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Dependence of the configurational entropy on amorphous structures of a hard-sphere fluid
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The free energy of a hard-sphere fluid for which the average energy is trivial signifies how its entropy changes
with packing. The packing ηf at which the free energy of the crystalline state becomes lower than that of
the disordered fluid state marks the freezing point. For packing fractions η > ηf of the hard-sphere fluid, we use
the modified weighted density functional approximation to identify metastable free energy minima intermediate
between uniform fluid and crystalline states. The distribution of the sharply localized density profiles, i.e., the
inhomogeneous density field ρ(x) characterizing the metastable state is primarily described by a pair function
gs(η/η0). η0 is a structural parameter such that for η = η0 the pair function is identical to that for the Bernal
random structure. The configurational entropy Sc of the metastable hard-sphere fluid is calculated by subtracting
the corresponding vibrational entropy from the total entropy. The extrapolated Sc vanishes as η→ηK and ηK is
in agreement with other works. The dependence of ηK on the structural parameter η0 is obtained.
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I. INTRODUCTION

The pioneering computer simulation studies by Alder and
Wainwright [1,2] and others [3,4] showed that a system
of purely repulsive hard spheres with periodic boundary
conditions upon “cooling”[5] can exist in both a disordered
fluid state and an ordered crystalline state. For the hard-sphere
system the temperature is trivially its average kinetic energy,
and the relevant thermodynamic variable is the density or,
equivalently, the packing fraction η [6]. Upon increasing the
packing fraction η of the disordered fluid, a phase transition
occurs at η = ηf = 0.494 to a crystalline state in which the
average position of the hard spheres form a face-centered
cubic (fcc) lattice [7]. For η > ηf , the supercooled hard-sphere
fluid crystallizes [8], with the process getting faster as the
“undercooling” increases [9]. Conversely, upon lowering the
packing fraction, the crystal melts to a fluid state at ηm =
0.545. These states are linked by first-order phase transition,
with two phases coexisting between the packing fractions ηf

and ηm. Later simulation studies [10] indicated that the hard-
sphere system can also be brought to a metastable glassy state
by adopting special schemes for compressing the equilibrium
hard-sphere fluid to a supercooled fluid state. The formation
of a long-lived glassy phase for hard-sphere-like colloidal
suspensions has also been demonstrated [11] in experiments.
This occurs at high densities, in addition to the equilibrium
fluid and solid phases of such systems. Through extensive
simulations of one-component systems of larger sizes, and up
to longer times, the existence of the hard-sphere glassy state
has also been questioned [12]. There is increasing evidence
that monodisperse hard-sphere systems do not form a stable
glassy phase [13,14] and a small amount of spread in the
size of the particles, referred to as polydispersity, actually
avoids the crystallization, keeping the system in a metastable
“supercooled” state. For example, the undercooled fluid state
has been studied by using a binary mixture of equal mass with
a size ratio of 0.905, with the corresponding ηf = 0.506 and
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ηm = 0.548 [8]. The interesting point here is that the observed
equilibrium phase behavior of this polydisperse system could
be accurately mapped to that predicted for a one-component
hard-sphere system by computer simulation.

The hard-sphere crystal has an anomalous lattice dynamics
which is entirely controlled by collisions. The motion of the
freely moving hard spheres in the crystal between collisions
is ballistic. In this respect the ordered state is analogous to
the low-density fluid in which the particles are largely moving
ballistically and collisions are infrequent. Using a classical
density functional theory (DFT) approach, the equilibrium
state is identified as a minimum of a free energy functional
being treated as a function of the inhomogeneous density
ρ(x). The minimized value of this functional reduces to an
appropriate thermodynamic property of the system depending
on the ensemble used to describe the many-particle system
[15,16]. For a grand canonical ensemble description, the
minimum value is the grand potential �. This is particularly
useful in the study of the coexistence of different phases.
Similarly in a canonical ensemble description of the particles,
the corresponding quantity at minimum is the Helmholtz
free energy F of the system. In the present work we
use the modified weighted density functional approximation
(MWDA) to evaluate the Helmholtz free energy [17]. This is
useful for our primary interest, which is the entropy for stable
or metastable states. We mark the freezing transition point ηf

as the packing fraction at which F for the fcc crystalline state
is lower than that for the disordered fluid state [17].

