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We investigate a kinetic Ising model with several single-spin-flip dynamics (including Metropolis and heat
bath) on quenched and annealed random regular graphs. As expected, on the quenched structures all proposed
algorithms reproduce the same results since the conditions for the detailed balance and the Boltzmann distribution
in an equilibrium are satisfied. However, on the annealed graphs the situation is far less clear—the network
annealing disturbs the equilibrium moving the system away from it. Consequently, distinct dynamics lead to
different steady states. We show that some algorithms are more resistant to the annealed disorder, which causes
only small quantitative changes in the model behavior. On the other hand, there are dynamics for which the
influence of annealing on the system is significant, and qualitative changes arise like switching the type of phase
transition from a continuous to a discontinuous one. We try to identify features of the proposed dynamics which
are responsible for the above phenomenon.
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I. INTRODUCTION

Recently a puzzling phenomenon related to the phase
transitions has been found in the modified kinetic Ising
model, the q-neighbor Ising model, with the Metropolis
algorithm on the complete graph [1]. Within this model, each
spin interacts only with q spins randomly chosen from its
neighborhood. It has occurred that only for q = 3 there is a
continuous order-disorder phase transition, whereas for q � 4
discontinuous phase transition appears. Moreover, for q � 4
the hysteresis exhibits oscillatory behavior, i.e., expands for
the even values of q and shrinks for the odd values of q.
Despite the fact that most of the results presented in [1]
were derived from the master equation and not only from
the computer simulations, the intuitive understanding of the
nonmonotonicity of hysteresis is still missing.

The above results are even more confusing if we realize
that the q-neighbor Ising model on the complete graph
seems to be identical with the classical Ising model with the
nearest-neighbors (NN) interactions on the annealed random
q-regular graph (q-RRG) [2–4]. The confusion comes from the
fact that the Ising model with ferromagnetic NN interactions
without an external field has been already examined on a
number of different quenched and annealed networks, and
it always manifests continuous phase transitions [3,5–10].
Discontinuous or mixed-order phase transitions have been
observed only if the range of interactions were infinite [11,12]
or on the coupled networks [13]. Extensive studies have
shown not only that phase transition in the Ising model is
continuous but also characterized with the same set of bulk
critical exponents on quenched and annealed networks [3]. It
is worthwhile to mention here that the situation is completely
different for generalized Ising models, like the Potts or
Blume-Capel models, in which the switch from continuous
to discontinuous phase transitions is observed on regular and
random graphs [14].

Only very recently it has been shown that the q-neighbor
Ising model is a limiting case of a nonequilibrium system with

two heat baths: the Ising spins are in thermal contact with the
heat bath BS with temperature Ts , whereas links are in thermal
contact with another bath BL with temperature TL [4]. For
TL = ∞ such a generalized model reduces to the q-neighbor
Ising model investigated in [1]. It has been also shown that for
TL = ∞ there is nonzero positive heat flux, which confirms
that the q-neighbor Ising model is indeed out of equilibrium.

Reference [4] explains the puzzle of seemingly contradic-
tory results—continuous phase transition in the equilibrium
Ising model on the annealed network [3] vs discontinuous
phase transition in the q-neighbor Ising model [1]. However,
many interesting questions are still open. In particular it
is still unclear if we can fully explain the switch from
continuous to discontinuous phase transition on the basis of
the nonequilibrium regime. Is it possible that other dynamics,
even for TL = ∞ (out of equilibrium), would lead to the same
results as the equilibrium model? It seems quite probable,
because results presented in [10] suggest that for the heat-bath
dynamics the transition would be continuous, at least on the
annealed directed graph. Summarizing, in this paper we ask
the question about the role of dynamics in the nonequilibrium
kinetic Ising model. Referring to this question we examine
the kinetic Ising model with several dynamics (including
Metropolis and heat bath) on quenched and annealed q-RRGs.
Precisely, we study several different algorithms (dynamics)
that belong to a broad class of a single-spin-flip dynamics
(i.e., Glauber dynamics, in a broad sense) [15,16]. Within such
dynamics each spin is flipped (Si → −Si) with a rate W (�E)
per unit time, and this rate is assumed to depend only on the
energy difference implied in the flip:

�E = Enew − Eold = 2J
∑
〈i,j〉

SiSj . (1)

We investigate only such transition probabilities that on the
quenched graphs fulfill detailed balance and lead to the
Boltzmann distribution in a stationary state, which means that
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they satisfy the following general condition:

