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We investigate the dynamic behavior of finite-size systems close to a first-order transition (FOT). We develop
a dynamic finite-size scaling (DFSS) theory for the dynamic behavior in the coexistence region where different
phases coexist. This is characterized by an exponentially large time scale related to the tunneling between the two
phases. We show that, when considering time scales of the order of the tunneling time, the dynamic behavior can
be described by a two-state coarse-grained dynamics. This allows us to obtain exact predictions for the dynamical
scaling functions. To test the general DFSS theory at FOTs, we consider the two-dimensional Ising model in
the low-temperature phase, where the external magnetic field drives a FOT, and the 20-state Potts model, which
undergoes a thermal FOT. Numerical results for a purely relaxational dynamics fully confirm the general theory.
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I. INTRODUCTION

Close to a phase transition point finite-size systems exhibit
a universal finite-size scaling (FSS) behavior [1–7], which
characterizes both static and dynamic equilibrium properties.
FSS is also observed in out-of-equilibrium phenomena, for
instance, in the quenching of a random configuration at the
critical point. In general, it is observed when the size L of
the system is larger than any microscopic length scale and
if the observation time t is comparable with the time scale
τ (L) of the slowest critical mode, which generally diverges
in the infinite-volume limit [8]. At continuous transitions
the finite-size behavior is characterized by power laws, with
universal critical exponents which only depend on a few global
features of the system; see, e.g., Refs. [9,10]. A static FSS is
also observed at first-order transitions (FOTs) [11–20]. In this
case one observes power-law behaviors with simple exponents,
which are closely related to the space dimension of the system.

At FOTs, dynamic phenomena play a very important role,
due to the presence of very slow modes with large time
scales. Indeed, in the absence of continuous symmetries, any
local dynamics is very slow, due to an exponentially large
tunneling time between the two phases coexisting at the
transition point: τ (L) ∼ exp(σLd−1) for a system of size Ld ,
where the constant σ is generally related to the interface free
energy. Also the dynamic behavior, both in equilibrium and
out-of-equilibrium conditions, is supposed to show universal
features and, in particular, to exhibit a universal dynamic FSS
(DFSS). A satisfactory understanding of the DFSS properties
of the system close to a FOT is important for experiments on
relatively small systems, when the longest time scale of the
system is of the order of the time scale of the experiment.

In this paper we consider the evolution of a finite-size
system close to a FOT. We focus on the interplay between
the finite size of the system and the distance (in parameter
space) from the FOT point. We show that several large-scale
quantities obey DFSS laws, analogous to those holding at
continuous transitions, the only difference being that the
time scale τ (L) increases exponentially with L. Moreover,
as long as the control parameters (for instance, temperature,

magnetic field, etc.) are such the system is always in the
coexistence region, the observed behavior can be interpreted in
terms of a generic Markov two-state coarse-grained dynamics.
Using such dynamics, we can derive exact predictions for the
DFSS functions. To test the general DFSS theory, we present
numerical analyses of the two-dimensional (2D) Ising model in
the low-temperature phase—here the external magnetic field
drives a FOT—and of the 2D 20-state Potts model, which
undergoes a thermal FOT. Some related issues are investigated
in Refs. [21,22], where the off-equilibrium behavior observed
when some parameter is slowly varied across a FOT (the
analog of the Kibble-Zurek dynamics at a continuous transition
[23,24]) is investigated.

The paper is organized as follows. In Sec. II we consider
the 2D Ising model, define the relevant observables, and the
dynamics that we consider. The general scaling theory is
developed in Sec. III and tested in Sec. IV. In Sec. V we
discuss a different type of finite-size scaling that allows us to
investigate the single-droplet region. In Sec. VI we extend the
general discussion to the case in which the magnetic field does
not vanish only on a subset of lattice points. In Secs. VII, VIII,
IX, and X we extend the discussion to the Potts model. In Sec.
XI we summarize and draw our conclusions. In Appendix A
we report the computation of the average magnetization for an
Ising model in which the magnetic field is nonvanishing only
in a single site. In Appendix B we compute the average energy
for the Potts model at the transition in the presence of a single
strongly ferromagnetic bond.

II. THE ISING CASE: DEFINITIONS

A. The model

We consider the 2D Ising model defined on a square L ×
L lattice in the presence of an external magnetic field. Its
Hamiltonian is

H = −
∑
〈ij〉

sisj − h
∑

i

si , (1)
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where si = −1, 1 and the first sum is over all nearest-neighbor
pairs i,j . The model undergoes a paramagnetic-ferromagnetic
transition for h = 0 and T = Tc, with [25]

βc = 1
2 ln(1 +

√
2), Tc = 1/βc. (2)

For T < Tc and h → 0 the system is spontaneously magne-
tized in the thermodynamic limit. The spontaneous magneti-
zation per site is given by

m0(T ) = [1 − sinh(2β)−4]1/8. (3)

In the following we also need the interface tension κ , which is
also known exactly [26]:

κ = 2 + ln[tanh(β)]/β. (4)

In a finite square box of linear size L, the behavior of the system
depends on the boundary conditions. For boundary conditions
that preserve the Z2 inversion symmetry, for instance, for peri-
odic boundary conditions (PBCs), the magnetization vanishes
for h = 0. For small values of h, static FSS holds in terms of
the scaling variable

r1 = hL2. (5)

This means that an appropriate universal behavior is observed
when taking the limits h → 0, L → ∞ at fixed r1. In
particular, in the FSS limit the magnetization per site m

becomes

m = m0 feq(r1), feq(r1) = tanh(βm0r1). (6)

Note that m �= |m0| for any finite r1, indicating that both free-
energy minima contribute to equilibrium properties, i.e., that
the system is always in the coexistence region.