For decay of fluctuations in the metastable liquid, the
relaxation time τα increases sharply with increasing η, and as
the extent of “supercooling” increases, a qualitative crossover
in its dynamics is observed. A characteristic thermodynamic
property of the metastable fluid in terms of which this crossover
in relaxation behavior is expressed is its configurational
entropy Sc. The latter signifies large-scale motion of the
constituent particles in the metastable state and decreases with
increasing particle localization. The definition of Sc, however,
is not unique, and in the past it has been estimated using
several approaches [18–21]. From an experimental viewpoint
[22], it is estimated from the total entropy by subtracting
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the contribution coming from the vibrational motions of the
constituent particles of the fluid. Other definitions rely on
the free energy landscape paradigm. As η becomes much
higher than ηf , a large number of local minima appears
in the free energy landscape for the many-particle system.
The configurational entropy of a metastable system has been
estimated [23] as the logarithm of the number of such
metastable free energy minima at a given η. With increasing η,
the individual free energy minima become deeper and fewer in
number. If the number of such minima is subexponential, the
configurational entropy per particle goes to 0. This definition
of Sc has been used in computational methods [24], as well as
in replica theory [25,26]. In the latter, the partition function for
the structural glass in the absence of any intrinsic disorder is
evaluated in terms of n weakly coupled replicas of the original
system and taking, finally, the n→1 limit.

For the case of hard spheres which we consider here,
estimation of the entropies is somewhat special [27] since the
energy is irrelevant in this case and is simply equal to 3

2kBT ,
the potential contribution being 0. In this case the fluid-crystal
transition is completely driven by the entropy. Thus above
ηf , the crystal entropy is higher than that of the fluid. This
would imply that the configurational entropy, when defined as
the difference between the fluid and the crystal entropies, is
negative at all η > ηm. In the present work the configurational
entropy for the metastable hard-sphere fluid is taken as the
difference between the total entropy Stot and the corresponding
vibrational entropy Svib for the amorphous state. Stot for the
hard-core system is obtained from the total free energy of
the fluid. In the metastable state, vibration of the particles is
around a frozen amorphous structure which persists over the
time scale of structural relaxation. The vibrational contribution
to the entropy Sv is obtained here from the ideal-gas part of
the free energy Fid.

Our primary focus here is on the deeply supercooled
state for η much higher than ηf . For the crystalline state
the close-packed fcc structure of a hard-sphere system is
ηc = 0.740. However, for a random structure this is unsettled.
Generally the closest random close-packing value has been
found to be 0.62–0.64 in different studies. This state has
often been linked to an underlying ideal glass transition in the
metastable hard-sphere fluid characterized by the vanishing
of the configurational entropy. A similar [28] transition in
a hard-sphere system has also been predicted in dynamic
models [29–31] in terms of ergodicity to nonergodicity and
are characterized by order parameters with scaling behavior
[32,33]. Here using a (modified) weighted density functional
approach [34], which has been very successful in understand-
ing the freezing transition from the homogeneous liquid to the
crystalline state, we calculate the configurational entropy of
the metastable hard-sphere fluid with a random structure. In
particular, our study shows how Sc depends on the type of
amorphous structure that characterizes the mass localization
in the metastable fluid. The “entropy crisis” which occurs
in the metastable liquid with increasing η and vanishing Sc

constitutes a primary issue in understanding the physics of
the glass transition [35]. The paper is organized as follows: In
Sec. II, we describe briefly the MWDA model for computing
the total free energy and hence the total entropy Stot for
the amorphous metastable fluid. In Sec. III we compute the

vibrational contribution to the entropy Svib. Subtracting out
the vibrational part from the total entropy, we obtain Sc and
the corresponding numerical results are given in Sec. III. We
end the paper with a short discussion of our results in Sec. IV.

