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Continuous-time random walk under time-dependent resetting
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Continuous-time random walks of a particle that is randomly reset to an initial position are considered. The
distribution of the waiting time between the reset events is represented as a sum of an arbitrary number of
exponentials. The governing equation of this stochastic process is established. The mean first-passage time to a
particular position is calculated. It is shown that anomalous subdiffusion has a significant impact on the shape of
the stationary state.
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I. INTRODUCTION

Recently, intermittent stochastic processes, in which the
diffusion of a particle is interrupted by random resetting to an
initial position, have been extensively studied. Such processes
have attracted considerable attention because random resetting
fundamentally changes the properties of the diffusion process.
In particular, with resetting, the distribution of the particle
position does not expand indefinitely, but evolves towards a
nonequilibrium steady state. Another important consequence
is that the mean first passage time, which is infinite in the case
of simple diffusion, becomes finite with resetting.

Examples of intermittent stochastic processes are found in
many fields such as chemistry [1], biology [2], ecology [3],
and computer science [4].

The investigation of diffusion processes with stochastic
resetting was initiated in Refs. [5–7]. Later, several specific
models describing particular intermittent processes were con-
sidered [8–17]. In recent works [18–20], the effect of the
distribution of the waiting time between the reset events on the
properties of the intermittent stochastic process was studied. In
these studies, it was assumed that a particle performs a simple
random walk between the reset events. However, in many
real-world processes, the particle moves in complex disordered
media; therefore, the simple random walk model is not
applicable. In this study, we consider a further generalization of
the model [18–20] considering medium disorder. We assume
that in a given disordered medium, the motion of a particle has a
subdiffusive (slowing down) character, and it can be described
by the continuous-time random walk (CTRW) model. As a
starting point, we use the Markov representation of the CTRW
model [21–23]. As independent variables, we use the spatial
coordinate of a particle, time elapsed since the beginning of
the observation, time elapsed since the last diffusion jump,
and time elapsed since the last reset event. First, we found
the propagator. Then, we represented the distribution of the
waiting time as a sum of an arbitrary number of exponentials.
With such a representation, we found an equation satisfied by
the propagator and calculated the mean first-passage time to a
particular position. We also showed that the medium disorder
affects the properties of the intermittent stochastic process.
In particular, the stationary probability distribution shape is
different in the cases of normal diffusion (i.e., diffusion in
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a homogeneous medium) and anomalous subdiffusion (i.e.,
diffusion in a disordered medium).

II. PROPAGATOR

We start our consideration with the balance equation,
which describes the CTRW under time-dependent resetting
on a discrete one-dimensional lattice. Let ξi(t,τ,σ ) be the
probability density of finding a particle at site i at time t ,
whose residence time in this site is equal to τ and time elapsed
since the last reset event is equal to σ . The balance equation
is [21–24]

∂ξi(t,τ,σ )

∂t
+ ∂ξi(t,τ,σ )

∂τ
+ ∂ξi(t,τ,σ )

∂σ

= −ω(τ )ξi(t,τ,σ ) − λ(σ )ξi(t,τ,σ ). (1)

Here, the first term on the right-hand side describes the
decrease of the probability ξi(t,τ,σ ) due to transitions of
the particle to neighboring sites. ω(τ ) is the corresponding
rate. The second term describes the decrease of the probability
ξi(t,τ,σ ) due to transitions of the particle to the initial position.
λ(σ ) is the corresponding rate.

Let us suppose that at the initial time the particle is in site 0,
the residence time is equal to zero, and the time elapsed since
the last reset event is equal to zero. Then, the initial condition
is expressed as

ξi(0,τ,σ ) = δ(τ )δ(σ )δi0. (2)

Here, δ(τ ) is the Dirac delta function and δi0 is the Kronecker
symbol.