Wold→new

Wnew→old
= exp(−β�E). (2)

This is quite obvious that on the quenched graph they should
all lead to the same result, which will be checked in the
next section. However, on the annealed graph the situation
is far from being obvious, and we will show that the results
strongly depend on the dynamics. The most popular choices
for W (�E) are Metropolis [17] and heat-bath dynamics [18].
For the Metropolis transition probability

WM = min[1, exp(−β�E)], (3)

and for the heat bath

WHB = 1

1 + exp(β�E)
. (4)

However, there are many other possibilities that fulfill the
required condition given by Eq. (2), and several examples will
be investigated later in this paper.

II. MODEL

In the previous paper [1] we have investigated the q-
neighbor Ising model, which was basically the Ising model
with the Metropolis dynamics [17] with seemingly small
modification that was inspired by the q-voter model [19–22].
Within the q-neighbor Ising model we consider a graph
that consists of N nodes, and each node is occupied by
exactly one spin, described by a dynamical binary variable
Si = ±1,i = 1, . . . ,N . In each elementary update a single,
picked at random, spin Si interacts with its q neighbors, also
randomly chosen from its entire neighborhood. Generally,
two methods of selecting neighbors are possible—with or
without repetitions. For example, in the original q-voter model
repetitions were possible, i.e., a given neighbor could be
selected more than once [19]. However, later also the q-voter
model without repetitions has been investigated [20]. The
version without repetitions is of course suitable only for
the selected topologies in which the minimal degree of a
node kmin � q. For the complete graph both methods are
applicable for an arbitrary value of q < N and give roughly the
same results. Here, we continue the study on the q-neighbor
Ising model started in [1], therefore, we use the same method
as previously, i.e., without repetitions.

It is worthwhile to notice that for the version without
repetitions, that we use here, instead of defining the q-neighbor
Ising model on the complete graph, one could think about
the Ising model on the annealed random q-regular graph
(q-RRG) [2]. Degree distribution for such a graph is fixed
and equals P (k) = δkq , but the arrangement of links between
nodes is random and changes in each update. Within such
a reformulation, the algorithm of a single update consists of
three consecutive steps:

(1) randomly choose a spin Si ;
(2) calculate the change of the energy involved in the flip

of ith spin given by Eq. (1);
(3) flip the ith spin with probability W (�E).
It should be stressed here that the graph that we define here

as an annealed network is very different from the equilibrium

annealed network, in which both links and states of spin
variables are in thermal contact with the single heat bath with
temperature T [3]. On the contrary, model investigated here
is a nonequilibrium one and corresponds to the situation in
which spins are in thermal contact with the heat bath with
temperature T and links are in contact with another heat bath
with the infinite temperature [4].

In the previous paper, the case with W (�E) = WM given
by Eq. (3) was investigated [1]. In this paper we will use
several different dynamics including the heat bath given by
Eq. (4). Beyond this generalization of W (�E), formally
exactly the same algorithm was used in [1]. However, it should
be noted that previously we could not speak about the energy
or the temperature because only q out of all neighbors were
considered.

III. RESULTS FOR THE QUENCHED q-RRG

We investigate the model by Monte Carlo simulations and
estimate the magnetization of the system as an ensemble
average over M samples:

m = 1

M

M∑
j=1

mj, (5)

where mj is the stationary state average value of Si in the j th
sample, defined as

mj = 1

N

N∑
i=1

S
j

i , (6)

where S
j

i denotes a value of an ith spin in the j th sample in
the stationary state. In the case of the quenched approach for
each j th sample we build a new random regular graph of size
N , in which degrees of all nodes are equal q, but the network
does not change in time. In the case of the annealed approach
we change the network after each single update defined by the
algorithm in the previous section.