II. THE DENSITY FUNCTIONAL MODEL

In the classical DFT the free energy of the inhomogeneous
solid is obtained in terms of a density expansion around the
uniform liquid state [16,36,37]. The inhomogeneous density
ρ(x) is treated as the order parameter and is expressed in
terms of localized Gaussian profiles, respectively, peaked
around a set of points {Ri} of a lattice which may represent
an ordered crystal [38] or a disordered amorphous system
[39–43]. These strongly localized density profiles signify the
constituent particles vibrating around the respective points on
{Ri}. In the so-called modified weighted density functional
approximation [17] the free energy of the solid, treated as a
function of ρ(x), is calculated by mapping the inhomogeneous
system to an equivalent homogeneous liquid of lower density.
The structural information on the uniform liquid state, as
well as the underlying lattice {Ri} depicting the crystalline
or the amorphous state, is required in the MWDA calculation
as inputs. This is an effective medium approach which is
particularly suitable for hard-sphere systems. We elaborate
on this further in the discussion section Sec. IV).

In the following the formulas used in the subsequent section
for numerical computation are stated without derivation; for
this we refer the reader to the standard literature [44–46].
The free energy functional F [ρ] of the liquid is obtained
as the sum of two parts, F [ρ] = Fid[ρ] + Fex[ρ], where Fid

and Fex denote the ideal-gas and the interaction contributions,
respectively. The density ρ(x) is approximated as the sum of
Gaussian profiles located at the points of a lattice {Ri}:

ρ(r) =
N∑

i=1

(α

π

) 3
2
e−α|r−Ri|2≡

N∑
i=1

φ(r − Ri). (1)

α is the width parameter of the Gaussian function φ(r).
The α→0 limit corresponds to a uniform liquid. A large
α corresponds to a strongly localized density profile. For
describing the glassy state the {Ri} values are distributed
randomly. The ideal-gas part Fid of the free energy for the
nonuniform density ρ(x) is a simple generalization of the
corresponding free energy expression for the uniform density.
Fid per particle in units of β(=1/kBT ) is denoted fid,

fid[ρ(r)] = N−1
∫

drρ(r)(ln[ρ(r)
3] − 1), (2)

where 
 is the thermal De Broglie [47] wavelength arising
from the momentum integration in the partition function.
Using the parametric form, (1), for the density ρ(x), Eq. (2)
obtains the free energy as a function of the width parameter
α. For the large α corresponding to very localized density
distributions, the summation over all lattice sites in ρ(r) is
approximated in terms of the contribution from the nearest
site. With this approximation Eq. (2) reduces to

fid(α)≈ − 5

2
+ 3 ln

(√
α

π



)
. (3)
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This expression for the ideal-gas free energy for the inhomo-
geneous system is also obtained by assuming the localized
state with density profiles as a collection of noninteracting
harmonic oscillators with a density of states following the
Debye distribution. We discuss this in Appendix A. In the
following 
 and α are scaled in terms of the basic length scale
σ (hard-sphere diameter) for the fluid. We denote 
̃ = 
/σ

and α∗ = ασ 2. We keep 
̃ = 1.0 throughout this paper, to
maintain similarity to previous works [21,41].

In weighted density functional theory [48] a coarse-grained
form ρ̄(x) of the strongly localized density profile ρ(x) is
obtained by averaging over a local volume,

ρ̄(x) =
∫

dx′w[x − x′; ρ̄(x)]ρ(x′). (4)

w(x − x′) is a weight function over the relevant region around
point x′ of the physical density ρ(x′). Fex is expressed as an
integral of the free energy f̃ex per particle evaluated for a
weighted density ρ̄,

βFex[ρ] =
∫

dxρ(x)f̃ex[ρ̄(x)]. (5)

In the MWDA [17], the excess part of the free energy per
particle f̃ex(ρ̂) is expressed as a function of the globally
weighted density ρ̂,

ρ̂ = 1

N

∫
dxρ(x)

∫
dx′ρ(x′)w(x − x′; ρ̂). (6)

The key equation of the MWDA is a self-consistent integral
equation [17] involving the weighted density ρ̂ or, equivalently,
the corresponding packing fraction η̂ = πρ̂σ 3/6 in terms of
the suitably chosen free energy function fex(η̂):

2f ′
ex(η̂)η̂ = −ηη̂f ′′

ex(η̂) − N−1

∫
dx

∫
dx′ρ(x)ρ(x′)c(|x − x′|; η̂). (7)

This gives rise to the following self-consistent equation for the
packing fraction of the effective liquid in the MWDA,