In order for the solution of Eq. (1) to be uniquely
determined, it is necessary to additionally define the boundary
conditions at τ = 0 and at σ = 0. The first boundary condition
should express the fact that the residence time becomes zero
at the moment of particle transition from one site to another. If
the particle jumps to the left and right neighboring sites with
equal probability, then the boundary condition at τ = 0 has
the form

ξi(t,0,σ ) =
∫ ∞

0

ω(τ )

2
[ξi−1(t,τ,σ ) + ξi+1(t,τ,σ )]dτ. (3)

The second boundary condition should express the fact that
the waiting time of the next reset event becomes zero at the
moment of resetting. In this section, we will assume that at the
moment of the reset event, the residence time also becomes
zero. In this case, the boundary condition at σ = 0 has the
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form

ξi(t,τ,0) = δ(τ )δi0

∞∑
j=−∞

∫ ∞

0

∫ ∞

0
λ(σ )ξj (t,τ,σ )dσ dτ. (4)

The CTRW model gives a rough description of reality and
does not determine the described process unambiguously. As
a consequence, the physical interpretation of the presented
initial and boundary conditions can be different, depending on
the process described. For example, in the multiple-trapping
model, which reduces to the CTRW model in the transition to
a contracted description [25], boundary condition (4) indicates
that after resetting the particle enters the transport state. In the
mean-field approximation of the random trap model, which is
also reduced to the CTRW model [26], this boundary condition
indicates that after resetting the particle enters any trap with
equal probability.

We perform the Laplace transform in the time variable t

and the Fourier transform in the spatial variable i:

ˆ̄ξ (u,τ,σ,k) =
∞∑

i=−∞

∫ ∞

0
exp(jihk − ut)ξi(t,τ,σ )dt, (5)

where j is the imaginary unit and h is the lattice constant. As
a result of the transformations, Eqs. (1), (3), and (4) become

∂ ˆ̄ξ (u,τ,σ,k)

∂τ
+ ∂ ˆ̄ξ (u,τ,σ,k)

∂σ

= −[ω(τ ) + λ(σ ) + u] ˆ̄ξ (u,τ,σ,k) + δ(τ )δ(σ ), (6)

ˆ̄ξ (u,0,σ,k) = cos(hk) ˆ̄F (u,σ,k), (7)

ˆ̄ξ (u,τ,0,k) = δ(τ )	̄(u), (8)

where

ˆ̄F (u,σ,k) =
∫ ∞

0
ω(τ ) ˆ̄ξ (u,τ,σ,k)dτ, (9)

	̄(u) =
∫ ∞

0

∫ ∞

0
λ(σ ) ˆ̄ξ (u,τ,σ,0)dσ dτ. (10)

Equation (6) with boundary conditions of Eqs. (7) and (8)
has the solution

ˆ̄ξ (u,τ,σ,k) = δ(τ − σ )[1 + 	̄(u)]

× exp{−uσ }
r (σ )

d (τ )


d (τ − σ )
(11)

for τ � σ , σ > 0,

ˆ̄ξ (u,τ,σ,k) = δ(τ )	̄(u) (12)

for τ � σ , σ = 0, and

ˆ̄ξ (u,τ,σ,k) = cos(hk) ˆ̄F (u,σ − τ,k)

× exp{−uτ }
d (τ )

r (σ )


r (σ − τ )
(13)

for τ < σ , τ � 0. Here,


r (σ ) = exp

{
−

∫ σ

0
λ(y)dy

}
(14)

is the survival probability of the reset process and


d (τ ) = exp

{
−

∫ τ

0
ω(y)dy

}
(15)

is the survival probability of the diffusion (jump) process.
Note that at σ = 0 the solution has a discontinuity, which is
a consequence of the presence of the inhomogeneous term in
Eq. (6).