For the quenched approach, we expect that Metropolis
and heat-bath algorithms will give exactly the same results.
Moreover, results should be consistent with the general
analytical formula for the critical temperature Tc for the Ising
model with coupling constant J on an “equilibrium” random
network with the degree distribution P (k), where k denotes
the degree, i.e., the number of connections of a vertex [7]:

J

Tc

= 1

2
ln

( 〈k2〉
〈k2〉 − 2〈k〉

)
. (7)

For q-RRG degrees of all nodes are equal to q. Moreover, we
have assumed that J = 1, therefore, the critical temperature
should be equal:

Tc(q) = 2

[
ln

(
q

q − 2

)]−1

. (8)

Indeed, if we look at Fig. 1 we see that results for HB and M
dynamics are the same, and the critical temperature is properly
described by Eq. (8), which is also clearly visible in the left
panel of Fig. 2.
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FIG. 1. Phase diagrams for the Ising model on annelad and
quenched q-RRG with N = 105 nodes and different degrees: (a)
q = 4, (b) q = 5, (c) q = 6, (d) q = 7. Lines indicate analytical
predictions of the mean-field approximation in the case of annealing:
lines that are solid (stable states) for all values of T correspond to
heat-bath dynamics (HB annealed) and lines that are partially dashed
(unstable states) to Metropolis (M annealed). Markers represent
outcomes of Monte Carlo simulations: • M annealed, � HB annealed,
◦ M quenched, × HB quenched. The critical temperature Tc predicted
by Eq. (8) almost exactly concurs with the simulated one on quenched
graphs. The error bars are unnoticeable in a given scale.

FIG. 2. (a) Transition temperature T ∗ as a function of q for the
kinetic Ising model on the annealed q-RRG with two dynamics:
• Metropolis and × heat bath. Markers ◦ represent the results
obtained from Eq. (8) for the quenched structure. Note that in the
case of quenching, both dynamics give the same critical temperature.
Moreover, the HB algorithm reproduces roughly the same results
for both types of graphs, whereas the M algorithm gives a different
value of T ∗ on the annealed and quenched networks. Note that for the
discontinuous phase transition T ∗ is determined by the point at which
three potential minima are equal; see also Fig. 5. (b) Transition rates
as functions of �E for heat-bath and modified Metropolis dynamics.
Note that when W0 = 1, the modified Metropolis algorithm coincides
with the original version.

IV. RESULTS FOR THE ANNEALED q-RRG

On one hand, the theoretical description simplifies signif-
icantly if we replace the quenched network by the annealed
one because in such a case we can easily derive the transition
probabilities for the system and write down the rate and/or the
master equation, as it was done in the previous paper [1]. On the
other hand, the behavior on the annealed graph, at least for the
Ising model with Metropolis dynamics, is much more complex
including (1) a switch from a continuous to a discontinuous
phase transition at q = 4 and (2) an unexpected oscillatory
behavior of the hysteresis, expanding for even values of q and
shrinking for odd values of q.

Here, following the reasoning presented in [1], we derive
transition probabilities for the Ising model with HB dynamics
on the annealed q-RRG. This allows us to calculate stationary
magnetization as well as the critical temperature. In a single
update, three events are possible—the number of spins “up”:

(1) increases by 1 (N↑ → N↑ + 1) and simultaneously
m → m + 2/N with probability γ +;

(2) decreases by 1 (N↑ → N↑ − 1) and simultaneously
m → m − 2/N with probability γ −;

(3) or remains constant with probability 1 − γ + − γ −.
To simplify calculations we define a new macroscopic

variable—the concentration of “up” spins at time t :

c(t) = N↑(t)

N
= m(t) + 1

2
. (9)

Using this variable we can write down the transition probabil-
ities γ +,γ − for the infinite system:

γ +(c) =
q∑

k=0

(
q

k

)
cq−k(1 − c)k+1 1

1 + e
−2
T

(q−2k)
,

γ −(c) =
q∑

k=0

(
q

k

)
(1 − c)q−kck+1 1

1 + e
−2
T

(q−2k)
. (10)

In above equations we have replaced c(t) by c for brevity of
description, but one should remember that c evolves in time,
and this evolution is described by the rate equation [23]

c(t + �t) = c(t) + 1

N
[γ +(c) − γ −(c)], (11)

where �t = 1/N . Thus, we can write

c(t + 1) = c(t) + [γ +(c) − γ −(c)], (12)

where the unit time has been defined as N elementary updates
described by the algorithm in Sec. II, as usually one Monte
Carlo step is defined.

