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Calculating how long it takes for a diffusion process to effectively reach steady state without
computing the transient solution
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Mathematically, it takes an infinite amount of time for the transient solution of a diffusion equation to transition
from initial to steady state. Calculating a finite transition time, defined as the time required for the transient solution
to transition to within a small prescribed tolerance of the steady-state solution, is much more useful in practice. In
this paper, we study estimates of finite transition times that avoid explicit calculation of the transient solution by
using the property that the transition to steady state defines a cumulative distribution function when time is treated
as a random variable. In total, three approaches are studied: (i) mean action time, (ii) mean plus one standard
deviation of action time, and (iii) an approach we derive by approximating the large time asymptotic behavior of
the cumulative distribution function. Our approach leads to a simple formula for calculating the finite transition
time that depends on the prescribed tolerance δ and the (k − 1)th and kth moments (k � 1) of the distribution.
Results comparing exact and approximate finite transition times lead to two key findings. First, although the first
two approaches are useful at characterizing the time scale of the transition, they do not provide accurate estimates
for diffusion processes. Second, the new approach allows one to calculate finite transition times accurate to
effectively any number of significant digits using only the moments with the accuracy increasing as the index k

is increased.
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I. INTRODUCTION

A common question of practical interest that arises when
modeling transport phenomena is how long does the process
take? For example, how long does it take for a bar to heat up,
or how long does it take for an initial concentration field to dis-
tribute evenly? Mathematically, the correct answer is the highly
impractical answer: It takes an infinite amount of time for the
transient solution to transition from initial to steady state.

Finite (and hence practically useful) answers to the above
question have been studied and proposed by many authors
[1–9]. In this paper, we consider a finite transition time defined
as the amount of time required for the transient solution to
transition from its initial state to within a prescribed tolerance
of its steady state [5]. To illustrate this definition, consider a
transport process on an interval L := (l0,lm), and let u(x,t)
be the transient solution at position x ∈ L and time t > 0,
let u0(x) be the given initial solution, and let u∞(x) be the
steady-state solution. We make the following assumptions:

(i) u0(x) �= u∞(x) for all x ∈ L.
(ii) For a given x ∈ L, u(x,t) monotonically increases to

u∞(x) [implying u(x,t) < u∞(x)] for all t > 0 if u0(x) <

u∞(x), or u(x,t) monotonically decreases to u∞(x) [implying
u(x,t) > u∞(x)] for all t > 0 if u0(x) > u∞(x).

(iii) u0(x) is piecewise continuous on L.
In this paper, we distinguish between local and global

transition times as follows. The local transition time provides
a finite measure of the time required to transition from initial
to steady state at position x. On the other hand, the global
transition time is a finite measure of the time required for
the entire transport process to effectively reach steady state
and hence provides a practical finite answer to the question
of how long the process takes. Both of these quantities are
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defined below where we remark that assumption (ii) listed
above ensures that the left-hand side of Eq. (1) is always
positive.

Definition 1. (Local transition time.) The local transition
time, denoted by ts(x), provides the transition time as a function
of position x ∈ R := {x ∈ L|u0(x) �= u∞(x)} and is defined as
the value of t > 0 satisfying

u(x,t) − u∞(x)

u0(x) − u∞(x)
= δ, (1)

where 0 < δ � 1 is a specified tolerance.
Definition 2. (Global transition time.) The global transition

time is defined as the supremum of the local finite transition
time,

t̂s := sup
x∈R

ts(x), (2)

where the supremum is taken over the domain of ts(x).
A common finite measure of the time required to reach

steady state is the mean action time [5,10] introduced by
McNabb and Wake [8]. The mean action time takes a
probabilistic approach to the problem by treating time t

as a continuous random variable with support [0,∞) and
computing its mean or expected value. This is achieved by
utilizing the observation that the function,

F (t ; x) := 1 − u(x,t) − u∞(x)

u0(x) − u∞(x)
(3)

satisfies F (0; x) = 0 and limt→∞ F (t ; x) = 1 and hence de-
fines a cumulative distribution function of t , parametrized
in terms of the position x. Using the cumulative distribution
function, the local transition time (Definition 1) can now be
reformulated as follows:

ts(x) is the value of t > 0 satisfying F (t ; x) = 1 − δ.

(4)
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Note that Eq. (4) is now equivalent to a classical inverse
problem in probability theory: Find ts(x) such that P [t �
ts(x)] = δ.

Differentiating (3) with respect to t yields the probability
density function [5,11,12],

f (t ; x) = 1

u∞(x) − u0(x)

∂

∂t
[u(x,t) − u∞(x)], (5)

which allows the kth moment, at position x, to be defined as
follows:

Mk(x) :=
∫ ∞

0
t kf (t ; x)dt. (6)

The mean action time (MAT) at position x, denoted henceforth
by MAT(x), then is defined by the mean or first moment M1(x).

