneous eigenstates of the original Hamiltonian
and the TT Hamiltonian coincide at these times. However, we
first consider the transition probability of Eq. (9) as a more
general case and impose this boundary condition later.

By applying Husimi’s method [3], we can concretely obtain
the propagator as (see Appendix B)

Ut,t0 (x|x0) =
√

M

2π ih̄μt

exp

[
iM

2h̄

{(
μ̇t

μt

+ 1

2

ω̇t

ωt

)
x2

− 2xx0

μt

+
(

νt

μt

− 1

2

ω̇t0

ωt0

)
x2

0

}]
, (10)

where μt and νt are the solutions of the CPO with different
initial conditions at t = t0. They are given by

μ̈t + �̃2
t μt = 0, μt0 = 0, μ̇t0 = 1, (11)

ν̈t + �̃2
t νt = 0, νt0 = 1, ν̇t0 = 0, (12)
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where

�̃t ≡
√

�2
t + 1

2

d

dt

ω̇t

ωt

=
√

ω2
t − 3

4

ω̇2
t

ω2
t

+ 1

2

ω̈t

ωt

. (13)

We can confirm that the solutions μt and νt satisfying Eqs. (11)
and (12) are linearly independent because the Wronskian Wt

is a nonzero constant for arbitrary time t :

Wt ≡ μ̇t νt − μt ν̇t = 1. (14)

We note that μt has the dimension of time, whereas νt is
dimensionless.

III. MAIN RESULTS

A. Transition probability generating function

While the concrete expression for the transition probabili-
ties in Eq. (9) is complicated, a calculation of the generating
function,

Pu,v
t,t0

≡
∞∑

n,m=0

unvmP m,n
t,t0

, (15)

yields a rather simple expression (see Appendix C):

Pu,v
t,t0

=
√

2

QTT
t (1 − u2)(1 − v2) + (1 + u2)(1 + v2) − 4uv

,

(16)
where QTT

t is a time-dependent parameter defined as

QTT
t ≡ �t0

1
2

(
μ̇2

t + �2
t μ

2
t

)
�t

+ �−1
t0

1
2

(
ν̇2

t + �2
t ν

2
t

)
�t

+ ω̇t

ωt

�2
t0
μ̇tμt + ν̇t νt + 1

2
ω̇t

ωt

(
�2

t0
μ2

t + ν2
t

)
�t�t0

. (17)

We can simplify this parameter by imposing ω̇t0 = 0 (Ĥ cd
t0

=
0), that is, by preparing |n; �t0〉 = |n; ωt0〉 as the initial state. In
this case, we can obtain the solutions of μt and νt in Eqs. (11)
and (12) as

μt = 1√
ωt0ωt

sin

(∫ t

t0

dt ′ωt ′

)
; ω̇t0 = 0, (18)

νt =
√

ωt0

ωt

cos

(∫ t

t0

dt ′ωt ′

)
; ω̇t0 = 0, (19)

respectively; these solutions will be derived in Sec. III C. Then,
by substituting Eqs. (18) and (19) into Eq. (17), we find that the
third term in Eq. (17) vanishes and that the former two terms
become the ratio of the frequency of the adiabatic Hamiltonian
to that of the TT Hamiltonian defined in Eq. (6):

QTT
t = ωt

�t

; ω̇t0 = 0. (20)

The key to obtain this simple form is the explicit solutions
Eqs. (18) and (19), despite the time dependence of ωt . The
probability generating function defined by Eq. (16) with
the simple time-dependent parameter expressed by Eq. (20)
is the main result of the present paper.

By taking the first derivative of Eq. (16) with respect to v

and substituting v = 1, we obtain
∞∑

n=0

un

∞∑
m=0

mP m,n
t,t0

= ∂Pu,v
t,t0

∂v

∣∣∣∣
v=1

= QTT
t (1 + u) − (1 − u)

2(1 − u)2
.

(21)

By expanding the right-hand side of Eq. (21) with respect to
u, we can show the following relation between QTT

t and the
mean quantum number 〈m〉n,t ≡ ∑∞

m=0 mP
m,n
t,t0 [3,22]:

QTT
t = 〈m〉n,t + 1

2

n + 1
2

. (22)

When QTT
t = 1, we find 〈m〉n,t = n and can show

Pu,v
t,t0 |QTT

t =1 = 1
1−uv

, from which P
m,n
t,t0 = δmn (no transition)

follows. Indeed, by letting |n; �tf 〉 = |n; ωtf 〉 be the final
state by imposing ω̇tf = 0 (Ĥ cd

tf
= 0), we find that our new

parameter QTT
t in Eq. (20) at t = tf is always unity. This

implies P
m,n
tf ,t0 = δmn, and the final state with the same quantum

number as the initial state is achieved.

B. Comparison with Husimi’s measure of adiabaticity

For a usual QPO in the absence of Ĥ cd
t , the probability

generating function from an initial state |n; ωt0〉 to a certain
state |m; ωt 〉 is given by Eq. (16) with QTT

t replaced by
Husimi’s measure of adiabaticity, Q∗

t , defined as [3]

Q∗
t ≡ ωt0

E
(μ)
t

ωt

+ ω−1
t0

E
(ν)
t

ωt

, (23)

where

E
(μ)
t ≡ 1

2

(
μ̇2

t + ω2
t μ

2
t

)
, (24)

E
(ν)
t ≡ 1

2

(
ν̇2

t + ω2
t ν

2
t

)
, (25)

are the classical energies of μt and νt , respectively, and μt and
νt obey the equations of motion for the usual CPO:

μ̈t + ω2
t μt = 0, μt0 = 0, μ̇t0 = 1, (26)