In the steady state c(t + 1) = c(t) = c, which is equivalent
to the condition

γ +(c) − γ −(c) = 0. (13)

Now, we are ready to derive the formula for the critical
temperature Tc. Let us define a quantity which can be thought
of as a net force acting on our system in the following
way [20]:

F (c,T ) = γ +(c,T ) − γ −(c,T ). (14)
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In such a case, the lines of the steady states are determined by
the condition

F (c,T ) = 0. (15)

Differentiating the above equation with respect to the concen-
tration gives

∂F (c,T )

∂c
+ ∂F (c,T )

∂T

dT

dc
= 0. (16)

Note that the critical point corresponds to the extremum of
T (c). Hence, the first derivative of the temperature over c

vanishes at (c,T ) = (1/2,Tc), that is to say,

dT

dc

∣∣∣∣
(1/2,Tc)

= 0. (17)

Therefore, evaluating Eq. (16) at the critical point gives us the
condition for its derivation

∂F (c,T )

∂c

∣∣∣∣
(1/2,Tc)

= 0. (18)

Using formulas for the transition probabilities, we obtain the
equation from which the critical temperature can be derived
numerically,

q∑
i=0

(
q

i

)
(2i − q) tanh

2i − q

Tc

= 2q . (19)

For q = 4, our solution coincides with the result presented in
[10]. The transition temperature as a function of q is presented
in the left panel of Fig. 2. As seen, Tc derived from Eq. (19)
for an annealed q-RRG approaches the critical temperature
derived by Dorogovtsev et al. [7] in the case of a quenched
graph given by Eq. (8). Furthermore, it is seen in Fig. 2 that
the Metropolis algorithm, considered already in [1], gives a
different value of Tc for the annealed graph.

V. DIFFERENT DYNAMICS

Figure 1 illustrates differences of the outcomes from two
popular dynamics: Metropolis and heat bath. Furthermore,
it has been shown that the heat-bath algorithm reproduces
almost the same results for annealed and quenched graphs.
The difference is only quantitative and decreases with the
growing average degree q; see also Fig. 2 (left panel). On the
other hand, Metropolis dynamics causes much more profound
changes in the behavior of the system. On quenched networks
only continuous phase transitions are observed whereas on
annealed graphs both continuous and discontinuous transitions
are present depending on the parameter q. Furthermore, the
hysteresis exhibits oscillatory characteristics shrinking for odd
values of q and expanding for even ones [1].

In order to comprehend why annealing for some dynamics
causes once only quantitative and other qualitative differences,
we introduce and investigate several new dynamics which
fulfill the detailed balance condition and reproduce the
Boltzmann distribution in equilibrium for the model placed on
quenched q-RRG. In other words, the transition probabilities
satisfy Eq. (2).

The most natural choice for such a dynamics comes from
the modification of the Metropolis algorithm:

WM′ =
⎧⎨
⎩

exp(−β�E) (�E > 0)
W0 (�E = 0)
1 (�E < 0)

. (20)

The above modification is identical with the original Metropo-
lis dynamics, except of the case �E = 0. For the M algorithm
W (�E = 0) = 1, on the other hand, for the HB dynamics
W (�E = 0) = 1/2. Here we propose a generalized version in
which W (�E = 0) = W0, where W0 ∈ [0,1] is a parameter;
see the right panel of Fig. 2. Such a modification reminds of the
generalized zero-temperature Glauber dynamics introduced
in [16], which occurred to be particularly interesting from
theoretical point of view [24–28]. As we will see, the above
dynamics, although artificial and not motivated by any physical
processes, will also turn out to be particularly intriguing.
Nevertheless, other transition rates that fulfill Eq. (2) are
also possible, and we will briefly present results for two of
them:

Wexp = C exp
(− 1

2β�E
)
, (21)

where C = exp(−βq) is a normalizing constant and

Wtanh = min[1, exp(−β�E)] tanh |aβ�E|, (22)

where a is a parameter. Transition probabilities generated by
the proposed dynamics are presented in Fig. 3 for several
temperatures. Note that for growing a the above transition rate
approaches WM′ with W0 = 0.

Although all dynamics satisfy detailed balance and there-
fore give the same results on quenched random q-regular

FIG. 3. Transition rates as functions of �E for different dynam-
ics: • WM, × Wtanh with a = 3, ♦ Wtanh with a = 1, and � Wexp.
Consecutive panels correspond to higher temperatures: (a) T = 1,
(b) T = 3, (c) T = 5, and (d) T = 10.