By dividing ˆ̄ξ (u,τ,σ,k) by 
r (σ ) and integrating with
respect to τ from zero to infinity, we obtain

ˆ̄η(u,σ,k)


r (σ )
= [1 + 	̄(u)] exp{−uσ }
d (σ )

+ cos(hk)
∫ σ

0
exp{−uτ }
d (τ )

ˆ̄F (u,σ − τ,k)


r (σ − τ )
dτ,

(16)

where ˆ̄η(u,σ,k) = ∫ ∞
0

ˆ̄ξ (u,τ,σ,k)dτ . By performing the
Laplace transform of Eq. (16) in σ (f (σ ) → L[f (σ )](s)), we
find

L

[
ˆ̄η(u,σ,k)


r (σ )

]
= [1 + 	̄(u)]
̄d (u + s)

+ cos(hk)L

[
ˆ̄F (u,σ,k)


r (σ )

]

̄d (u + s). (17)

By dividing ˆ̄ξ (u,τ,σ,k) by 
r (σ ), multiplying by ω(τ ), and
integrating with respect to τ from zero to infinity, we obtain

ˆ̄F (u,σ,k)


r (σ )
= [1 + 	̄(u)] exp{−uσ }ψd (σ )

+ cos(hk)
∫ σ

0
exp{−uτ }ψd (τ )

ˆ̄F (u,σ − τ,k)


r (σ − τ )
dτ,

(18)

where ψd (τ ) = ω(τ )
d (τ ) is the waiting time distribution of
the diffusion process. The Laplace transform of this relation
in σ is

L

[
ˆ̄F (u,σ,k)


r (σ )

]
= [1 + 	̄(u)]ψ̄d (u + s)

+ cos(hk)L

[
ˆ̄F (u,σ,k)


r (σ )

]
ψ̄d (u + s). (19)

By solving Eqs. (17) and (19) and performing some simple
manipulations, one can write

ˆ̄η(u,σ,k) = 
r (σ )[1 + 	̄(u)] exp{−uσ }P̂d (σ,k), (20)

where P̂d (σ,k) is the propagator of the CTRW without
resetting, which has the following Laplace transform (σ → s):

ˆ̄Pd (s,k) = 1

s + ̄(s)[1 − cos(hk)]
. (21)

̄(s) is the memory function defined as

̄(s) = sψ̄d (s)

1 − ψ̄d (s)
. (22)
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By substituting Eq. (20) into Eq. (10), we find

	̄(u) = ψ̄r (u)

1 − ψ̄r (u)
. (23)

Here, ψ̄r (u) is the Laplace transform of the waiting
time distribution of the reset process [ψr (σ ) = − d
r (σ )

dσ
=

ω(σ )
r (σ )]. Thus, we can write the propagator of the
CTRW under time-dependent resetting defined as ˆ̄Pdr (u,k) =∫ ∞

0

∫ ∞
0

ˆ̄ξ (u,τ,σ,k)dσ dτ in the form

ˆ̄Pdr (u,k) = 1

1 − ψ̄r (u)

∫ ∞

0
exp{−uσ }
r (σ )P̂d (σ,k)dσ.

(24)

An expression similar to that was previously obtained for the
Brownian motion under time-dependent resetting in Ref. [20].

In the physical domain, the propagator in Eq. (24) satisfies
the first renewal equation [20]:

Pdr (t,x) = 
r (t)Pd (t,x) +
∫ t

0
ψr (τf )Pdr (t − τf ,x)dτf .

(25)

This equation differs from the analogous equation obtained
in Ref. [20] only by the fact that here the CTRW propagator
is used instead of the diffusion propagator. The terms of this
equation on the right-hand side have the same meaning as in
Ref. [20]: the first term corresponds to the trajectories with no
resets and the second term corresponds to the trajectories with
at least one reset. τf is the time of the first reset [20].

We found the propagator corresponding to initial condition
(2) and boundary conditions (3) and (4). However, the
approach used here makes it possible to obtain propagators
corresponding to other initial and boundary conditions. In
particular, one can consider nonsymmetric random walks,
resetting several points, the case when the residence time does
not necessarily become zero after resetting, and other cases.