ν̈t + ω2
t νt = 0, νt0 = 1, ν̇t0 = 0. (27)

Q∗
t is constituted with a linear combination of these two

energies of the CPO divided by the common frequency,
E

(μ)
t

ωt
and E

(ν)
t

ωt
. During an adiabatic process with the slowly

changing frequency ω̇t � 0, these quantities are conserved
as the adiabatic invariants as 1

2ωt0
≡ J (μ) and

ωt0
2 ≡ J (ν),

respectively. They are equivalent to the areas of the ellipses
enclosed by the trajectories of the CPO on the classical phase

space with E
(μ)
t0 = 1

2 and E
(ν)
t0 = ω2

t0
2 determined from the initial

conditions in Eqs. (26) and (27). In contrast to Eqs. (11)
and (12), which have the explicit solutions given by Eqs. (18)
and (19), respectively, we may not obtain explicit solutions
for Eqs. (26) and (27). Therefore, we may not obtain a simple
form as in Eq. (20) for this usual QPO. However, Q∗

t � 1
holds during the adiabatic process owing to the existence of
these adiabatic invariants. This is an expression of the quantum
adiabatic theorem as it implies P

m,n
t,t0 = δmn for any t .
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For a comparison with Husimi’s measure of adiabaticity, it
is convenient to express QTT

t in Eq. (20) as

QTT
t = ωt0

E (μ)
t

�t

+ ω−1
t0

E (ν)
t

�t

; ω̇t0 = 0, (28)

where we have introduced the two classical “energies” as

E (μ)
t ≡ 1

2

(
μ̇2

t + �2
t μ

2
t

)
, (29)

E (ν)
t ≡ 1

2

(
ν̇2

t + �2
t ν

2
t

)
. (30)

It should be noted that these “energies” are defined with
the frequency �t that appeared in the QPO with the TT
Hamiltonian in Eq. (6), but μt and νt are solutions of the
equations of the CPO in Eqs. (11) and (12) with the frequency
�̃t . We can rewrite E (μ)

t and E (ν)
t as (see Sec. III C)

E (μ)
t = ωt

2ωt0

−
(

μ̇t + μt

2

ω̇t

ωt

)
μt

2

ω̇t

ωt

; ω̇t0 = 0, (31)

E (ν)
t = ωt0ωt

2
−

(
ν̇t + νt

2

ω̇t

ωt

)
νt

2

ω̇t

ωt

; ω̇t0 = 0, (32)

respectively. Because E (μ)
t0 = 1

2 and E (ν)
t0 = ω2

t0
2 for ω̇t0 = ω̇tf =

0 readily follow from the initial conditions in Eqs. (11)
and (12), by using Eqs. (31) and (32), we can also show

that E (μ)
tf = ωtf

2ωt0
and E (ν)

tf = ωt0 ωtf
2 . Therefore, we obtain

E (μ)
t0

ωt0
=

E (μ)
tf

ωtf
= J (μ) and

E (ν)
t0

ωt0
= E (ν)

tf
ωtf

= J (ν), i.e., at both the initial and
final times, the values of these “energies” divided by the
common frequency �t agree with the adiabatic invariants
J (μ) and J (ν). This explains the reason for QTT

tf
= 1 at the

final time tf in a manner comparable to Husimi’s measure of
adiabaticity. During the intermediate times, however, QTT

t = 1
does not hold in general, because the exact solution Eq. (1)
for the TT Hamiltonian may be nonadiabatic with respect
to the instantaneous eigenstate of this Hamiltonian [20].
This behavior may be similar to that of the system with
the fast-forward method [12] being applied, where the
system is allowed to deviate from the original adiabatic
path and returns to it only at the end of the process.
We note that in our case with the TT algorithm the state
vector itself always tracks the original adiabatic path given
by Eq. (1).

C. Derivation of key equations

In this subsection, we derive the key equations
Eqs. (18), (19), (31), and (32).

We first derive Eqs. (18) and (19) as the solutions of
Eqs. (11) and (12), respectively, by using the phase-amplitude
method [21]. We define the time-dependent function ρt in
terms of the two linearly independent solutions μt and νt

satisfying Eqs. (11) and (12), respectively, as

ρt ≡
√

�2
t0μ

2
t + ν2

t

�t0

. (33)

We can then rewrite the Wronskian in Eq. (14) as follows by
eliminating either μt or νt from Eq. (14):

Wt =
⎧⎨
⎩

− ρt√
�−1

t0
ρ2

t −μ2
t

(ρ̇tμt − ρt μ̇t ) ≡ W
(μ)
t ,

ρt√
�t0 ρ2

t −ν2
t

(ρ̇t νt − ρt ν̇t ) ≡ W
(ν)
t ,

(34)

(35)

where we note that Wt = W
(μ)
t = W

(ν)
t = 1 holds for an

arbitrary time t . The time-evolution equation of ρt in Eq. (33) is
obtained by differentiating the Wronskian of Eqs. (34) and (35)
with respect to time t and by using Eqs. (11), (12), and (14)
(see Appendix D):

ρ̈t + �̃2
t ρt = W 2

t

ρ3
t

, (36)

which is called the Ermakov equation [23–25]. On the other
hand, by integrating Eqs. (34) and (35), we obtain

μt = ρt√
�t0

sin θt , (37)

νt = √
�t0ρt cos θt , (38)

where

θt ≡
∫ t

t0

dt ′
W

(μ)
t ′

ρ2
t ′

=
∫ t

t0

dt ′
W

(ν)
t ′

ρ2
t ′

(39)

is a phase function (see Appendix E). This description of the
coordinate variables μt and νt in terms of ρt and θt is called
the phase-amplitude method [21]. The Wronskian Wt is then
given by Wt = ρ2

t θ̇t by differentiating θt with respect to time t .
From this Wronskian represented by ρt and θt , we can derive
a general expression of the Ermakov equation based on the
phase-amplitude method as (see Appendix E)