η̂ = I(η̂,α)(2f ′
ex(η̂) + ηf ′′

ex(η̂))−1≡F (η). (8)

The single and double primes over fex(x) in the above equation
denote, respectively, the first and second derivatives of the
function with respect to its argument x. Evaluation of the
second term on the right-hand side of Eq. (8) involving the
integral I in terms of the width parameter α of the density
function ρ(x) is discussed in Appendix B. To solve Eq. (8),
the functional form of the free energy fex(η) is taken from the
Percus-Yevick (PY) expression of the excess free energy of a
hard-sphere system [47],

fex(η) = 3

2

[
2η − η2

(1 − η)2

]
− ln(1 − η). (9)

For the direct correlation function c(r) we use the correspond-
ing solution [49,50] of the PY equation for a hard-sphere
system [51]. The solution of this self-consistent MWDA
equation for a chosen value of the parameter α is illustrated in
Fig. 1.
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FIG. 1. Solution of the self-consistent equation of the MWDA
for packing fraction η = 0.539 and α = 100. We plot the right-hand
side of Eq. (8) along the y axis vs η̂ to mark its transection point with
the y = η̂ line as the solution.

III. THE METASTABLE STATE

The total free energy per particle is obtained as the sum of
the two parts given, respectively, by Eqs. (3) and (9),

ftot = fid(α) + fex[η̂(α)]. (10)

For a fixed value of η, the total free energy is calculated over a
range of the width parameter α values by solving the MWDA
equation in each specific case. The minimum of the free energy
with respect to the parameter α is at α = αmin and determines
the free energy as well as the optimum density distributions for
the equilibrium state. Successful applications of this method
have been made for understanding the freezing of hard-sphere
systems [17]. The metastable amorphous state, distinct from
the uniform liquid state, is identified by locating the interme-
diate minimum of the corresponding free energy with respect
to the mass localization parameter α. In Fig. 2 the dependence
of the free energy on the localization parameter is shown. The
metastable minimum of the total free energy calculated using
the DFT is displayed for four values of η ranging from 0.539
to 0.561. In all cases the corresponding amorphous structure
{Ri} is chosen for η0 = 0.68. The parameter η0 introduced in
Eq. (B2) characterizes the underlying structure on which mass
localization occurs. The position of the minimum at αmin is
indicated by the arrow. The free energies of the corresponding
crystalline states are shown in the inset in Fig. 2 for the
same η values as in the main panel. In the metastable state
with a random {Ri}, the free energy is higher than that of
the corresponding fcc structure. The η dependence of the
localization parameter � = 1/

√
αmin (scaled with respect to

the hard-sphere diameter σ ) corresponding to the metastable
minimum of the free energy is shown in Fig. 3. We find that
αmin is an increasing function of η. With an increase in η, the
particles become more localized and hence the amplitudes
of vibration of the particles around their respective mean
position fall.
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FIG. 2. Metastable minimum of the total free energy as a function
of the localization parameter α for packing fraction η = 0.539 (solid
line), 0.56 (dashed line), 0.581 (dotted line), and 0.602 (dot-dashed
line), corresponding to the amorphous structures characterized by
η0 = 0.69, and for the fcc crystalline structure (inset). The position
of the minimum at αmin in each case is shown by the arrow.

A. Configurational entropy

The configurational entropy Sc of the amorphous
metastable state is obtained here as the difference between
the total entropy and the corresponding vibrational entropy of
the metastable hard-sphere fluid. The total entropy expressed
in units of kB is

Stot = 3
2 − ftot, (11)

where the total free energy ftot is obtained from DFT. For
calculation of the vibrational entropy, we note that in the DFT
model, the individual Gaussian density profiles are interpreted
as particles vibrating around the respective lattice points Ri .
Compared to the homogeneous liquid state there is a reduction

0.52 0.54 0.56 0.58 0.6 0.62
η

0.05

0.1

l

FIG. 3. Localization length (in units of hard-sphere diameter σ )
for the metastable glassy state, � = 1/(

√
αminσ ), vs packing fraction

η. The parameter η0, characterizing the underlying amorphous
structure equals 0.69 (solid line) and 0.68 (dashed line).