III. GOVERNING EQUATION

To obtain specific results, one must introduce an assumption
about the probability of resetting. In previous works, such
assumptions were introduced in various ways. In Refs. [18]
and [19], the assumption was made about the function
ψr (σ ). In Ref. [18] it was assumed that this function is a
truncated power law, and in Ref. [19], it was fixed as the
gamma distribution and Weibull distribution. In Ref. [20], the
assumption was made about the function ω(σ ). This function
was given by some simple analytic expressions. In this study,
we assume that the survival probability 
r (σ ) has the form of
a sum of exponentials:


r (σ ) =
N∑

i=1

αi exp{−νiσ } (26)

with νi > 0,
∑N

i=1 αi = 1. Such an assumption has two advan-
tages: first, sum (26) can describe any reasonable function with
any given accuracy in the interval (0,∞) [27,28]; second, it
allows us to derive a governing equation for the process under
consideration. Note that the function ψr (σ ) corresponding to
Eq. (26) has the form ψr (σ ) = ∑N

i=1 αiνi exp{−νiσ }.

We now present the derivation of the governing equation.
If the survival probability has form (26), then propagator (24)
becomes

ˆ̄Pdr (u,k) =
N∑

i=1

ˆ̄ρi(u,k), (27)

where functions ˆ̄ρi(u,k) are given by

ˆ̄ρi(u,k) = 1

1 − ψ̄r (u)

× αi

u + νi + ̄(u + νi)[1 − cos(hk)]
(28)

with ψ̄r (u) = ∑N
i=1

αiνi

u+νi
. By direct substitution, one can verify

that these functions satisfy the system of equations

u ˆ̄ρi(u,k) − αi = −̄(u + νi)[1 − cos(hk)] ˆ̄ρi(u,k)

− νi ˆ̄ρi(u,k) + αi

N∑
l=1

νl ˆ̄ρl(u,0),

(i = 1,2, . . . ,N ). (29)

By taking the continuum limit [i.e., replacing 1 − cos(hk) by
h2

2 k2] and returning to the physical variables, we get

∂ρi(t,x)

∂t
= h2

2

∫ t

0
(τ ) exp(−νiτ )

∂2ρi(t − τ,x)

∂x2
dτ

− νiρi(t,x) + αiδ(x)
N∑

l=1

νl

∫ ∞

−∞
ρl(t,x)dx,

(i = 1,2, . . . ,N ). (30)

The initial conditions are ρi(0,x) = αiδ(x).
Equation (30) is valid when the original function (t)

exists. However, in the model of anomalous subdiffusion
(where ̄(u) = const × u1−γ with γ ∈ (0,1) [29,30]) it does
not exist, so the integral operator is written in a different way
with the use of a fractional derivative [31].

For N = 1, system of equations (30) reduces to the non-
Markovian diffusion equation with source and sink [32]:

∂ρ(t,x)

∂t
= h2

2

∫ t

0
(τ ) exp(−ντ )

∂2ρ(t − τ,x)

∂x2
dτ

− νρ(t,x) + δ(x)ν
∫ ∞

−∞
ρ(t,x)dx. (31)

Here, the source and sink terms correspond to the resetting
process. The sink term modifies the integral operator by means
of appearance of an exponential factor, as in the case of
the subdiffusion-reaction equations [31,32]. In the case of a
homogeneous medium, the memory function (t) is equal to
the delta function [̄(u) is equal to a constant], and Eq. (31)
reduces to the usual equation of diffusion with resetting [6]:

∂ρ(t,x)

∂t
= ̄

h2

2

∂2ρ(t,x)

∂x2

− νρ(t,x) + δ(x)ν
∫ ∞

−∞
ρ(t,x)dx. (32)

If all the parameters αi are positive [33], they can be
considered as probabilities. In this case, the system of
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equations (30) admits the following interpretation. A particle
can be in one of N different internal states. These states
influence how the particle resets. ρi(t,x) is the probability
of finding a particle in state i at time t at point x. Initially,
the particle is in the ith state with probability αi . Being in this
state, it exhibits subdiffusive motion and resets with a constant
rate νi . As a result of resetting, the particle falls into state i with
probability αi , regardless of what state it had before resetting.