012132-4



KINETIC ISING MODELS WITH VARIOUS SINGLE- . . . PHYSICAL REVIEW E 96, 012132 (2017)

FIG. 4. (a) Phase diagrams for the Ising model with the modified
Metropolis algorithm Eq. (20) on annealed q-RRG for W0 = 0.
Markers represent outcomes of Monte Carlo simulations for the
network comprised of N = 105 nodes: • q = 4, � q = 5, × q = 6,
and ◦ q = 7. Lines indicate analytical predictions of the mean-field
approximation. Solid ones correspond to stable states, and dashed
ones refer to unstable points. (b) Phase diagrams for the Ising model
with M′ dynamics and q = 4 for different values of W0. Lighter lines
correspond to higher W0.

graphs, the outcomes differ when we anneal the network.
For Wexp the phase transition is continuous for all values of
parameters, like in the case of quenching, but diagrams are
shifted towards higher temperatures. Consequently, it results
in the larger values of the critical points.

More thought provoking behavior of the model is induced
by the modified Metropolis algorithm WM′ with W0 = 0. Then
the system exhibits two types of phase transitions. For odd
values of q both Metropolis dynamics, the modified and
the original one, are consistent and produce qualitatively the
same results, in a sense that all transitions for q > 3 are
discontinuous. However, for even values of q all transitions
become continuous; see the left panel of Fig. 4. It should
be recalled here that for W0 = 1, which corresponds to the
original Metropolis, results were almost opposite—though
phase transitions were discontinuous for all q > 3, yet just
for even values of q discontinuity was stronger (a larger jump
of the order parameter and hysteresis).

The right panel of Fig. 4 presents how the phase diagram
changes under the influence of W0 for the model with q = 4.
It is seen that there is a critical value of W0 for which
the transition type for even values of q switches from a
discontinuous to a continuous one. We can derive this critical
point W ∗

0 as well as categorize phase transitions based on the
classical Landau theory [20,29] by introducing an effective
potential V (m) and studying its behavior for small values of
the order parameter m, i.e., near zero. Having the net force
F (m,T ), from Eqs. (14) and (9), we can construct the potential
in the following way:

V (m,T ) = −
∫

F (m,T )dm. (23)

In the vicinity of zero, we can expand it into a Taylor series,
and neglect terms of higher order than m6. This procedure
leads to the potential in the form

V (m) = Am2 + Bm4 + Cm6 + O(m8), (24)

FIG. 5. Phase diagram for the nonequilibrium kinetic Ising model
on the annealed q-RRG with the modified Metropolis dynamics for
q = 4. Along the solid line, a phase transition occurs: below the
tricritical point (TCP) there is a continuous phase transition and
above TCP the continuous transition line splits up into two spinodal
(dashed) lines, where the transition becomes first order. Along the
dotted line, the term with m4 in the Landau potential vanishes.
The diagram divides a phase space into three distinctive areas: F
where ferromagnetic (ordered) phase is present, P with paramagnetic
(disordered) phase, and C a region where both phases coexist.
Additionally, a schematic Landau potential is sketched for each area.

where coefficients A, B, and C depend on the model and can
be derived directly from Eq. (23) as

A = − 1

2!
∂mF (m,T )

∣∣∣∣
(0,T )

, (25)

B = − 1

4!
∂3
mF (m,T )

∣∣∣∣
(0,T )

, (26)

C = − 1

6!
∂5
mF (m,T )

∣∣∣∣
(0,T )

. (27)

When A > 0, the second derivative of Eq. (24) near m = 0
is positive, and at this point V (m) has a minimum; thus, a
disordered phase is stable. On the other hand, when A is
negative, a disordered phase is unstable. Therefore, a condition
A = 0 allows us to derive the boundary of a region where
a paramagnetic phase is present; note that this is equivalent
to Eq. (18). The order of a transition is determined by the
coefficient B. If it is positive, the system undergoes continuous
phase transition. When it is negative, a discontinuous transition
appears, and there is an area, bounded by the spinodal lines
(dashed lines in Fig. 5), where two phases may coexist. Within
the modified Metropolis dynamics, defined by Eq. (20), there
is a ferromagnetic-paramagnetic continuous phase transition
for small values of W0 and above a certain tricritical point
(TCP) the continuous transition line splits up into two
spinodal lines, where the transition becomes first order (see
Fig. 5). Similar behavior has been observed recently for the
nonequilibrium Ising model with two heat baths, but in that
case the temperature of the heat bath for links TL has driven
the tricritical behavior [4].