in entropy due to localization of the particle. This is clear from
the expression for the ideal-gas part of the free energy for the
inhomogeneous density distribution ρ(x), given by Eq. (2). For
large α the density profiles are sharply localized, obtaining the
ideal-gas contribution as [48]

sid(α) = 3
2 − fid(α). (12)

The vibrational contribution to the entropy for an inhomo-
geneous fluid with localized density profiles of width α

is obtained by subtracting from the ideal-gas entropy the
corresponding uniform density limit s0

id:

Svib(α) = sid(α) − s0
id. (13)

Using s0
id = 3/2 − f 0

id, where f 0
id is the ideal-gas free energy of

the uniform fluid, the vibrational entropy Svib(α) is estimated.
The above definition of vibrational entropy implies that there
is no vibrational contribution in the homogeneous state. Using
Eqs. (10), (11), and (13) we obtain that the configurational
entropy of the amorphous state corresponding to the mass
localization parameter α is

Sc(η) = Stot(η) − Svib(η) = −(fex + ln η) + C0, (14)

where C0 = 5/2 + ln(π/6). We calculate Sc corresponding
to the packing fraction η lying in the range 0.539 to 0.601.
The configurational entropy Sc of the hard-sphere system
is determined here using two inputs. First, the amorphous
structure {Ri} for the centers of the Gaussian density profiles
characterizing the inhomogeneous mass distribution is used.
This is expressed in terms of the Bernal pair distribution
function [52]. The parameter η0 introduced in Eq. (B2)
characterizes the underlying amorphous structure. Second, we
use the correlations of the uniform liquid state determined
by the packing fraction η. For a given η we first calculate
the α = αmin at which the total free energy ftot is minimum.
Then using Eq. (14) we calculate Sc. The point at which
the extrapolated Sc goes to 0 is the so-called Kauzmann
point. The dependence of Sc on η is displayed in Fig. 4. The
same figure also shows a comparison with the results for the
configurational entropy calculated using the replica approach
[53,54], overlap models [24], and potential energy landscape
models [21]. We obtain the same ηK as in Ref. [53] with the
choice η0 = 0.703. The two curves showing the corresponding
Sc vs η are obtained with the respective pair functions gs(r)
shown in Fig. 5. The present model shows how ηK depends on
the structural parameter η0, which characterizes the underlying
amorphous structure {Ri} of the Gaussian profiles of the
inhomogeneous density distribution. This result is shown in
Fig. 6.

We now consider the density dependence of the entropy of
the metastable amorphous state with respect to that of the fcc
crystal. As pointed out, for η > ηm the total entropy of the
hard-sphere crystal is higher than that of the corresponding
amorphous state. The difference Stot = Stot − Sfcc between
the entropy of the metastable amorphous state and that of
the crystalline state is therefore negative above ηm. We show
in Fig. 7 the Stot vs η plot. The corresponding difference
obtained in terms of the vibrational entropy Svib = Svib −
Sfcc is also shown in the inset in Fig. 7. This is a property,
of course, specific to the hard-sphere crystal, in which the
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FIG. 4. The configurational entropy Sc measured with respect to
its value at ηK vs the packing fraction η. The present model with
amorphous structures corresponds to η0 = 0.703 (solid line), 0.693
(dashed line), Ref. [53] (dotted line), and Ref. [21] (dot-dashed line).
The ηK value in each case is shown by the corresponding arrow. Inset:
Results of Sc vs η from Ref. [24].

ordered state is similar to a low-density fluid in certain
respects. We discuss this point further in the next section.
Finally, from the nature of the density dependence of Sc(η),
we note that at an intermediate density, ηm < ηmax < ηK, the
configurational entropy reaches a maximum. These results
all correspond to amorphous structures described in terms
of the pair function characterized by a specific value of
the η0 introduced in Eq. (B2). In Fig. 8 we show how
the corresponding packing fraction ηmax changes with the
corresponding structural parameter η0. The inset shows how
the maximum Smax

c of Sc at η = ηm changes with the structural
parameter η0.

In the MWDA approach the free energy of the amorphous
solid is obtained by mapping the inhomogeneous hard-sphere
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g s(r
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D
if

fe
re

nc
e

FIG. 5. Pair function gs(r) (see text) used in the present model
with amorphous structures corresponding to η0 = 0.703 (solid line)
and 0.693 (dashed line) to obtain the corresponding Sc curves in
Fig. 4.