Let us comment that the obtained equations can straight-
forwardly be extended for an arbitrary spatial dimension.
In d dimensions, the second derivative is replaced by a
d-dimensional Laplacian and simple integral is replaced by
a d-fold integral.

IV. SURVIVAL PROBABILITY

The system of equations (30) plays a role of the master
equation. It allows us to solve different boundary value
problems. As an example, we compute the survival probability
in the presence of the absorbing center. Let is suppose that,
at the initial time, the particle is at x0 (to be specific, we
assume that x0 > 0). The absorption center is at the origin. The
equation for ρ̄i(u,x) and its boundary condition are written as

uρ̄i(u,x) − αiδ(x − x0) = h2

2
̄(u + νi)

∂2ρ̄i(u,x)

∂x2

− νi ρ̄i(u,x) + αiδ(x − x0)

×
N∑

l=1

νl

∫ ∞

0
ρ̄l(u,x)dx,

ρ̄i(u,0) = 0. (33)

In the considered case, the probability that the particle survives
until time t without being absorbed is defined as

Q(t,x0) =
N∑

i=1

qi(t,x0), (34)

where qi(t,x0) = ∫ ∞
0 ρi(t,x; x0)dx. We explicitly indicated

the dependence of ρi on the initial position x0. It is possible
to show that functions q̄i(u,x0) satisfy the backward boundary
value problem (where the initial position x is the variable) [34]:

uq̄i(u,x) − αi = h2

2
̄(u + νi)

∂2q̄i(u,x)

∂x2

− νi q̄i(u,x) + αi

N∑
l=1

νlq̄l(u,x0),

q̄i(u,0) = 0. (35)

This problem can easily be solved. If the last term on the
right-hand side is assumed to be known, we get N independent
equations. The solution of the ith equation has the form

q̄i(u,x) =
[

1 +
N∑

l=1

νlq̄l(u,x0)

]
αip̄i(u,x), (36)

where

p̄i(u,x) = 1 − exp(−κix)

u + νi

, κi =
√

2(u + νi)

h2̄(u + νi)
. (37)

By multiplying Eq. (36) by νi , setting x = x0, and summing,
we obtain the equation for the expression

∑N
l=1 νlq̄l(u,x0). By

solving this equation and substituting the result into Eq. (36),
we obtain q̄i(u,x0) = αip̄i(u,x0)/[1 − ∑N

l=1 αlνlp̄l(u,x0)].
Thus, the Laplace transform of survival probability (34) can
be expressed as

Q̄(u,x0) =
∑N

i=1 αip̄i(u,x0)

1 − ∑N
i=1 αiνip̄i(u,x0)

. (38)

This expression is consistent with that previously obtained
for the Brownian motion under time-dependent resetting in
Ref. [20] (see [35]).

The mean first-passage time, T (x0), may be obtained from
T (x0) = Q̄(u = 0,x0), which yields

T (x0) =
∑N

i=1
αi

νi
[1 − exp(−νix0)]∑N

i=1 αi exp(−νix0)
, (39)

where νi =
√

2νi

h2̄(νi )
. We note that T (x0) is finite even in the

case of anomalous subdiffusion [where ̄(ν) = const × ν1−γ ],
despite the fact that in this case the mean residence time of
the process without resetting is equal to infinity. This result
is a consequence of boundary condition (4). If we consider
another boundary condition—in particular, if we assume that
the resetting does not affect the “age” (residence time) of
the particle—then T (x0) will be infinite. Such a dependence
of the results on the microscopic details of the process is
characteristic of non-Markovian diffusion with reaction [36].