ρ̈t + f 2
t ρt = W 2

t

ρ3
t

, (40)

where

ft ≡
√

θ̇2
t − 3

4

θ̈2
t

θ̇2
t

+ 1

2

...
θ t

θ̇t

. (41)

Since ρt obeys Eq. (36), by comparing the two expressions, we
find �̃t = ft from Eq. (13). If ω̇t0 = 0, we can self-evidently
identify the time differential of the phase function θt with the
frequency ωt as

θ̇t = ωt ; ω̇t0 = 0. (42)

The Wronskian Wt is thus given by

Wt = ρ2
t ωt ; ω̇t0 = 0. (43)

Noting Wt = 1, we obtain the explicit solution of the Ermakov
equation (Eq. (36)) as

ρt = 1√
ωt

; ω̇t0 = 0. (44)

Here the condition of ω̇t0 = 0 in Eqs. (42)–(44) is necessary
for the following reason. From the definition of ρt in Eq. (33),

we find ρt0 =
√

�2
t0

μ2
t0

+ν2
t0

�t0
= 1√

�t0

by using Eqs. (11) and (12).

For this expression to be consistent with 1√
ωt0

, we must require
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ω̇t0 = 0. By substituting Eq. (44) into Eqs. (37) and (38), we
obtain Eqs. (18) and (19), respectively.

We next derive Eqs. (31) and (32). We define the Ermakov-
Lewis invariant [26] as

It ≡

⎧⎪⎨
⎪⎩

�t0
2

{
(ρ̇tμt − ρt μ̇t )2 + W

(μ)2
t

μ2
t

ρ2
t

}
≡ I

(μ)
t ,

1
2�t0

{
(ρ̇t νt − ρt ν̇t )2 + W

(ν)2
t

ν2
t

ρ2
t

}
≡ I

(ν)
t .

(45)

(46)

This invariant is indeed a dynamical invariant for the CPO
obeying equations with linearly independent solutions such as
Eqs. (11) and (12). The Ermakov-Lewis invariant can be shown
to be equivalent to one-half of the square of the Wronskian
from Eqs. (34) and (35) as [27]

It = I
(μ)
t = I

(ν)
t = W 2

t

2
. (47)

Then, from Eqs. (43) and (45)–(47), we rewrite the Wronskian
Wt in terms of the coordinate variables μt and νt and frequency
ωt as (see Appendix F)

W
(μ)
t = 2ωt0

ωt

{
E (μ)

t +
(

μ̇t + μt

2

ω̇t

ωt

)
μt

2

ω̇t

ωt

}
; ω̇t0 = 0,

(48)

W
(ν)
t = 2

ωtωt0

{
E (ν)

t +
(

ν̇t + νt

2

ω̇t

ωt

)
νt

2

ω̇t

ωt

}
; ω̇t0 = 0.

(49)

By noting Wt = W
(μ)
t = W

(ν)
t = 1, we obtain Eqs. (31)

and (32) from Eqs. (48) and (49), respectively.

D. Example

We visually illustrate the effect of the Ĥ cd
t term of the QPO

on the corresponding CPO on the classical phase space. We
consider a specific case where the frequency of the QPO is
given by a cubic function of time t ∈ [t0,tf] as

ωt = ω0 + (ωf − ω0)

{
1 + 2

(tf − t0)(tf − t)

t2
0 + t2

f

}(
t − t0

tf − t0

)2

,

(50)

which satisfies ωt0 = ω0, ωtf = ωf , and ω̇t0 = ω̇tf = 0. Here we
consider three cases with different final times tf = 0.2, 0.5, 2.0
and set t0 = 0 and (ω0,ωf) = (2,4).

In Fig. 1 we show some phase-space trajectories of the
CPO given by Eqs. (11) and (12) and by Eqs. (26) and (27), the
corresponding Hamiltonians of which as the QPO are Ĥ TT

t and
Ĥ ad

t , respectively. For every final time tf , we can find that the
final points of the trajectories given by Eqs. (11) and (12) are
always on the same targeted energy shells E (μ)

tf = ωtf
2ωt0

= ωf
2ω0

and E (ν)
tf = ωt0 ωtf

2 = ω0ωf
2 with the aid of the Ĥ cd term, implying

the success of the TT algorithm. On the other hand, E
(μ)
tf and

E
(ν)
tf at the final points of the trajectories given by Eqs. (26)

and (27), respectively, vary depending on tf , failing to achieve

μ

μ̇

tf = 0.2

tf = 0.5
tf = 2.0

(a)

0.4 0.2 0.0 0.2 0.4

1.5

1.0

0.5

0.0

0.5

1.0

1.5

ν

ν̇

tf = 0.2
tf = 0.5
tf = 2.0

(b)

1.0 0.5 0.0 0.5 1.0

3

2

1

0

1

2

3

FIG. 1. Trajectories of the CPO: (a) trajectories of μt obeying Eqs. (11) (solid lines) and (26) (dashed lines) and (b) trajectories of νt obeying
Eqs. (12) (solid lines) and (27) (dashed lines) for different final times on the classical phase space. The arrows indicate the initial points (0,1)
and (1,0) for μt and νt , respectively. The ellipses with these initial points denote the trajectories of the CPO with the initial “energies” E (μ)

t0
= 1

2

and E (ν)
t0

= ω2
0

2 = 2.0. The other ellipses denote the trajectories of the CPO with the final “energies” E (μ)
tf

= ωf
2ω0

= 1.0 and E (ν)
tf

= ω0ωf
2 = 4.0.
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0.0 0.5 1.0 1.5 2.0