0.67 0.68 0.69 0.70
η0

0.62

0.63

0.64

0.65

0.66

0.67

η κ

FIG. 6. Plot of the critical packing fraction ηK for which the
metastable hard-sphere fluid reaches the highest entropy vs the
corresponding structural parameter η0 depicting the amorphous lattice
for the metastable state.

crystal to an equivalent fluid of much lower density ρ̂. Use of
the input structure function for a uniform liquid in the present
DFT calculation occurs twice. First, we use the Percus-Yevick
expression for the direct correlation function c(r) for the
hard-sphere potential in solving the MWDA equation and
obtain the density ρ̂. Second, the free energy for the solid is
obtained by evaluating the standard PY free energy expression
at density ρ̂. Using PY expressions in both steps maintains
consistency. Also, keeping in mind the fact that the success of
the MWDA approximation for hard-sphere crystals is linked to
the ballistic nature of the particle motion for the discontinuous

0.52 0.54 0.56 0.58 0.60 0.62
η

-0.8

-0.6

-0.4

-0.2

0

ΔS
to

t

0.57 0.60
η

-0.8

-0.6

-0.4

-0.2

0

Δs
v

FIG. 7. The difference Stot of the total entropy of a hard-sphere
system in the metastable amorphous state from that of the fcc
crystalline state vs the corresponding packing fraction η. The dashed
line correspond to results for the parameter value η0 = 0.693, while
the solid line represents η0 = 0.703. For a hard-sphere fluid this
is always negative. Inset: Difference between the corresponding
vibrational part of the entropy of the amorphous state and the crystal
entropy.
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FIG. 8. The packing fraction ηmax at which the maximum of Sc

occurs vs the structural parameter η0. Inset: How Smax
c changes with

the structural parameter η0.

potential, we avoid adding an empirical tail to c(r) using the
Verlet-Weis (VW) correction [55]. Furthermore, the difference
between the PY structure factors obtained with and those
obtained without VW correction, respectively, is prominent
only at high densities. We show in Fig. 9 how the direct
correlation functions c(r) obtained from the PY solution with
and without VW correction, respectively, change with the
distance r for a typical packing fraction value η̂ = 0.338.
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-5.00

0.00
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η)
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r

0.00

0.10

0.20

c(
r,

η)

FIG. 9. The direct correlation functions c(r) obtained from
the PY solution with Verlet-Weiss corrections (dashed line) and
without Verlet-Weiss corrections (solid line), respectively, vs the
radial distance r/σ for a typical packing fraction value η̂ = 0.338
corresponding to the solution of the self-consistent MWDA equation.
Inset: r > σ part of the self-consistent MWDA equation on a
magnified scale.

IV. DISCUSSION

We work here with a model of a metastable liquid in which
the inhomogeneous density is expressed as a collection of
Gaussian profiles centered around sites distributed on an amor-
phous lattice. In the coarse-grained description these density
profiles represent particles oscillating around the respective
sites. At high densities, the particles get trapped inside the cage
made by its neighbors for increasingly longer times [56,57]
and perform vibrational motion around sites which form an
amorphous lattice. Indeed such a state is needed to justify
the existence of transverse sound waves in amorphous solids
[58,59]. The weighted density approximation is appropriate
only for a hard-core system, which also makes the present
DFT calculation of Sc applicable only for a hard-sphere fluid.
Keeping up to second order in density fluctuations, the MWDA
describes quite accurately hard-core systems in terms of an
equivalent uniform low-density fluid. Hard spheres in the
crystal move freely between collisions and are very much
like the constituent particles in the low-density fluid. Indeed
for purely hard-core repulsive systems, no expansion for
the Hamiltonian in terms of displacements from equilibrium
sites exists. The lattice dynamics is entirely controlled by
collisions and the motion of the particles between the collisions
loses coherence very rapidly. This peculiarity is the reason
for the success of the MWDA as an accurate tool for
computation of the thermodynamic properties of the strongly
inhomogeneous hard-sphere crystal in terms of those of an
equivalent low-density fluid. In the case of softer potentials,
this analogy, however, does not hold. For the 1/rn-type
potential (where n → ∞ is the hard-sphere potential), as n