V. EFFECT OF ANOMALOUS SUBDIFFUSION

We now turn to the effect of anomalous subdiffusion on the
shape of the stationary state. Let the survival probability 
r (t)
have the integral representation


r (t) =
∫ ∞

0
α(ν) exp{−νt}dν (40)

and let kernel α(ν) be the gamma distribution

α(ν) = mn

�(n)
νn−1 exp{−mν}, n > 0,m > 0. (41)

In such a case, the stationary probability distribution, P̂ st
dr ,

takes the form

P̂ st
dr (k) = mn

t0�(n)

∫ ∞

0

νn−1 exp{−mν}
ν + ̄(ν)[cos(hk) − 1]

dν (42)

in the Fourier space [P̂ st
dr (k) = limu→0 u ˆ̄Pdr (u,k)]. The mean

waiting time t0 [t0 = limu→0
1−ψ̄r (u)

u
= 
̄r (u = 0)] is equal to

mn

�(n)

∫ ∞
0 νn−2 exp{−mν}dν.

Distribution (42) exists when t0 < ∞, i.e., when n > 1.
The variance, M2, of the corresponding real-space distribution
(M2 = −[∂kkP̂

st
dr (k)]k=0) is

M2 = h2mn

t0�(n)

∫ ∞

0
̄(ν)νn−3 exp{−mν}dν. (43)

The convergence of the integral on the right is determined by
the behavior of the function ̄(ν)νn−3 in a neighborhood of
ν = 0. In the case of normal diffusion, ̄(ν) is constant and
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the integral converges for n > 2. Hence, we have the infinite
variance for n ∈ (1,2]. In the case of anomalous subdiffusion
[where ̄(ν) = const × ν1−γ with γ ∈ (0,1)], the integral
converges for n > 1 + γ . In this case, the variance is infinite
for n ∈ (1,1 + γ ]. Thus, for n ∈ (1 + γ,2], the variance is
infinite in the case of normal diffusion and finite in the case
of anomalous subdiffusion; i.e., anomalous subdiffusion leads
to a significant narrowing of the stationary distribution. This
example illustrates the effect of diffusion slowing on the shape
of the stationary state.

VI. STATIONARY STATE SPLITTING

In this section, we show that in the model under considera-
tion, a qualitatively new effect can occur: the steady state can
split into regular (continuous) and singular (sharply peaked)
parts. This effect will be observed if the residence time does
not become zero after resetting, as assumed in Sec. II. As
an example, we will consider the case when resetting does not
affect the residence time; i.e., the residence time after resetting
is equal to the residence time before resetting. For simplicity,
we assume that the function λ(σ ) is equal to a constant λ. In
such a case, boundary condition (8) should be replaced by the
following condition:

ˆ̄ξ (u,τ,0,k) = λ	̄(u,τ ) (44)

where

	̄(u,τ ) =
∫ ∞

0

ˆ̄ξ (u,τ,σ,0)dσ. (45)

The solution to Eq. (6) with boundary conditions of Eqs. (7)
and (44) is

ˆ̄ξ (u,τ,σ,k) = [δ(τ − σ ) + λ	̄(u,τ − σ )]

× exp{−(u + λ)σ } 
d (τ )


d (τ − σ )
(46)

for τ � σ , σ > 0,

ˆ̄ξ (u,τ,σ,k) = λ	̄(u,τ ) (47)

for τ � σ , σ = 0, and

ˆ̄ξ (u,τ,σ,k) = cos(hk) ˆ̄F (u,σ − τ,k)

× exp{−(u + λ)τ }
d (τ ) (48)

for τ < σ , τ � 0.
As a result of calculations similar to those performed in

Sec. II, we get the following expression for the propagator:

ˆ̄Pdr (u,k) = u + λ + [1 − cos(hk)][̄(u + λ) − ̄(u)]

u{u + λ + ̄(u + λ)[1 − cos(hk)]} .