1.00

1.05

1.10

1.15

1.20

0.0 0.5 1.0 1.5 2.0
0.15

0.20

0.25

0.30

0.35

0.0 0.5 1.0 1.5 2.0
0.8

1.0

1.2

1.4

1.6

1.8

2.0

Q
T

T
t

,Q
∗ t

t

t

t

tf = 0.2

tf = 0.5

tf = 2.0 E(μ
)

t
/Ω

t
,

E
(μ

)
t

/ω
t

E(ν
)

t
/Ω

t
,

E
( ν

)
t

/ω
t

J (μ)

J (ν)

FIG. 2. Comparison of QTT
t (solid line) and Q∗

t (dashed line) as functions of time t . The insets show the comparison of E (k)
t

�t
(solid line) and

E
(k)
t

ωt
(dashed line) (k = μ,ν) as functions of time t , where J (μ) = 1

2ω0
= 0.25 and J (ν) = ω0

2 = 1.0.

the same final state as that of the adiabatic processes unless a
sufficiently large tf is taken.

In Fig. 2 we show the time dependence of the parameters

QTT
t and Q∗

t together with the quantities E (k)
t

�t
and E

(k)
t

ωt

(k = μ,ν) in the insets, which are obtained using the data of the

trajectories in Fig. 1. We can find that E (k)
t

�t
= J (k) holds at the

final points at t = tf as expected. That is, QTT
t is unity at every

final time tf we chose, but it is not so for the intermediate times.
Without the Ĥ cd term, the areas enclosed by the trajectories

were well defined and E
(k)
t

ωt
= J (k) holds for an arbitrary time t

only if a sufficiently large tf is taken.
In Fig. 3 we show two transition probabilities P

0,0
t,t0 and P

1,1
t,t0

obtained using the time evolution of QTT
t and Q∗

t in Fig. 2.
By a selection rule [3], only transitions between even or odd
quantum-number states are allowed (see Appendix G).

We note that, in the fastest case of tf = 0.2 in Fig. 2,
�t temporarily attains an imaginary value after QTT

t shows
diverging behavior as �t → 0. Because ĤTT in Eq. (5) has a
continuous energy spectrum in this time interval, the transition
probabilities in Eq. (9) using the discrete energy spectrum
cannot be defined there (the gray-shaded regions in the insets
of Fig. 3 represent these time intervals). As the time evolution
approaches the final state, however, �t recovers its real value.

IV. CONCLUDING REMARKS

Here we give a few remarks on the main result of the
probability generating function of the transitionless QPO given
by Eq. (16).

First, we note that the phase-amplitude method is formally
applicable to the CPO in Eqs. (26) and (27) induced from

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0
0.94

0.95

0.96

0.97

0.98

0.99

1.00

P 0,0
t,t0

t

P 0,0
t,t

t

tf = 0.2

tf = 0.5 tf = 2.0tf = 0.2

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0

0.85

0.90

0.95

1.00

P 1,1
t,t0

t

P 1,1
t,t

t

tf = 0.2

tf = 0.5 tf = 2.0tf = 0.2

(a) (b)

FIG. 3. Transition probabilities between (a) even and (b) odd quantum-number states, n,m = 0 and n,m = 1, respectively, as functions of
time t . The solid (dashed) lines represent the cases with (without) the counterdiabatic term. The gray-shaded regions in the insets represent the
time intervals in which the transition probabilities are ill-defined for the case of tf = 0.2.
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the usual QPO without the counterdiabatic term; that is, it
is formally applicable to the original case considered by
Husimi [3]. In this case, the Ermakov equation given by
Eq. (36) is replaced with

ρ̈t + ω2
t ρt = W 2

t

ρ3
t

. (51)

With this replacement, the simple identification θ̇t = ωt in
Eq. (42) is no longer applicable, and we cannot obtain a simple
solution such as Eq. (44) for this case in general. However, in
the adiabatic approximation of ρ̈t � 0, the Ermakov equation
in Eq. (51) has the solution given by Eq. (44) as an adiabatic
solution [28]:

ρt � 1√
ωt

. (52)

This implies that the Ermakov equation given by Eq. (36)
for the transitionless QPO can have the adiabatic solution
of the original Ermakov equation given by Eq. (51) for
the usual QPO as the exact solution, as the Schrödinger
equation with the TT Hamiltonian can have the adiabatic
solution of the original Schrödinger equation with the adiabatic
Hamiltonian as the exact solution. This is an interpretation of
the TT algorithm applied to the QPO based on the transition
probability generating function approach via Husimi’s method.

Second, Ref. [28] recently introduced the ratio of the nona-
diabatic mean energy to the adiabatic one as a nonadiabatic
factor to characterize the shortcuts to adiabaticity of a quantum
heat engine, which is represented by a scale factor satisfying
the Ermakov equation. This nonadiabatic factor has been
shown to be equivalent to the original Husimi’s measure of
adiabaticity under scale-invariant dynamics [29]. In contrast,
our parameter is derived from the direct calculation of the
probability generating function given by Eq. (16) and includes
the nonadiabatic factor as a special case. By substituting
Eqs. (37) and (38) into Eq. (17) and using Eq. (44), we can
express QTT

t by using ρt as

QTT
t = 1

2�t

(
ρ̇2

t + �2
t ρ

2
t + W 2

t

ρ2
t

)
; ω̇t0 = 0. (53)

This expression agrees with the nonadiabatic factor in Ref. [28]
if �t is replaced with ωt .