B. The dynamics

We consider a purely relaxational dynamics at fixed
T < Tc and fixed magnetic field h. We use three different
implementations of the Metropolis algorithm, which, as we
shall see, all show the same dynamical behavior. In most of
the simulations we use the checkerboard update. If (nx,ny),
0 � nx,ny < L, are the coordinates of the lattice sites, we
first update all spins at points such that nx + ny is even (the
order is irrelevant since they do not interact), then all spins at
points such that nx + ny is odd. We also consider a sequential
update, in which we first sequentially update all spins on the
line ny = 0, then those on the line ny = 1, and so on. Finally,
we consider the random update, in which spins are randomly
chosen. All times are measured in sweeps. In the checkerboard
and sequential updates, a sweep consists in a Metropolis update
attempt of all spins. In the random case, it consists in L2

random update attempts. In all cases, we start the dynamics
from a completely ordered configuration with si = −1 for
all i.

The main purpose of the paper is that of verifying the
existence of a DFSS behavior, which extends the static FSS
to the dynamics when h is small and T < Tc. As the relevant
scaling variable is expected to be r1 = hL2, simulations are
performed at fixed T and r1 for different values of L, varying
at the same time the magnetic field as h = r1/L

2. Note that
h → 0 as L increases.

In the evolution we measure the average magnetization
per site

M(t) = 1

L2

∑
i

si , (7)

where t is the time, and the corresponding average renormal-
ized magnetization

mr (t,r1,L) = 1

m0
〈M(t)〉, (8)

where the average is over the different dynamic histories and
we have not reported explicitly the temperature dependence.
Moreover, given a number μ satisfying −1 < μ < 1, we define
the first-passage time tf (μ) as the smallest time such that

M[tf (μ)] = μm0. (9)

We can then consider its average

Tf (μ,r1,L) = 〈tf (μ)〉 (10)

and its probability distribution

P (x,r1,L) =
〈
δ

[
tf (μ)

Tf (μ,r1,L)
− x

]〉
. (11)

III. THE ISING CASE: DYNAMIC SCALING BEHAVIOR IN
THE COEXISTENCE REGION

A. General arguments

Close to the FOT at h = 0 and T < Tc, physical observables
show a scaling behavior in terms of h and of the size of
the system L, which depends in general on the boundary
conditions. For PBCs, the only case we consider in this work,
static observables show FSS once they are expressed in terms
of r1 = hL2. To extend FSS to the dynamic case, it is necessary
to identify the appropriate time scale of the dynamics. As we
consider the large-L limit at fixed r1, the system is always
in the coexistence region. Therefore, the relevant time scale
is the one that controls the large-time dynamic behavior for
h = 0.

For symmetric boundary conditions, in the low-temperature
phase the largest autocorrelation times are associated with
flips of the magnetization. This should occur by means
of the generation of configurations characterized by two
coexisting phases separated by two approximately planar
interfaces. Their probability is of the order of exp(−σL),
where

σ = 2βκ, (12)

and κ is the planar interface tension. The factor of two is
due to the presence of two interfaces, which are necessarily
present because of the PBCs. The time needed to observe
a reversal of the magnetization is proportional to exp(σL)
with power corrections [27,28]. Therefore, we define a time
scale

τ (L) = Lα exp(σL), (13)

where α is an appropriate exponent.
Note that Eq. (13) assumes that the relevant mechanism for

the generation of the opposite phase is the creation of striplike
domains parallel to the lattice axes and not the creation of
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spherical droplets, as it has already been checked for h = 0,
see Ref. [29]. This reflects the fact that spherical droplets are
unstable. Indeed, at h 	 0 (in the FSS limit h scales as L−2)
they tend to shrink due to their curvature, taking a time t ∼ R2,
where R is their size [30]. Equivalently, one can note that a
critical droplet has a size Rc of the order of [31] a/h, so
that Rc/L = aL/r1. Therefore, at fixed r1 we find Rc 
 L,
confirming the irrelevance of the droplets in the limit we are
considering here.

Once we have identified the correct time scale, we can
introduce the scaling variables that parametrize the dynamics.
Beside the static quantity r1, we define

r2 = t/τ (L). (14)

Then we expect

mr (t,r1,L) ≈ fm(r1,r2),

Tf (μ,r1,L) ≈ τ (L)fT (r1,μ),

P (x,r1,L) ≈ fP (r1,x). (15)

B. Coarse-grained flip dynamics

The above scaling relations define several scaling functions.
We now show that they can be exactly predicted. Let us
consider the dynamics of a single system. At t = 0 the
magnetization M(t) is equal to −1. As t increases, M(t)
rapidly changes and, after a few iterations, we observe that
M(t) ≈ −m0, with fluctuations that decrease as L increases.
Then, suddenly, the magnetization changes sign. In a very
short time interval �t , with �t � τ (L), M(t) increases and
M(t) ≈ +m0 at the end. Then, the magnetization remains
constant for a long time interval and then, again, in a
very short time interval �t , we observe the reversal of the
magnetization, obtaining M(t) ≈ −m0. This flipping process
continues as t increases, guaranteeing that the time average of
m(t) converges to the value given in Eq. (6) as the run length
goes to ∞.