Because TCP is a place where all three sections, the
coexistence area and regions with purely ordered and dis-
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FIG. 6. The dependence between the type of the phase transition
and model’s parameters for (a) the modified Metropolis dynamics
and (b) the dynamics with Wtanh rates. There are two characteristic
regimes: with continuous (marked by oblique lines) and discon-
tinuous phase transitions. In the case of discontinuous transitions,
darker areas indicate wider hysteresis �T , measured as the difference
between the upper and the lower spinodal lines. Note that in (a) the
vertical section along W0 = 1 corresponds to the original Metropolis
dynamics, studied in [1]. For even values of interacting neighbors q,
there exists a critical value of W0 where discontinuous phase transition
becomes continuous. Similar behavior is observed for the model with
Wtanh transition probabilities for odd q values (b), but this time below
a certain level of a, all transitions convert into continuous ones.

ordered phases, meet, it might be determined by fulfilling
simultaneously two conditions A = 0 and B = 0. Moreover,
note that TCP settles the value of W ∗

0 .
The entire phase diagram for the model with the modified

Metropolis dynamics for q = 4 is illustrated in Fig. 5. The
analogical behavior is observed for greater even values of
interacting neighbors. In this particular case (q = 4), the
critical point lies at W ∗

0 = 11/15, but in general its value
depends on q. The dependence between the type of the phase
transition and model’s parameters q and W0 for the modified
Metropolis dynamics is presented in the top panel of Fig. 6. For
discontinuous transitions, shading indicates the width of the
hysteresis; darker areas correspond to the wider metastable
region �T where two phases may coexist. Oblique lines
indicates the presence of continuous phase transitions. The
boundary between these two transition types for a given q

corresponds to the tricritical point.
Based on the above result, we can draw a conclusion that by

altering transition probabilities at �E = 0 one can control the
nature of the phase transition. Moreover, lower flipping rates
are connected with continuous transitions. In order to check
whether indeed only the central point (i.e., �E = 0) of the
dynamics has this profound impact on the model behavior we
investigate the system with Wtanh rates, defined by Eq. (22).

In this case, parameter a does not affect W (�E = 0), and
for all conditions W (�E = 0) = 0. Nonetheless, its higher
value increases in general the flipping probabilities, which is
clearly seen in Fig. 3. Note that large a reproduces the outcome
obtained for the model driven by the modified Metropolis algo-
rithm with W0 = 0 since then both dynamics coincide; look at
Fig. 6 and compare the vertical section along W0 = 0 in the top
panel with the section along a = 20 in the bottom one. How-
ever, there is a certain value of the parameter a below which all
transitions become continuous, like for WHB or Wexp dynamics.

VI. CONCLUSIONS

The Ising model, although almost 100 years old,
still inspires many researchers and raises new questions
[25–28,30–32]. Recently we have introduced, under the name
the q-neighbor Ising model, a seemingly small modification
of the kinetic Ising model with Metropolis dynamics allowing
each spin to interact only with q neighbors [1]. Surprisingly,
this modification leads to a switch from a continuous to
a discontinuous phase transition at q = 4, and it causes
an unexpected oscillating behavior of the hysteresis for
q � 4—it expands for even values of q and shrinks for odd
values of q. This was a very puzzling phenomenon because
extensive studies have shown not only that a phase transition
in the equilibrium Ising model is continuous but also is
characterized with the same set of bulk critical exponents on
quenched and annealed networks [3].

However, recently it has been shown that the q-neighbor
Ising model is a limiting case of a nonequilibrium system with
two heat baths—one for the Ising spins at temperature Ts and
a second for links of the graph at temperature TL [4]. For
TL = ∞ such a generalized model reduces to the q-neighbor
Ising model investigated in [1]. This means that the q-neighbor
Ising model is out of equilibrium contrary to the Ising model
on the annealed graph considered in [3]. However, the question
arises whether just being out of equilibrium causes tricritical
behavior, i.e., the switch from continuous to discontinuous
phase transition. Maybe such an exotic behavior is observed
exclusively for the Metropolis algorithm? Furthermore, what
is the role of dynamics for nonequilibrium systems?

Referring to the above questions, we have reformulated
the q-neighbor Ising model in terms of the classical Ising
model on the q-RRG and investigated it under several different
dynamics belonging to the broad class of the generalized
single-spin-flip Glauber dynamics [15,16]. On the quenched
graph all dynamics fulfill the detailed balance condition and
lead to the equilibrium Boltzmann distribution. Therefore, it
is not surprising that they all give exactly the same results
and reproduce analytical formulas for the critical temperature
derived by Dorogovtsev et al. [7].