In this paper, we have studied the transitionless QPO
with the TT algorithm based on the transition probability
generating function approach. By applying Husimi’s method,
we have obtained the propagator of the transitionless QPO with
the two linearly independent solutions of the corresponding
CPO. By calculating the probability generating function from
the propagator, we have found that it contains a simple
time-dependent parameter that can characterize the success
of the TT algorithm. The key to obtain this simple parameter
was the explicit solutions of the CPO derived based on the
phase-amplitude method. We have illustrated this result by
showing the trajectories of the CPO on the classical phase
space and the time dependence of our parameter by using a
specific form of the frequency. We hope that the present work
provides a new perspective on the shortcuts to adiabaticity.
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APPENDIX A: DERIVATION OF ENERGY
EIGENFUNCTION IN EQ. (8)

From the definition of the vacuum state b̂t |0; �t 〉 ≡ 0 and
by using Eq. (7), we can easily obtain the normalized energy
eigenfunction of the vacuum state for position x as

〈x|0; �t 〉 =
(

M�t

πh̄

)1/4

exp

(
−ζtM�t

2h̄
x2

)
. (A1)

For a function f (x), by using the relation(√
ax − 1√

a

∂

∂x

)n

f (x)

= (−1)neax2/2 1

an/2

∂n

∂xn
[e−ax2/2f (x)], (A2)

we can also obtain the normalized energy eigenfunction of the
nth excited state in Eq. (8) as follows:

〈x|n; �t 〉 = 1√
n!

〈x|b̂†nt |0; �t 〉

= ζ ∗n/2

√
2nn!

(√
ζ ∗
t M�t

h̄
x −

√
h̄

ζ ∗
t M�t

∂

∂x

)n

〈x|0; �t 〉

= 1√
2nn!

(−1)n exp

(
ζ ∗
t M�t

2h̄
x2

)(
h̄

M�t

)n/2

× ∂n

∂xn

{
exp

(
−ζ ∗

t M�t

2h̄
x2

)
〈x|0; �t 〉

}

= 1√
2nn!

(
M�t

πh̄

)1/4

(−1)n

× exp

(
M�t

h̄
x2

)(
h̄

M�t

)n/2

×
{

∂n

∂xn
exp

(
−M�t

h̄
x2

)}
exp

(
−ζtM�t

2h̄
x2

)

= 1√
2nn!

(
M�t

πh̄

)1/4

Hn

(√
M�t

h̄
x

)

× exp

(
−ζtM�t

2h̄
x2

)
, (A3)

where the nth-degree Hermite polynomial Hn is defined as

Hn(x) ≡ (−1)nex2 dn

dxn
e−x2

. (A4)

APPENDIX B: DERIVATION OF PROPAGATOR IN EQ. (10)

Based on Husimi’s method [3], we derive Eq. (10). For the
TT Hamiltonian of the QPO in Eq. (4), the x-representation of
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the wave function

〈x|ψn(t)〉 =
∫
R

dx0Ut,t0 (x|x0)〈x0|ψn(t0)〉 (B1)

satisfies the Schröginger equation

ih̄
∂

∂t
〈x|ψn(t)〉 = 〈x|Ĥ TT

t |ψn(t)〉, (B2)

where Ut,t0 (x|x0) is the propagator. Here we assume the
following Gaussian form of the propagator as the specific
anstaz [3,30]:

Ut,t0 (x|x0) =
√

M

2π ih̄μt

ei(αt x
2+βt xx0+γt x

2
0 )/h̄, (B3)

where the coefficients μt , αt , βt , and γt are time-dependent
real-valued functions. By substituting Eq. (B1) with Eq. (B3)
into the Schröginger equation given by Eq. (B2), we find that
four coupled ordinary differential equations for the coefficients
μt , αt , βt , and γt follow:

αt = M

2

(
μ̇t

μt

+ 1

2

ω̇t

ωt

)
, (B4)

α̇t + 2

M
α2

t − ω̇t

ωt

αt + M

2
ω2

t = 0, (B5)

β̇t +
(

2

M
αt − 1

2

ω̇t

ωt

)
βt = 0, (B6)

γ̇t + β2
t

2M
= 0. (B7)

By substituting Eq. (B4) into Eq. (B5), we obtain

μ̈t + �̃2
t μt = 0. (B8)

By substituting Eq. (B4) into Eq. (B6) and by solving Eq. (B6)
with respect to βt , we have

βt = C1

μt

, (B9)

with the integral constant C1. Next, by substituting Eq. (B9)
into Eq. (B7) and by solving Eq. (B7) with respect to γt , we
also have

γt = − C2
1

2M

∫ t

t0

dt ′

μ2
t ′

+ C2, (B10)

with the integral constant C2. From Eqs. (B4), (B9), and (B10),
the dynamics of αt , βt , and γt can be determined by using the
solution of μt satisfying Eq. (B8).

We now determine the initial condition of μt in Eq. (B8)
and the integral constants C1 and C2 according to the following
argument: to represent the wave function 〈x|ψn(t)〉 from an
arbitrary initial wave function 〈x0|ψn(t0)〉, the propagator
Ut,t0 (x|x0) in Eq. (B3) needs to satisfy limt→t0+0 Ut,t0 (x|x0) =
δ(x − x0). Therefore, it is natural to assume the following
asymptotic form of the propagator:

Ut,t0 (x|x0)|t�t0

�
√

M

2π ih̄(t − t0)
exp

[
iM

2h̄

(x − x0)2

t − t0

]
eiF (x,x0)/h̄, (B11)

where F (x,x0) is a function that satisfies F (x0,x0) = 0.
Through a Taylor expansion of μt with respect to t around
t0 and from Eqs. (B3) and (B11), we have

μt |t�t0 = μt0 + μ̇t0 (t − t0) + O[(t − t0)2]