Since on time scales of the order of τ (L) the reversal of the
sign of the magnetization is essentially instantaneous, we can
consider a simpler coarse-grained dynamics. First, we assume
that M(t) takes only two values, ±m0. Second, as we expect
the dynamics restricted within each free-energy minimum to
be rapidly mixing, we can assume that the coarse-grained
dynamics is Markovian. Under these conditions, the dynamics
is completely parametrized by the rates I+ and I− defined
by

P [M(t) = −m0 → M(t + dt) = +m0] = I+dt,
(16)

P [M(t) = +m0 → M(t + dt) = −m0] = I−dt,

where P (·) is the probability of the considered transition.
Consider now Ntot different dynamic histories and let N+(t)

be the number of systems for which M(t) = +m0 at time t .
Then, we can write

dN+(t) = −N+(t)I−dt + [Ntot − N+(t)]I+dt. (17)

If we define n(t) = N+(t)/Ntot we obtain the equation

dn

dt
= −nI− + (1 − n)I+. (18)

Since n(t = 0) = 0, the solution is

n(t) = I+
λ

(1 − e−λt ), λ = I+ + I−. (19)

Then, since mr (t) = 2 n(t) − 1, we obtain

mr (t) = I+ − I−
λ

− 2I+
λ

e−λt . (20)

For large t we must recover the equilibrium value (6), which
implies

I−
I+

= e−2βm0r1 . (21)

Finally, the rate I+ can be related to the first-passage
time. Indeed, first note that, if the dynamics consists in
essentially instantaneous flips, the quantity Tf (μ,r1,L) is
expected to become independent of μ in the scaling limit, i.e.,
we can simply write Tf (μ,r1,L) ≈ τf (r1,L). Then, since the
probability that the first flip of the magnetization from −m0 to
+m0 occurs in the time interval [t,t + dt] is exp(−I+t)I+dt ,
in the scaling limit we have

1

I+
= τf (r1,L) (22)

and

P (x,r1,L) = e−x. (23)

Relations (21) and (22) allow us to rewrite mr (t) as

mr (t) ≈ feq(r1) − [1 + feq(r1)]e−t/Ti ,
(24)

Ti = τf (r1,L)

1 + e−2βm0r1
,

where feq(r1) is the static FSS function (6). In the scaling limit
we expect that

τf (r1,L) = τ (L)gτ (r1) (25)

[see Eq. (15)], and therefore mr (t) becomes a universal
function of r1 and r2.

Note that all predictions are independent of the sign of h

and also hold when h < 0, i.e., when the magnetic field does
not favor the flip of the magnetization. The symmetry of the
model under h → −h implies I+(−h) = I−(h), and therefore
the relation

τf (r1,L)

τf (−r1,L)
= gτ (r1)

gτ (−r1)
= e−2βm0r1 . (26)

We finally mention that field-theoretical renormalization-
group studies of the purely relaxational dynamics in the critical
region below the critical point, thus in the limit T → T −

c , are
reported in Refs. [32,33].

IV. THE ISING CASE: MONTE CARLO RESULTS IN THE
COEXISTENCE REGION

To verify the previous predictions, we perform Monte Carlo
simulations for T = 0.9Tc and several values of r1, ranging
from −1 to 50. All data reported in this section are obtained
by using the checkerboard update, except in the last subsection,
where we compare the results for three different updates.
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FIG. 1. Ratio RT (μ,r1,L) for r1 = −1,10,50 and several values
of L, as a function of μ. Here T = 0.9Tc.

A. Testing the coarse-grained flip dynamics

As a first test, we verify that Tf (μ,r1,L) becomes inde-
pendent of μ for L → ∞, cf. Eq. (22). We consider the ratio

RT (μ,r1,L) = Tf (μ,r1,L)

Tf (0.9,r1,L)
. (27)

Such a quantity is plotted in Fig. 1 for r1 = −1,10,50. There
are clearly two regimes. For μ negative and close to −1, the
ratio is small. For these values of μ, Tf (μ,r1,L) simply gives

the typical time scale of the fluctuations of the magnetization
within the free-energy minimum with mr ≈ −1, which is the
stable one for r1 = −1, and the metastable one for the other two
values of r1. Then Tf (μ,r1,L) becomes essentially constant,
which indicates that these values of the magnetization are only
reached in the very rapid process in which the magnetization
changes sign. As L increases, RT (μ,r1,L) starts to be 1 at
decreasing values of μ, a consequence of the decrease of the
fluctuations of the average magnetization with the volume. For
L → ∞ it is then natural to expect RT (μ,r1,L) = 1 for any
μ > −1. It is interesting to observe that the size corrections
increase significantly with r1. For r1 = −1, the ratio at μ = 0
is essentially 1 for L � 24, while one should take L � 40 for
r1 = 50.

The numerical data provide also information on the na-
ture of the size corrections. For this purpose we fit [1 −
RT (μ,r1,L)] at fixed μ and r1 to aL−p. If we use the data for
r1 = 10 (24 � L � 40) we obtain p = 5.3(2), 5.9(5), 6.9(1.0),
7.3(1.3) for μ = −0.3, − 0.2, − 0.1,0, respectively. Similarly
large powers are obtained if one considers other values of
r1. The very large values obtained for p make a power
behavior rather unlikely. We have also tried to parametrize
the scaling corrections as ae−bL. For r1 = 10 we obtain
b = 0.25(5), 0.25(3), 0.22(2), 0.20(1), for the same values of
μ as before. The χ2 is slightly better then that obtained in the
power-law fit, which makes the exponential convergence more
plausible than the power-law behavior. It is interesting to note
that the prefactor b appears to be independent of r1, within
errors (say, within 10%–15%). For instance, for μ = −0.2 we
obtain b = 0.233(5) for r1 = −1 (L � 12) and b = 0.20(2)
for r1 = 50 (L � 40).