On the annealed nonequilibrium network, which within
the generalized model proposed in [4] corresponds to the
infinite temperature of links (TL = ∞), each dynamics leads
to completely different results. For example, the model with
heat-bath algorithm on the annealed network displays always a
continuous phase transition, and the critical temperature only
slightly deviates from the equilibrium one. On the other hand,
the generalized Metropolis algorithm gives qualitatively differ-
ent behavior, which depends on the model’s parameter W0. For
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W0 = 1, we obtain the original Metropolis dynamics, which
means that the transition switches to discontinuous at q = 4,
and hysteresis exhibits oscillatory behavior—expanding for
even values of q and shrinking for odd values of q. Yet,
for W0 < W ∗

0 (q), the behavior is even more exotic—phase
transition switches alternately from continuous to discon-
tinuous phase transition and back. Additionally, we have
investigated two other types of dynamics, and it occurred that
Wexp displays always a continuous phase transition while Wtanh

switches between two types of the phase transitions. We have
observed that generally higher flipping probabilities lead to
discontinuous phase transitions.

We could of course propose many other dynamics which
fulfill the detailed balance condition on the quenched graph,
but it was not our aim. We asked the question about the
role of dynamics for nonequilibrium models. On one hand,
there is no excuse of referring to different dynamics or
algorithms if the model is out of equilibrium, because in such
a case there is no condition, such as detailed balance, which
guarantees the unique steady state. On the other hand, referring
to the particular dynamics within nonequilibrium models
still happens [10,25]. Such practices are not very surprising,
because it is quite common that methods of equilibrium
statistical physics are transferred to the field of nonequilibrium
systems and they give often reasonable results [33]. Thus, one
could have an intuition that the choice of a particular dynamics
for a nonequilibrium system will not influence significantly the
outcome of the model.

Because results obtained in [1] have shown that such an
intuition may be very wrong, we have decided to examine
several different dynamics and check how they would influence
results in two limiting cases: quenched and annealed. We
have shown that indeed some dynamics (including heat bath)
are more resistant to the rewiring of a network and display
always continuous phase transition, whereas others (including
Metropolis) are much more fragile and rewiring a network
changes the type of the phase transition. Furthermore, our
results suggest that we can generally expect discontinuous
phase transitions for higher flipping rates W0, i.e., in fact
for larger noise, which is generally an interesting result and
coincides with observations made in [4], where discontinuity
has been driven by higher temperature of a network. Of course
there are more possibilities to incorporate noise to the system.

For example one could investigate the model on a temporal
network and introduce rewiring time τ , as a parameter. Because
τ = ∞ corresponds to the quenched and τ = 1/N to the
annealed network, one could expect that there is a critical time
scale τ ∗ that separates these two regimes. Indeed preliminary
studies confirm these predictions [34].

It is known that a switch from continuous to discontinuous
phase transition can be caused by many factors. In the equilib-
rium statistical physics one of the best known examples is the
regime switch in the Potts model (for review see [35]): for q > 4
the model undergoes a first-order phase transition, whereas a
second-order phase transition for smaller values of q, with q

being the number of states of the spin. Moreover, it is common
that systems exhibiting a discontinuous phase transition in high
space dimensions may display a continuous transition below
a certain critical dimension [33]. For nonequilibrium systems
it has been shown that by increasing the number of interacting
neighbors, the fluctuations are diminished and the transitions
become sharper or even change their type to discontinuous
[1,20,36]. Yet, recent research has shown that for nonequi-
librium systems a switch from continuous to discontinuous
phase transition and related tricriticality may be also caused
by a high temperature of a network [4] or larger flipping
probabilities. These results suggest that incorporating a certain
type of noise to the nonequilibrium system can be responsible
for tricriticality. Yet this hypothesis requires further research.

However, the main outcome of this paper is the answer
to the question posed in the Introduction. Our aim was
to check if being out of equilibrium, one can still speak
about the Ising model with certain dynamics. As we have
shown, each out-of-equilibrium dynamics leads to completely
different behavior—some dynamics are more fragile for the
nonequilibrium driving than others. In fact, it is even hard to
speak about the dynamics or algorithm in the case of such
a nonequilibrium system because dynamics is an immanent
feature of the model.
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