= t − t0 + O[(t − t0)2], (B12)

from which we can determine μt0 and μ̇t0 as

μt0 = 0, μ̇t0 = 1, (B13)

as the initial condition of Eq. (B8). By using μ̈t0 = 0 obtained
from Eqs. (B8) and (B13), we modify Eq. (B12) as

μt |t�t0 = t − t0 + O[(t − t0)3]. (B14)

From Eq. (B4), we can find

αt |t�t0 = M

2

(
1

t − t0
+ 1

2

ω̇t0

ωt0

)
+ O(t − t0). (B15)

From Eqs. (B9) and (B14), we then find

βt |t�t0 = C1

t − t0
+ O(t − t0). (B16)

To determine the asymptotic form of γt in Eq. (B10), we
introduce a solution νt as a linearly independent solution of
μt , which satisfies the same equation as Eq. (B8) but with a
different initial condition:

νt0 = 1, ν̇t0 = 0, (B17)

where the Wronskian Wt = μ̇t νt − μt ν̇ is unity as in Eq. (14).
From this Wronskian, we obtain

νt

μt

= −
∫ t

t0

dt ′

μ2
t ′
. (B18)

From Eqs. (B10) and (B18), we have

γt = C2
1

2M

νt

μt

+ C2. (B19)

From Eqs. (B12), (B13), and (B17), we obtain the asymptotic
form of γt as

γt |t�t0 = C2
1

2M

1

t − t0
+ C2 + O(t − t0). (B20)

By substituting Eqs. (B12), (B15), (B16), and (B20) into
Eq. (B3), we have the following asymptotic form of the
propagator:

Ut,t0 (x|x0)|t�t0

=
√

M

2π ih̄(t − t0)
exp

[
i

h̄

{
M

2

(
1

t − t0
+ 1

2

ω̇t0

ωt0

)
x2

+ C1

t − t0
xx0 +

(
C2

1

2M

1

t − t0
+ C2

)
x2

0

}
+ O(t − t0)

]

=
√

M

2π ih̄(t − t0)
exp

[
iM

2h̄

(x − x0)2

t − t0

]
eiF (x,x0)/h̄, (B21)
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where the function F (x,x0) is

F (x,x0) = M

4

ω̇t0

ωt0

x2 + C1 + M

t − t0
xx0

+
(

C2
1 − M2

2M

1

t − t0
+ C2

)
x2

0 + O(t − t0).

(B22)

Since F (x0,x0) = 0 is required in the limit of t → t0 + 0, we
must set C1 = −M and C2 = −M

4
ω̇t0
ωt0

. We then obtain

βt = −M

μt

, γt = M

2

(
νt

μt

− 1

2

ω̇t0

ωt0

)
. (B23)

By substituting Eqs. (B4) and (B23) into Eq. (B3), we finally
obtain the propagator given by Eq. (10).

APPENDIX C: DERIVATION OF PROBABILITY GENERATING FUNCTION IN EQ. (16)

By using Mehler’s formula and the energy eigenfunction given by Eq. (A3) [Eq. (8)], we obtain the following relation:

∞∑
n=0

zn〈n; �t |x〉〈y|n; �t 〉 =
√

M�t

πh̄(1 − z2)
exp

[
−M�t

2h̄

(1 + z2)(x2 + y2) − 4zxy

1 − z2
− iM

4h̄

ω̇t

ωt

(
x2 − y2)]. (C1)

By using Eq. (C1), we can calculate the probability generating function as

Pu,v
t,t0

=
∞∑

n,m=0

unvmP m,n
t,t0

=
∞∑

n,m=0

unvm

∣∣∣∣
∫∫

R2
dx dx0〈m; �t |x〉Ut,t0 (x|x0)〈x0|n; �t0〉

∣∣∣∣2

=
∫∫∫∫

R4
dx dx0 dx ′ dx ′

0U
∗
t,t0

(x|x0)Ut,t0 (x ′|x ′
0)

∞∑
m=0

vm〈m; �t |x〉〈x ′|m; �t 〉
∞∑

n=0

un〈n; �t0 |x0〉〈x ′
0|n; �t0〉

= 2

μt

(
M

2πh̄

)2
√

�t�t0

(1 − u2)(1 − v2)

∫
R4

d �x exp

(
−M

2h̄
�x · A�x

)
= 2

μt

√
�t�t0

(1 − u2)(1 − v2) det A
, (C2)

where we defined

�x ≡

⎛
⎜⎝

x

x0

x ′
x ′

0

⎞
⎟⎠, A ≡

⎛
⎜⎜⎜⎜⎝

1+v2

1−v2 �t + i
(

μ̇t

μt
+ ω̇t

ωt

) − i
μt

− 2v
1−v2 �t 0

− i
μt

1+u2

1−u2 �t0 + i νt

μt
0 − 2u

1−u2 �t0

− 2v
1−v2 �t 0 1+v2

1−v2 �t − i
(

μ̇t

μt
+ ω̇t

ωt

)
i

μt

0 − 2u
1−u2 �t0

i
μt

1+u2

1−u2 �t0 − i νt

μt

⎞
⎟⎟⎟⎟⎠, (C3)

and used the following formula of the Gaussian integral:∫
Rn

d �xe−a�x·A�x =
√

(π/a)n

det A
, (C4)

provided a > 0, �x ∈ Rn, and the n-by-n matrix A is symmetric. By using the Wronskian given by Eq. (14), we obtain

det A = 1

μ2
t

2�t�t0

(1 − u2)(1 − v2)

{
QTT

t (1 − u2)(1 − v2) + (1 + u2)(1 + v2) − 4uv
}
. (C5)

Here QTT
t is given as Eq. (17). Then we finally obtain Eq. (16) by substituting Eq. (C5) into Eq. (C2).