As a second test of the general theory, we verify the relation
(26) by comparing the results for r1 = 1 and r1 = −1. We
consider the quantity

R2(L) = Tf (0.9,r1,L)

Tf (0.9, − r1,L)
e2βm0r1 (28)

for r1 = 1. We obtain R2(L) = 0.998(4), 0.996(4), 1.008(5),
1.016(8), 0.987(14), for L = 12,16,20,24,28, respectively.
Therefore, the data confirm the general relation (28).

We also check the predictions for the distribution function
P (x,r1,L). Results for r1 = 10 are reported in Fig. 2 together
with the theoretical prediction. Data follow the expected
exponential behavior quite precisely, confirming the two-level
nature of the dynamics.

As a last test of the general theory, we verify prediction
(24) for the renormalized magnetization. As we have verified
the independence of Tf (μ,r1,L) on μ, we take Tf (0.9,r1,L) as
time scale. In Fig. 3 we report results for r1 = −1,1,10,50 and
several values of L. We observe an excellent scaling behavior:
data corresponding to different box sizes fall on top of each
other quite precisely. In Fig. 3 we also report the prediction (24)
(thick lines). It falls on top of the numerical data, confirming
the general coarse-grained picture of the dynamics.

B. The time scale of the dynamics

In Sec. III A we have performed a careful test of the
dynamics using the first-passage time as the time scale. This
allows us to compare theoretical predictions and numerical
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L=28
L=32
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FIG. 2. Distribution function of the first passage time as a function
of x = tf (0.9)/Tf (0.9,r1,L) for r1 = 10, T = 0.9Tc, and several
values of L. The thick blue line corresponds to e−x .

data without the need of tuning any parameter. Here we wish
to check the size dependence of time scale, verifying Eq. (13).
Using Eqs. (22) and (25), we fit the data of Tf (μ = 0.9,r1,L)

for r1 = 4.9 and r1 = 10 to the ansatz

log Tf (μ = 0.9,r1,L) = aL + α ln L + b. (29)

If Eq. (13) holds, we should find a = σ , with σ ≈ 0.379028
for T = 0.9Tc, the temperature value of our runs. The results
of the fits are reported in Table I (first two rows for each
value of r1). We observe that the results, both for a are
and α, are significantly size dependent, so it is difficult to
quote a reliable estimate. In any case the estimates of a

apparently approach σ as smaller L results are discarded.
Given also the somewhat large statistical error, results appear
to be substantially consistent with the prediction a = σ . Then,
assuming a = σ , we can obtain a more precise estimate of α,
by fitting the data to

log[Tf (μ,r1,L)e−σL] = α ln L + b. (30)

The estimates of α are reported in Table I. Again, we observe
a trend with the size L of the systems: as L increases also α

increases. Clearly, there are significant corrections to scaling,
as also indicated by the large values of the χ2/DOF (DOF is
the number of the degrees of freedom of the fit). It is difficult
to quote a final result as data show an increasing trend with the
minimal size used in the fit. Conservatively, we quote α ≈ 2.
Our result is consistent with the result of Ref. [29] that studied

0 2 4 6
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FIG. 3. Renormalized magnetization mr (t) versus t/Tf (0.9,r1,L). (a) r1 = −1; (b) r1 = 1; (c) r1 = 10; (d) r1 = 50. The thick line going
through the points is the theoretical prediction (24). In all cases T = 0.9Tc.
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TABLE I. Results of fits to Eq. (29) and to Eq. (30) (here we
set a = σ = 0.379028 . . .) for two values of r1. Here μ = 0.9 and
T = 0.9Tc. “Range” gives the interval of sizes L considered in the
fit, χ 2 is the sum of the residuals and DOF is the number of degrees
of freedom of the fit.

r1 Range χ 2/DOF a α

4.9 [20,36] 3.5/2 0.411(7) 0.1(2)
[24,36] 3.4/1 0.407(14) 1.0(4)
[20,36] 30/3 σ 1.61(1)
[24,36] 7.3/2 σ 1.70(2)
[28,36] 5.8/1 σ 1.74(4)

10 [24,40] 5.2/2 0.428(6) 0.8(2)
[28,40] 0.1/1 0.401(13) 0.9(4)
[24,40] 82/3 σ 1.56(1)
[28,40] 2.8/2 σ 1.73(2)
[32,40] 0.1/1 σ 1.79(4)

the heat-bath dynamics at h = 0, finding α ≈ 2.14 on smaller
lattices L � 16.

C. Different dynamics

Up to now we have only reported results for the checker-
board dynamics. We wish now to discuss the dynamic
behavior observed when using the sequential and the random
dynamics. For this purpose, we have performed runs with
these two different update types at T = 0.9Tc, r1 = 10, and
L = 24,28,32. As before, we analyze the time dependence of
the renormalized magnetization. For both dynamics, we verify
Eq. (24) for the renormalized magnetization, confirming the
universality of the spin-flip dynamics. We can then compare
the efficiency of the different updating procedures, measuring
the ratio

Sdyn(r1,L) = Tf,dyn(0.9,r1,L)

Tf,checker(0.9,r1,L)
, (31)

where “dyn” refers to the sequential and random up-
dates. For the first type of update we obtain Sseq(r1,L) =
0.983(5),0.995(5),0.992(6), for L = 24,28,32, respectively,
and r1 = 10. The sequential update is essentially equivalent to
the checkerboard one. For the random update we obtain instead
Srandom(r1,L) = 4.41(2),4.48(3),4.53(5), for L = 24,28,32,
respectively. The random update is clearly slower, but the
difference is only a factor of 4.5. Note that the time scale of
the different updates differs only by a multiplicative constant.
This is at variance with what happens outside the coexistence
region, in which droplets dominate [31] (see also Sec. V).