approaches values more typical of short-range interactions
in real systems, the coherence in the motion of the particles
increases. Therefore with softer potentials the above similarity
between the low-density liquid and the solid is absent, and
as a result, the weighted density functional theories are less
successful for understanding fluids with softer interactions.
In addition, for the hard-sphere crystal the average domain
of motion of a particular sphere is constrained in space
over a scale determined largely by the range of the direct
correlation function c(2)(r) at the corresponding density. The
range of the direct correlation function increases considerably
with that of the interaction potential (n becoming smaller).
Hence the coarse-graining length scale of the weighted density
over which the inhomogeneous density should be averaged
sharply increases. It would possibly be appropriate to include
higher-order correlations like c(3) in the calculation of the
weight function for softer potentials and hence to use the DFT
approach for such fluids.

For calculation of the thermodynamic properties of in-
homogeneous fluids, various forms of the weighted density
functional approach have been proposed. The fundamental
measure theory [60,61] is an important development in the
study of static correlation functions for a dense fluid. In the
present work our primary focus is on the glassy state and
calculation of the configurational entropy. We study the free
energy in terms of the MWDA in which the high-density
system is mapped to an equivalent uniform fluid of much
lower density. For estimating the thermodynamic properties of
the latter, we use the PY solution since the latter is reliable at
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such low densities. Here the fundamental measure theory for
the uniform hard-sphere system matches with the PY theory
and one can adopt the fundamental measure theory as a further
improvement.

At deep supercooling or farther away from the freezing
density, the metastable states corresponding to inhomogeneous
density only occurs for very large width parameter values
αmin. In such cases of highly localized density profiles, the
packing η̂ of the equivalent liquid of MWDA is much lower
than the average packing η. Hence using the Percus-Yevick
formula for fex works well here. As pointed out above, for the
hard-sphere system, the total entropy of the crystal is higher
than that of the amorphous state above melting density. Since
the configurational entropy of the hard-sphere crystal is 0, its
vibrational entropy has to be higher than that of the amorphous
state. Indeed for the hard-sphere fluid the optimum width
parameter αmin corresponding to the crystal structure should
be less than that for the amorphous metastable state.

The present calculation of Sc using DFT is based on an
interpretation of the model different from some of the other
DFT-based models [62]. The free energy calculation done
here does not refer to one single aperiodic distribution of the
particles. With the Bernal pair function as the structural input,
we interpret the free energy as being averaged over a set of
random distributions. Hence the corresponding configurational
entropy Sc computed using this free energy is also relevant as
a thermodynamic property. Moreover, for sharply localized
density profiles, corresponding to high values of the width
parameter α we apply the MWDA approach and not the
low-order expansion of the free energy used in previous
works [39,41,63,64]. As pointed out above the MWDA is
only appropriate for hard-sphere systems, unlike the case
of softer potentials [65]. For the Ramakrishnan-Yousuff free
energy expansion, on the other hand, it was shown that for
intermediate densities close to the freezing point (ηm), a
metastable minimum for the amorphous structure exists. In
this case the width parameter αmin is definitely lower than that
for the crystal [66–69]. However, breaking the total entropy
into clearly separable vibrational and configurational parts is
not viable for such low-α minima. These metastable structures
with a low degree of mass localization signify heterogeneous
density profiles and possibly signatures of a liquid-liquid-type
transition in the metastable liquid below the freezing point.
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APPENDIX A: THE VIBRATIONAL MODES

Next we calculate the contribution to the entropy from
harmonic modes in a hard-sphere crystal with a Debye
distribution. The vibrational modes are taken as harmonic
modes of frequencies ωi , with i = 1, . . . ,N . The partition
function of the system of N independent harmonic oscillators

is given by

ZV
N =

3N∏
ωi=1

∞∑
ni=1

exp

[
− h̄ωi

kBT

(
ni + 1

2

)]
. (A1)

The corresponding vibrational contribution to the free energy
is obtained as

Fv = −kBT lnZV
N =

∫
ln(1 − e−βh̄ω)g(ω)dω. (A2)