APPENDIX D: DERIVATION OF ERMAKOV EQUATION
IN EQ. (36) FROM WRONSKIAN

Here, we derive the Ermakov equation in Eq. (36) [23–25].
By differentiating Eq. (34) with respect to time t and using
Eqs. (11) and (14), we can show the following relation:

0 = dW
(μ)
t

dt

= − ρtμt√
�−1

t0 ρ2
t − μ2

t

{
ρ̈tμt − ρt μ̈t

μt

− (ρ̇tμt − ρt μ̇t )2

ρt (�
−1
t0 ρ2

t − μ2
t )

}

= μtW
(μ)
t

ρ̇tμt − ρt μ̇t

(
ρ̈t + �̃2

t ρt − W
(μ)2
t

ρ3
t

)
. (D1)

From the above, we have the Ermakov equation of ρt for μt :

ρ̈t + �̃2
t ρt = W

(μ)2
t

ρ3
t

. (D2)

Similarly, by differentiating Eq. (35) with respect to time t and
using Eqs. (12) and (14), we can obtain the following relation:

0 = dW
(ν)
t

dt

= ρtνt√
�t0ρ

2
t − ν2

t

{
ρ̈t νt − ρt ν̈t

νt

− (ρ̇t νt − ρt ν̇t )2

ρt (�t0ρ
2
t − ν2

t )

}

= νtW
(ν)
t

ρ̇t νt − ρt ν̇t

(
ρ̈t + �̃2

t ρt − W
(ν)2
t

ρ3
t

)
. (D3)
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From the above, we have the Ermakov equation of ρt for νt :

ρ̈t + �̃2
t ρt = W

(ν)2
t

ρ3
t

. (D4)

Because Wt = W
(μ)
t = W

(ν)
t = 1, we obtain Eq. (36) from

Eqs. (D2) and (D4).

APPENDIX E: DERIVATION OF ERMAKOV
EQUATION (40) BY PHASE-AMPLITUDE METHOD

According to the phase-amplitude method [21], we rewrite
μt and νt by using ρt defined in Eq. (33), from which
a phase function can naturally be defined. Since ρ̇tμt −
ρt μ̇t = −ρ2

t
d
dt

μt

ρt
, the Wronskian given by Eq. (34) can be

rewritten as

W
(μ)
t = ρ2

t√
�−1

t0 − (
μt

ρt

)2

d

dt

μt

ρt

. (E1)

This can easily be integrated to obtain

μt = ρt√
�t0

sin
∫ t

t0

dt ′
W

(μ)
t ′

ρ2
t ′

. (E2)

From Eqs. (14), (33), and (E2), we also obtain

νt = √
�t0ρt cos

∫ t

t0

dt ′
W

(ν)
t ′

ρ2
t ′

. (E3)

We now introduce the phase function θt defined as

θt ≡
∫ t

t0

dt ′
W

(μ)
t ′

ρ2
t ′

=
∫ t

t0

dt ′
W

(ν)
t ′

ρ2
t ′

. (E4)

By differentiating Eq. (E4) with respect to time t , we can
represent the Wronskian with ρt and θt as

Wt = ρ2
t θ̇t . (E5)

By differentiating ρt in Eq. (E5) with respect to time t twice,
we have

ρ̈t +
(

−3

4

θ̈2
t

θ̇2
t

+ 1

2

...
θ t

θ̇t

)
ρt = 0. (E6)

Adding θ̇2
t ρt to both sides of the above equation and defining

ft ≡
√

θ̇2
t − 3

4

θ̈2
t

θ̇2
t

+ 1

2

...
θ t

θ̇t

, (E7)

we obtain the Ermakov equation:

ρ̈t + f 2
t ρt = θ̇2

t ρt =
(

Wt

ρ2
t

)2

ρt = W 2
t

ρ3
t

, (E8)

where we used Eq. (E5).

APPENDIX F: DERIVATION OF WRONSKIAN
IN EQS. (48) AND (49)

By using Eqs. (44), (45), and (47), we obtain Eq. (48) as
follows [27]:

W
(μ)
t = 2I

(μ)
t

W
(μ)
t

= ωt0

W
(μ)
t

{
(ρ̇tμt − ρt μ̇t )

2 + W
(μ)2
t

μ2
t

ρ2
t

}

= ωt0

{(
μ̇t − ρ̇t

ρt

μt

)2
ρ2

t

W
(μ)
t

+ μ2
t

W
(μ)
t

ρ2
t

}

= ωt0

{(
μ̇t + μt

2

ω̇t

ωt

)2 1

ωt

+ μ2
t ωt

}

= 2ωt0

ωt

{
E (μ)

t +
(

μ̇t + μt

2

ω̇t

ωt

)
μt

2

ω̇t

ωt

}
. (F1)

Similarly, by using Eqs. (44), (46), and (47), we obtain Eq. (49)
as follows:

W
(ν)
t = 2I

(ν)
t

W
(ν)
t

= 1

ωt0W
(ν)
t

{
(ρ̇t νt − ρt ν̇t )

2 + W
(ν)2
t

ν2
t

ρ2
t

}

= 1

ωt0

{(
ν̇t − ρ̇t

ρt

νt

)2
ρ2

t

W
(ν)
t

+ ν2
t

W
(ν)
t

ρ2
t

}

= 1

ωt0

{(
ν̇t + νt

2

ω̇t

ωt

)2 1

ωt

+ ν2
t ωt

}

= 2

ωtωt0

{
E (ν)

t +
(

ν̇t + νt

2

ω̇t

ωt

)
νt

2

ω̇t

ωt

}
. (F2)