V. THE SINGLE-DROPLET REGION

In the previous sections we have considered the dynamic
FSS in the coexistence region. In that case, one is considering
the effective equilibrium dynamics that consists in flips be-
tween the two essentially degenerate free-energy minima. The
relevant phenomenon is the generation of striplike domains,
while droplet generation does not play any role. In this section
we consider instead the intermediate regime in which the phase
change can occur either through striplike domains or by means
of the growth of a droplet. Since the relevant time scales are

0 1 2 3 4 5 6
t / Tf

−1

0

1

mr

s=0.3,    L=40
s=0.6,    L=100
s=1.28,  L=200
s=2.56,  L=400
theory

FIG. 4. Renormalized magnetization mr (t) versus t/Tf (0.9,s,L).
We report data for different values of s = hL; for each of them the
lattice size L is chosen so that data are in the asymptotic scaling
regime. The thick line going through the points is the theoretical
prediction (33). In all cases T = 0.9Tc.

proportional to eσL and ea/h, respectively, this regime can be
probed by considering the scaling limit h → 0, L → ∞ at
fixed

s = hL. (32)

In this limit r1 → ∞ and therefore, for h > 0, in equilibrium
we have m ≈ +m0: if we start from configurations with
m = −1, we only observe a single flip to the phase with
positive magnetization. This off-equilibrium dynamics can be
described as discussed in Sec. III B, taking simply I− = 0. All
expressions simplify and we obtain, e.g.,

mr (t) = 1 − 2 exp[−t/τf (s,L)] (33)

for any value of s. While scaling functions are supposed to
be independent of s, any time scale should have a nontrivial s

dependence. For instance, we expect

Tf (μ,s,L) ∼ Lα exp[A(s)L]. (34)

For the values of s in which the magnetization flip occurs
through the generation of striplike domains, we should have
A(s) = σ , while in the regime in which droplets dominate we
should find A(s) ∼ 1/s. Moreover, also α should depend on
the regime one is considering. In particular, Ref. ([31]) predicts
α ≈ 0 in the single-droplet region for the sequential update and
α = 1 for the random update [34]. As before, we expect the
results to be independent of μ in the scaling limit.

To verify the predicted behavior, we have performed
simulations for s = 0.3,0.6,1.28,2.56 at T = 0.9Tc. For each
value of s we consider a few values of L to verify that the size
of the system is large enough to allow us to observe the scaling
asymptotic regime. Results for mr (t) are reported in Fig. 4. As
expected, all data fall on top of each other and are consistent
with the theoretical prediction (33).

We have also studied the behavior of the first-passage time,
which becomes μ independent as L increases. As before, we
use the data at μ = 0.9 to analyze the L and s dependence
of the time scale. Our data are not precise enough and not
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sufficiently numerous to allow us to estimate the exponent α.
For this reason we have performed two fits, considering

ln[Tf (0.9,s,L)L−α] = a + A(s)L, (35)

fixing α = 0 (the droplet-region prediction if we assume
the equivalence of the sequential and of the checkerboard
update) and 2 (coexistence-region prediction). We obtain
A(s) = 0.238,0.114,0.053,0.025 for α = 0 and s = 0.3, 0.6,
1.28, and 2.56, respectively. For the same values of s and for
α = 2 we have A(s) = 0.161,0.091,0.042,0.019. Statistical
errors are significantly smaller than 10−3. Note that all results
satisfy the approximate scaling A(s) ∼ 1/s, indicating that for
these values of s droplet formation is the relevant mechanism.
It is also interesting to note that the χ2 of the fit is significantly
smaller for α = 0 than for α = 2, in agreement with the general
results of Ref. [31] on the exponent α.

VI. THE ISING MODEL WITH A MAGNETIC FIELD ON A
SMALL LATTICE DOMAIN

It is also interesting to study the dynamics when one
considers a magnetic field that is present only on a small
subset of sites. Specifically, we consider again Hamiltonian
(1), replacing the magnetic term h

∑
i si with

∑
i hisi . We

consider here two cases: (1) the magnetic field is present only
on a single site, that is hi is always zero except at a single
lattice point and (2) hi is nonvanishing only on a lattice line.

A. Magnetic field on a site

In the low-temperature phase the addition of a magnetic
field on a single lattice point is enough to break the Z2 invari-
ance of the model, thereby generating a finite magnetization.
A simple calculation gives (see Appendix A)

mr = f̂eq(h) = m0 tanh βh. (36)

Note that for any value of h, the absolute value of |mr | is
always less than 1, so that the system is always in the crossover
region. The arguments of Sec. III B should then apply for any h.
Taking into account the different expression for the equilibrium
magnetization, we obtain

mr (t) = f̂eq(h) − [1 + f̂eq(h)]e−t/Ts ,

Ts = 1
2τf (h,L)[1 + f̂eq(h)]. (37)

In Fig. 5 we show the results for mr (t) for h = 1,2,∞. Scaling
holds and results are perfectly consistent with Eq. (37). We
have also verified that Tf (μ,h,L) is independent of μ and
scales as in the case of a uniform magnetic field at fixed r1.
We consider the ratio

R(h,L) = Tf (0.9,h,L)

Tf (0.9,r1 = 1,L)
, (38)

where Tf (0.9,r1 = 1,L) is the first-passage time for a
uniform magnetic field with r1 = hL2 = 1. We obtain
for h = ∞ R(h,L) = 0.175(1),0.175(1),0.174(1),0.176(4)
for L = 16,20,24,28, respectively. For h = 1 we obtain
analogously R(h,L) = 0.929(4),0.911(4),0.930(8), for L =
16,20,24. The ratio is independent of L, indicating that the
first-passage time scales identically in the two cases.