We have ignored a temperature-independent part coming from
the zero-point energy of the harmonic modes. g(ω) is the
vibrational density of states. Using the standard thermody-
namic relation, expressing the entropy as a derivative of the
corresponding free energy at fixed volume, the contribution to
entropy in units of kB is obtained as

Sv =
∫ ωD

0

[
− ln(1 − e−βh̄ω) + βh̄ω

eβh̄ω − 1

]
gD(ω)dω. (A3)

The density of states g(ω) is assumed here to be the Debye
distribution gD(ω), which is nonzero to an upper cutoff of ωD:

gD(ω) = 9N

ω3
D

ω2 for ω < ωD,

= 0 for ω > ωD.

The entropy per particle is obtained as

sho = −3 ln(1 − e−xD ) + 12

x3
D

∫ xD

0

x3dx

ex − 1
. (A4)

The upper cutoff of frequency xD = βh̄ωD is here identified
using the density functional model. We take the free energy of
these noninteracting harmonic oscillators as fid = (3/2) − sho.
Evaluating the integral on the right-hand side of Eq. (A4) in the
limit xD 	 1 to leading order, fid reduces to the asymptotic
expression, (3), if we identify the upper cutoff

xD =
√

α/π
. (A5)

Relation (A5) is, however, a generalization and is based on
qualitative considerations. It links two equivalent descriptions
for the vibrational modes in the solid, namely, the continuum
density functional theory in terms of Gaussian density profiles
and the microscopic model of harmonic modes having a Debye
density of states. The microscopic result becomes identical
to the corresponding DFT expression for large values of the
parameter α for the limit xD 	 1. The primary reason for this
matching lies in the harmonic and Gaussian approximations in
the respective models. For the amorphous solid, we generalize
here the above relation to large xD values as well. The
Gaussian density profile in DFT represents a vibrating particle
whose mean square displacement is proportional to α−1.
Thus a large α signifies increased localization, giving rise
to vibrating modes with shorter wavelengths or larger wave
vectors. Extrapolating dispersion relations for acoustic modes,
this implies that the cutoff frequency xD also increases.
Keeping with this monotonic dependence we therefore extend
the small-xD relation.
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APPENDIX B: THE MWDA EQUATION

The integral in the second term on the right-hand side of
Eq. (8) involves products of densities at two points on {Ri}. In
the case of a crystalline structure, the lattice {Ri} is fixed by the
corresponding crystalline symmetry. For the amorphous state
we characterize this in terms of the pair correlation function
gs(R) for a random lattice. Writing the densities at the two
points r1 and r2 using Eq. (1), the integral I obtains two types
of contributions involving indices (i,j ), respectively, referring
to the two particles, i.e., for i = j and i 
= j . With the i = j

choice, there are N such terms, while for i 
= j we introduce
the pair distribution function gs(R) for the given structure.
Equation (8) reduces to

I = −
∫

dr1

∫
dr2

∫
dRc(|r1 − r2|; η̂)

φ(r1 − R)φ(r2)

[
δ(R) + 6η

π
gs(R)

]
. (B1)

The pair distribution function gs(R) for a given separation R is
written in terms of the Bernal pair distribution function gB(R)

[52] through the scaling relation,

gs(R) = gB(γ0R), (B2)

where γ0 = (η/η0)1/3. The quantity η0 is thus introduced here
as a scaling parameter for the structure such that for packing
fraction η = η0 Bernal’s structure [70] gB(R) is obtained. The
mapping of the function from R(η/η0)1/3 to R makes the
structure either dilute or contracted, depending on the scaling
parameter η0. The parameter η0 crucially characterizes the
dependence of the free energy landscape on the amorphous
structure. With some trivial algebra the two terms on the
right-hand side of Eq. (B1) reduce to

I = A1(α) + 24η̂

γ 2
0

∫ ∞

0
dRRgs(R)A2(α; R), (B3)

where A1 and A2 are the integrals defined as

A1(α) =
√

2α3

π

∫ ∞

0
drr2c(r; η̂)e− α

2 r2
, (B4)

A2(α; R) =
√

α

2π

∫ ∞

0
drrc(r; η̂)

× [
e− α

2 (r−R)2 − e− α
2 (r+R)2]

. (B5)
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