APPENDIX G: EXACT EXPLICIT FORM OF TRANSITION
PROBABILITIES IN EQ. (9)

Here we derive an exact explicit form of the transition
probabilities P

m,n
t,t0 in Eq. (9) as a function of time t through the

parameter QTT
t according to Refs. [3,31]. Since the probability

generating function Pu,v
t,t0 cannot be expanded in powers of u

and v in an explicit series, we introduce the following transition
amplitude U

m,n
t,t0 [3]:

Um,n
t,t0

≡
∫∫

R2
dx dx0〈m; �t |x〉Ut,t0 (x|x0)〈x0|n; �t0〉, (G1)

where P
m,n
t,t0 = |Um,n

t,t0 |2. By using the generating function of
the nth-degree Hermite polynomial

e2xz−z2 =
∞∑

n=0

Hn(x)

n!
zn, (G2)
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we have
∞∑

n=0

√
2n

n!
zn〈x|n; �t 〉 =

(
M�t

πh̄

)1/4

exp

(
−ζtM�t

2h̄
x2

)
exp

(
2

√
M�t

h̄
xz − z2

)
. (G3)

We calculate the generating function of the transition amplitude U
m,n
t,t0 as follows:

Uu,v
t,t0

≡
∞∑

m,n=0

√
2m+n−1

m!n!
unvmUm,n

t,t0

= 1√
2

∫∫
R2

dx dx0Ut,t0 (x|x0)
∞∑

m=0

√
2m

m!
vm〈m; �t |x〉

∞∑
n=0

√
2n

n!
un〈x0|n; �t0〉

= M

2πh̄

(�t�t0 )1/4

√
iμt

e−(u2+v2)
∫
R2

d �x exp

[
−M

2h̄
(�x · B �x − 2�b · �x︸ ︷︷ ︸

(�x−B−1 �b)·B(�x−B−1 �b)−�b·B−1 �b

)

]

= (�t�t0 )1/4

√
iμt det B

e−(u2+v2) exp

(
M

2h̄
�b · B−1 �b

)
= (�t�t0 )1/4√

iχ (−)
t

exp

(
χ

(+)
t u2 − 4i

√
�t�t0uv + χ

(+)∗
t v2

χ
(−)
t

)
. (G4)

In the above, we have defined the following quantities:

�x ≡
(

x

x0

)
, B ≡

(
�t − i μ̇t

μt

i
μt

i
μt

�t0 − i νt

μt

)
, (G5)

�b ≡ 2

√
h̄

M

(√
�tv√
�t0u

)
, (G6)

χ
(±)
t ≡ �t0 (�tμt − iμ̇t ) ± i(�tνt − iν̇t ). (G7)

Note that det B = χ
(−)
t

μt
and |χ (±)

t |2 = 2�t�t0 (Qt ∓ 1), where

Qt ≡ �t0

E (μ)
t

�t

+ �−1
t0

E (ν)
t

�t

, (G8)

which agrees with QTT
t in Eq. (28) if ω̇t0 = 0 is imposed. For a usual QPO in the absence of Ĥ cd

t , Qt is identified as Husimi’s
measure of adiabaticity Q∗

t . From the symmetric property of P−u,−v
t,t0 = Pu,v

t,t0 , we find P
m,n
t,t0 = |Um,n

t,t0 |2 = 0 if m and n are of
different parity. Then, by expanding Eq. (G4) explicitly in powers of u and v, we can obtain the matrix elements of U

m,n
t,t0 as

Um,n
t,t0

= (2�t�t0 )1/4

√
m!n!

2m+n−1

√
χ

(+)∗m
t χ

(+)n
t

iχ (−)m+n+1
t

min(m,n)∑
s�0

2s
(

2
1−Qt

)s/2

s!
(

m−s
2

)
!
(

n−s
2

)
!
. (G9)

By applying the selection rule m − n ∈ 2Z, the number s satisfies s ∈ 2N0 for m,n ∈ 2N0, and s ∈ 2N0 + 1 for m,n ∈ 2N0 + 1,
where N0 ≡ N ∪ {0}. The explicit expression for the matrix elements of U

m,n
t,t0 reads for even elements and odd elements [31],

respectively, as

U 2k,2l
t,t0

= (2�t�t0 )1/4

k!l!

√
(2k)!(2l)!

22(k+l)−1

χ
(+)∗k
t χ

(+)l
t

χ
(−)k+l
t

√
iχ (−)

t

2F1

(
−k, − l;

1

2
;

2

1 − Qt

)
, (G10)

U 2k+1,2l+1
t,t0

= − (2�t�t0 )1/4

k!l!

√
(2k + 1)!(2l + 1)!

22(k+l)+1

χ
(+)∗k
t χ

(+)l
t

χ
(−)k+l
t

√
iχ (−)

t

|χ (+)
t |

χ
(−)
t

√
2

1 − Qt
2F1

(
−k, − l;

3

2
;

2

1 − Qt

)
, (G11)

where k,l ∈ N0, and 2F1 is Gauss’s hypergeometric function. We finally obtain the explicit closed form of transition probabilities
as functions of the parameter Qt , which reads for even elements and odd elements, respectively, as

P 2k,2l
t,t0

= (2k − 1)!!(2l − 1)!!

(2k)!!(2l)!!

√
2

Qt + 1

(Qt − 1

Qt + 1

)k+l

2F1
2

(
−k, − l;

1

2
;

2

1 − Qt

)
, (G12)

P 2k+1,2l+1
t,t0

= (2k + 1)!!(2l + 1)!!

(2k)!!(2l)!!

(
2

Qt + 1

)3/2(Qt − 1

Qt + 1

)k+l

2F1
2

(
−k, − l;

3

2
;

2

1 − Qt

)
. (G13)
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