0 1 2 3 4 5 6
t / Tf

−1

0

1

mr

L=28,   h=infinity
L=24,   h=2
L=24,   h=1
h=infinity,   theory
h=2,      theory
h=1,      theory

FIG. 5. Renormalized magnetization mr (t) versus
t/Tf (0.9,h,L). We report data for different values of the
magnetic field h on a single site; for each of them the lattice size L

is chosen so that data are in the asymptotic scaling regime. The thick
lines going through the points are the theoretical prediction (37). In
all cases T = 0.9Tc.

B. Magnetic field on a line

We now consider the case in which the magnetic field is
nonvanishing only on a lattice line, for instance, on all lattice
points (x,y) such that y = 1. It turns out that the relevant
scaling variable is

u1 = hL. (39)

As L increases, the estimates of mr (t) at fixed u1 fall onto a
single scaling curve. Moreover, we verify that the equilibrium
value of the magnetization is still given by Eq. (6) with u1

replacing r1. The general discussion of Sec. III B applies also
to this case, and indeed, the results for mr (t) are consistent
with Eq. (24) by simply replacing r1 with u1; see Fig. 6.

0 1 2 3 4 5 6
t / Tf

−1

0

1

mr

L=24,   u1=10
L=32,   u1=10
u1=10,  theory
L=20,   u1=1
L=24,   u1=1
u1=1,   theory

FIG. 6. Renormalized magnetization mr (t) versus
t/Tf (0.9,u1,L). We report data for different values of L and
of u1 = hL, where h is nonvanishing only on a lattice line. The thick
lines going through the points are the theoretical predictions. In all
cases T = 0.9Tc.
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We have also investigated the L dependence of the first-
passage time, considering the ratio

R(u1,L) = Tf (0.9,u1,L)

Tf (0.9,r1,L)
, (40)

between the first passage time for the case of a magnetic field
on a line and that for a uniform field. We always take u1 = r1,
so that the compared systems have the same equilibrium value
of the magnetization. For u1 = r1 = 10, we find R(u1,L) =
0.140(1),0.125(1),0.113(1) for L = 24,28,32, respectively,
while for u1 = r1 = 1 we have R(u1,L) = 0.975(6),0.960(8)
for L = 20,24. The ratio apparently decreases with L. A
fit of the data with u1 = r1 = 10 gives R(u1,L) ∼ L−β ,
β = 0.75(10). This indicates that, at fixed u1 = r1, i.e., for the
same equilibrium value of the magnetization, the dynamics
is faster when h is nonvanishing only on one line than for a
uniform magnetic field.

VII. THE POTTS CASE: DEFINITIONS

To test whether the observed behavior in the Ising case
is generic, i.e., it is typical of any FOT, we study a second
model that shows a thermal, i.e., temperature-driven, FOT. We
consider the 2D q-state Potts model on a square lattice. Its
Hamiltonian reads

H = −
∑
〈x y〉

δ(sx,s y), (41)

where the sum is over the nearest-neighbor sites of a square
lattice, sx (color) are integer variables 1 � sx � q, δ(a,b) = 1
if a = b and zero otherwise. It undergoes a phase transition
[35,36] at

βc = ln(1 + √
q), Tc = 1/βc, (42)

between disordered and ordered phases. The transition is of
first order for q > 4. We consider L × L square lattices with
PBCs, which preserve the q-permutation symmetry. In infinite
volume the energy density E = 〈H 〉/L2 is discontinuous at Tc,
with different E±

c ≡ E(T ±
c ). We define a renormalized energy

density

Er ≡ �−1
e (E − E−

c ), �e ≡ E+
c − E−

c , (43)

which satisfies Er = 0,1 for T → T −
c and T → T +

c , respec-
tively.

Close to the transition, the system shows FSS in terms of
the scaling variable

r1 = Ldδ, δ ≡ β/βc − 1. (44)

In this limit the finite-size energy density scales as [21]

Er (T ,L) ≈ Eeq(r1) = (1 + q eX)−1 (45)

with X = �eβcr1.
In the following we focus on the case q = 20, but any other

values of q > 4 is expected to show analogous behaviors at
the FOT. For q = 20 we have [35] E(T +

c ) = −0.626530 . . .,
E(T −

c ) = −1.820584 . . . . We will also be interested in the
interface tension, which takes the value [37–39] βcκ =
0.185494 . . . for q = 20.

We consider a heat-bath dynamics at fixed T < Tc. We
use the checkerboard update and we start the dynamics

from a fully disordered configuration. In the evolution we
measure the energy H (t), which allows us to define the
average renormalized energy, using Eq. (43) and defining
E = 〈H 〉/L2. As we use PBCs the magnetization

Mk = 1

L2
〈
∑

x

μk(x)〉, μk(x) ≡ qδ(sx,k) − 1

q − 1
, (46)

vanishes for any value of T . To investigate the magnetic
properties we consider

IG = L−2
q∑

k=1

∑
x, y

〈μk(x)μk( y)〉. (47)

In the infinite-volume limit and for T < Tc, we have

IG = qL2m2
0

q − 1
, (48)

where m0 is the spontaneous magnetization, which can be
defined by introducing an infinitesimal breaking of the q state
symmetry. For q = 20, we have [35,36] m0 = 0.941175 . . ..