(49)

This expression can be represented as the sum of a k-
independent term and a k-depending term. The k-independent
term is expressed as

Q̄(u) = 1

u

(
1 − ̄(u)

̄(u + λ)

)
. (50)

The k-dependent term has the form (in the continuum limit)

ˆ̄R(u,k) = (u + λ)̄(u)

ū(u + λ)

1

u + λ + h2k2

2 ̄(u + λ)
. (51)

Returning to the x variable, we get the singular part of the
propagator,

S̄(u,x) = δ(x)Q̄(u), (52)

and the regular part of the propagator,

R̄(u,x) = ̄(u)

ū(u + λ)

κ(u)

2
exp[−κ(u)|x|], (53)

where

κ(u) =
√

2(u + λ)

h2̄(u + λ)
. (54)

The singular part of the propagator is the probability that the
particle is in the immobile state, i.e., that it did not jump after
arriving at the point x = 0. The regular part of the propagator
is the probability that the particle is in a mobile state. The
realizations of random walks where the particle remains
immobile do not contribute to this part of the propagator.
Splitting of the propagator into the regular and singular parts is
also observed in the model without resetting [37]. In this case,
splitting occurs if at the initial moment the residence time is
different from zero. Over time, the singular part disappears.
In the case considered here, the residence time is zero at the
initial moment. Splitting occurs because the residence time is
different from zero after resetting. Since resetting continues all
the time, the singular part of the propagator never disappears.

In the stationary state, the probability that the particle is
in the immobile state (let us denote it by pim) is equal to
1 − ̄(0)

̄(λ) . For anomalous subdiffusion, ̄(0) is equal to 0, so
pim is equal to 1; i.e., the whole probability is concentrated
at the point x = 0. For transient subdiffusion, the relations
0 < ̄(0) < ̄(λ) are satisfied; therefore, the probability pim

is in the interval (0,1). Let us show that this probability can
take any value in this interval. For this, we consider the case
when the function ψd (τ ) has the form

ψd (τ ) = α1ν1 exp(−ν1τ ) + α2ν2 exp(−ν2τ ) (55)

with

ν1,ν2 > 0, α1 ∈ (0,1), α2 = 1 − α1. (56)

In such a case, the function ̄(u) has the form

̄(u) = 1

ξ

1 + aσu

1 + σu
, (57)

where

ξ = α1

ν1
+ α2

ν2
, σ = 1

ν1ν2ξ
, a = ξ (α1ν1 + α2ν2). (58)

The probability pim is expressed as

pim = (a − 1)σλ

1 + aσλ
. (59)

The parameters ξ , σ , and a can change independently in the
ranges (0,∞), (0,∞), and (1,∞), respectively [26]. Thus, from
formula (59) we see that, when the parameters σ and a are
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varied, the probability pim can take any value between 0 and
1. In addition, for any values of the parameters σ , a, and λ, the
characteristic width of the regular component of the propagator

1

κ(0)
=

√
h2(1 + aσλ)

2ξλ(1 + σλ)
. (60)

will be a macroscopic quantity if the parameter ξ is sufficiently
small.

VII. SUMMARY

In this study, we generalized the model of diffusion under
time-dependent resetting by considering medium disorder. We
used the CTRW model as a model of slowing diffusion.

Starting with the Markov representation of the considered
process, we found a propagator. Then, we represented the
distribution of the waiting time as a sum of exponentials.
With such a representation, we found an equation satisfied
by the propagator. This equation allows us to solve a variety of
boundary value problems for diffusion under time-dependent
resetting in disordered media. As an example, we calculated
the mean first-passage time to a particular position. We also
showed that the medium disorder has a significant impact on
the shape of the stationary state. Our findings can be extended
in different directions. In particular, one can consider the case
when the waiting time distribution of the first diffusive jump
is different from that of the second and subsequent jumps. In
this case, the steady state will remain the same, but the first
passage times can be changed significantly.
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