VIII. THE POTTS CASE: SCALING ARGUMENTS

The scaling arguments presented for the Ising case extend
without changes to the Potts transition. As before, we define a
time scale

τ (L) = Lα exp(σL) (49)

so that, in the FSS limit, the dynamics in a finite volume can be
parametrized by using r1 and r2 = t/τ (L) as scaling variables.

Also in the Potts case we can perform the coarse graining
of the dynamics. Indeed, we can assume that the system starts
in the high-T phase, and then it suddenly jumps in any of
the equivalent q magnetized states. Therefore, Eq. (18) holds,
provided we identify n(t) as the fraction of magnetized systems
at time t . Since Er (t) = 1 − n(t), we obtain

Er (t) = I−
λ

+ I+
λ

e−λt , (50)

with λ = I+ + I−. For t → ∞ we should recover Eq. (45),
which implies

I−
I+

= 1

q
e−βc�er1 . (51)

It follows

Er (t) = Eeq(r1) + q

q + e−βc�er1
e−t/Tp , (52)

Tp = q

I+(q + e−βc�er1 )
, (53)

where Eeq(r1) is the static FSS function (45). The quantity IG

can be predicted as well. In the coarse-grained dynamics the
combination

IGr (t) = q − 1

qm2
0L

2
IG(t) (54)

is equivalent to 1 − Er , so that

IGr = q

q + e−βc�er1

(
1 − e−t/Tp

)
. (55)
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r1 = 0.0625(a)

0 1 2 3 4 5
t / Tp

0.0
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1.0

Er

L=12
L=16
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L=24
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r1 = 0.25(b)

0 1 2 3 4 5
t / Tp
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L=20
L=24
L=28
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FIG. 7. Estimates of Er versus t/Tp for r1 = 0.065 (a), r1 = 0.25 (b), r1 = 1 (c), r1 = 4 (d), for several values of L. The thick line in each
panel is the theoretical prediction (52).

IX. THE POTTS CASE: MONTE CARLO RESULTS

To test the general theory, we perform Monte Carlo
simulations for four different values of r1, r1 = 1/16,1/4,1,4,
respectively, varying the system size L from 12 to 40. As a
first test, we verify Eq. (52), considering the quantity

Ẽ(t) = 1

q
e−βc�er1 [(1 + qeβc�er1 )Er − 1]. (56)

According to Eq. (52), it should behave as a pure exponential,
i.e., Ẽ(t) = e−t/Tp , in the scaling limit. Data accurately satisfy
this behavior.

We then fit the data to log Ẽ = a t , obtaining estimates of
Tp. In Fig. 7 we report the data of Er (t) as a function of
t/Tp and compare them with the theoretical prediction (52).
We observe perfect scaling: data fall on top of each other for
different values of L and are fully consistent with Eq. (52).
Very good scaling is also observed for IG(t). Data behave in
full agreement with Eq. (55).

Finally, we verify the size dependence of the scale,
performing the same fits as we did in the Ising case. We
consider the time scale Tp and first perform fits to Eq. (29).
Results are reported in Table II. For all values of r1 the
constant a is consistent with σ = 2βκ ≈ 0.371, confirming
the theoretical prediction (49). To estimate α, we perform

fits to Eq. (30), using the theoretical prediction for σ . For
r1 ≈ 0.25 and 1, results give α ≈ 1.5. Results for r1 = 4
are also consistent: the estimates of α are lower, but show
a significant increasing trend.

TABLE II. Results of fits of Tp to Eq. (29) and to Eq. (30) (here
we set a = σ = 0.370988 . . .) for different values of r1. “Range”
gives the interval of sizes L considered in the fit.

r1 Range a α

0.25 [12,24] 0.38(2) 1.4(3)
[12,24] σ 1.54(2)

1.0 [16,32] 0.37(3) 1.5(6)
[20,32] 0.32(6) 2.7(1.4)
[16,32] σ 1.56(4)
[20,32] σ 1.58(6)
[24,32] σ 1.34(13)

4.0 [16,40] 0.41(2) 0.0(5)
[20,40] 0.39(3) 0.6(8)
[16,40] σ 0.96(9)
[20,40] σ 1.07(9)
[24,40] σ 1.16(14)
[28,40] σ 1.26(18)
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0 1 2 3 4 5 6
t / Tf

0.0

0.5

1.0

Er

L=16
theory

FIG. 8. Renormalized energy Er (t) versus t/Tf (0.1,L), where
Tf (0.1,L) is the first-passage time corresponding to Er = 0.1.
Simulation with β ′ = 2β and L = 16. The thick line going through
the points is the theoretical prediction.

X. POTTS MODEL: SCALING IN THE PRESENCE OF A
SINGLE STRONGLY FERROMAGNETIC BOND

The analysis we have presented in Sec. VI for the Ising
model with a magnetic field different from zero only on a
subset of lattice points can be extended to the Potts model.
For instance, one can consider a Hamiltonian with a single
strongly ferromagnetic bond, i.e., such that

βH = −β
∑
〈x y〉

δ(sx,s y) − (β ′ − β)δ(sa,sb), (57)

where sa and sb are the spins at the vertices of a lattice bond
〈ab〉. Here we set β = βc as we wish to investigate the behavior
at the thermal FOT and consider β ′ �= βc. The equilibrium
value of the energy in the FSS limit can be computed exactly,
see Appendix B. Note that 0 < Er < 1 for any value of β ′
(even for a negative value), indicating that the system is
always in the coexistence region. We can therefore apply
the arguments of Sec. VIII. In Fig. 8 we report numerical
data for β ′ = 2βc. Results scale as predicted by Eq. (50),
provided we fix the ratio I−/I+ using the equilibrium value
(B8).

XI. CONCLUSIONS

We have investigated the dynamic behavior of finite-size
systems close to a FOT. Static quantities obey general FSS
laws when expressed in terms of the scaling variable r1 = δLd ,
where d is the space dimension and δ specifies the distance
from the transition point. At magnetic transitions we set δ = h,
where h is the magnetic field, while at thermal transitions one
can take δ = β/βc − 1. If one considers the limit δ → 0 and
L → ∞ at fixed r1, one is always probing the coexistence
region. Therefore, for periodic boundary conditions, or more
generally for boundary conditions that do not favor a specific
phase, the system oscillates among the different coexisting
phases as the corresponding free energy barrier is finite.
The relevant time scale τ (L) is the tunneling time between
the coexisting phases, which scales as τ (L) ∼ Lα exp(σL),

where σ is proportional to the interface tension, and α is an
appropriate exponent.

We develop a DFSS theory for the dynamic behavior in this
regime, characterized by the coexistence of the two phases.
If we consider time scales of the order of τ (L), the dynamic
behavior can be described by using a two-state coarse-grained
(Poisson) dynamics. This allows us to obtain exact predictions
for the dynamical scaling functions.

The arguments that we present are general and therefore
they should apply to any FOT with a discrete order parameter.
Systems with continuous order parameters are expected to
behave differently, because of the presence of Goldstone
modes (see, e.g., Ref. [40], for a discussion).

We test these ideas in the 2D Ising and q-state Potts
models. In the first case, we consider the magnetic FOTs
that occur in the low-temperature phase for h = 0. We
consider a purely relaxational dynamics at fixed h and
T , starting from a completely ordered configuration. We
investigate the behavior for a uniform magnetic field and
for a magnetic field that vanishes everywhere except on
a lattice point or a lattice line. In the Potts case we set
q = 20 and we consider the thermal FOT that is observed
by varying the temperature. In particular, we consider the
relaxational evolution using a heat-bath dynamics at fixed T <

Tc, starting from a metastable disordered configuration. The
numerical analyses for both models fully confirm the general
picture.

Our study should be of particular relevance for experiments
of moderately small systems (such as those we have considered
for our tests), when the longest time scale of the system is of
the order of the time scale of the experiment, as it may be the
case in several physical contexts.

APPENDIX A: ISING MODEL: MAGNETIZATION IN THE
PRESENCE OF A MAGNETIC FIELD ON A SINGLE SITE

We compute here the magnetization for a finite system in
which the magnetic field is non vanishing only at a single point
(for definiteness we assume a finite h in the origin). If H0 is
the Hamiltonian in the absence of a magnetic field and 〈·〉0 is
the average with respect to H0, we rewrite

〈A〉h = 〈Aeβhs0〉0

〈eβhs0〉0
, (A1)

where A is an arbitrary function of the spins. Then, we use the
identity

eβhs0 = cosh βh + s0 sinh βh, (A2)

which follows from the fact that s0 takes only the values ±1.
In the absence of a magnetic field 〈s0〉0 vanishes and therefore
we obtain

〈A〉h = 〈A〉0 + 〈As0〉0 tanh βh, (A3)

for any operator A. For the magnetization it follows

m(h) =
〈
s0

(
1

V

∑
i

si

)〉
0

tanh βh. (A4)
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Using translation invariance we can rewrite

m(h) =
〈(

1

V

∑
i

si

)2〉
0

tanh βh. (A5)

In the absence of a magnetic field the average value is equal
to m2

0 and therefore

m(h) = m2
0 tanh βh. (A6)

APPENDIX B: POTTS MODEL: ENERGY IN THE
PRESENCE OF AN ADDITIONAL SINGLE-SITE BOND

ENERGY TERM

In analogy with the Ising case we now compute the energy
for a Potts model in which there is an additional energy term
associated with a single bond. More precisely, if H0 is the Potts
Hamiltonian (41), we consider

H = H0 − aδ(sa,sb), (B1)

where sa and sb are the colors at the vertices of an arbitrary
lattice bond. If �β = βa, and 〈·〉 and 〈·〉0 are the averages with
respect to Hamiltonians H and H0, respectively, we have

〈H0〉 = 〈H0e
�βδ(sa ,sb)〉0

〈e�βδ(sa ,sb)〉0
. (B2)

Now, since δ(sa,sb) takes only two values, 0 and 1, we can
write

e�βδ(sa ,sb) = 1 + 2f δ(sa,sb) f = 1
2 (e�β − 1). (B3)

Using also the translational invariance of the model with
Hamiltonian H0 (we assume periodic boundary conditions),
it follows

〈H0〉 = 〈H0〉0 − f
〈
H 2

0

〉
0/L

2

1 − f 〈H0〉0/L2
. (B4)

If E = 〈H0〉/L2 is the energy density for a = 0, we use the
identity 〈

H 2
0

〉
0 = L4E2 − L2 ∂E

∂β
(B5)

and Eq. (45) to derive at the critical point

1

L4

〈
H 2

0

〉
0 = (E+

c )2 + q(E−
c )2

1 + q
. (B6)

If we define

Er = �−1
e (〈H0〉/L2 − E−

c ), (B7)

we obtain

Er = 1 − E+
c f

1 − E+
c f + q(1 − E−

c f )
. (B8)

Note that f � −1/2 (f = −1/2 is obtained for a → −∞)
and E±

c > −2, so that Er satisfies the strict inequality 0 <

Er < 1.
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