The attractiveness of the mean action time is that it is
possible to obtain the explicit form of MAT(x) and hence an
estimate of the finite amount of time required for the transient
solution to effectively reach steady state at position x without
explicitly calculating the transient solution u(x,t) [5,6,12].
For this reason, the mean action time is a popular transition
time estimate that has been used in several applications
including freezing and thawing [7], morphogen formation in
the formation of tissues and organs [12,13], and groundwater
modeling [5,10,14]. Another argument in favor of the mean
action time is that it does not suffer from the subjectivity
of choosing a threshold tolerance [6] as in Definition 1.
Although this is true, the question of how close the transient
solution, evaluated at the supremum of the mean action
time, is to the steady state still remains and involves some
discretion. The opinion of this author is that the tolerance
δ is useful and should be inferred by the physical problem
under consideration. For example, in many problems involving
comparison to experimental data, a suitable choice for δ could
be inferred from the error associated with the measurement
device.

Since McNabb and Wake’s [8] initial work, notable contri-
butions to the theory of mean action time, almost exclusively
focused on one-dimensional linear homogeneous problems,
have appeared in several papers [5–7,10–12,14,15]. For discus-
sions on higher-dimensional, nonlinear, and/or heterogeneous
problems, which do not form the focus of this paper, the reader
is directed to three papers: Refs. [6,7,15].

Research on mean action time was revived by both
Berezhkovskii et al. [13], who proposed the definition of local
accumulation time for a reaction-diffusion model related to
the study of morphogen formation, and Ellery et al. [6], who
demonstrated that this definition was equivalent to McNabb
and Wake’s [8] mean action time. Over two papers, Ellery
et al. [6,11] derived the mean action time for a linear advection-
diffusion-reaction process and presented a framework for
computing the higher central moments (called moments of
action by the authors), demonstrating how in each case
exact expressions can be found without explicit calculation
of the transient solution. The second moment of action, the
variance of action time (VAT), was noted as being particularly
insightful as a small value implies that the mean action time
is a useful estimate of the time required to effectively reach
steady state [5,6]. Simpson et al. [5] applied and extended
the theory to a linearized groundwater flow model, governed

by a diffusion equation with a constant source term, to study
the time required for a transient response (such as an aquifer
recharge or discharge process) to effectively reach steady
state. Comparing the model predictions to a laboratory scale
experiment, it was found that, although the mean action
time underestimates the time required to transition to steady
state, significant improvement can be obtained by adding one
standard deviation of action time. Jazaei et al. [10] extended the
derivations for groundwater flow to time-dependent boundary
conditions where it again was argued, via visual observation
of the experimental data, that the mean plus one standard
deviation of action time was a good approximation for the time
required for the system to effectively reach steady state. Most
recently, Simpson [12] and Jazaei et al. [14] have extended
the theory to estimate the time required for the gradient or
flux of the transient solution to approach their corresponding
steady-state values.

In this paper, we study transition time estimates for a
linear homogeneous diffusion equation with general time-
independent boundary conditions. Two key contributions to
the literature are presented.

(i) We demonstrate that, although both the mean action
time and the mean plus one standard deviation of action time
are useful at characterizing the associated time scale, they
do not provide accurate estimates of the transition time for
diffusion processes.

(ii) We propose a highly accurate alternative approach
for estimating transition times based on using higher-order
consecutive moments to approximate the long time asymptotic
behavior of the cumulative distribution function F (t ; x).

The second item is the main contribution of the paper with
the approach providing a simple highly accurate formula for
calculating the local transition time (1) [and hence global
transition time (2)] using only two consecutive moments
Mk−1(x) and Mk(x) (k � 1). The result links the higher-order
moments to the calculation of finite transition times. This
represents a significant breakthrough as previously it was
believed that such a calculation required the transient solution
u(x,t) [5,6].

II. DIFFUSION MODEL

The diffusion model considered in this paper is described
below. Consider a diffusion process on the intervalL := (l0,lm)
governed by the linear homogeneous diffusion equation,

∂u

∂t
= D

∂2u

∂x2
(7a)

for x ∈ L and t > 0, subject to the initial condition,

u(x,0) = u0(x) (7b)

for x ∈ L and boundary conditions,

aLu(l0,t) − bL

∂u

∂x
(l0,t) = cL, (7c)

aRu(lm,t) + bR

∂u

∂x
(lm,t) = cR (7d)

for t > 0. In the equations listed above, u(x,t) is the
solution (e.g., temperature or concentration) at position x
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and time t, u0(x) is the specified initial condition, and
D > 0 is the constant diffusion coefficient. In the boundary
conditions, aL, bL, cL, aR, bR , and cR are constants sat-
isfying: aL � 0, bL � 0, aR � 0, bR � 0, aL + bL > 0, and
aR + bR > 0 [16,17].

The corresponding steady-state solution of (7), denoted by
u∞(x), is the linear function satisfying the boundary value
problem,

Du′′
∞(x) = 0, x ∈ L, (8a)

aLu∞(l0) − bLu′
∞(l0) = cL, (8b)

aRu∞(lm) + bRu′
∞(lm) = cR. (8c)

For the Neumann problem [u′
∞(l0) = u′

∞(lm) = 0], it is
well known [18] that the solution of (8) is unique only up to an
additive constant and that including the additional constraint,∫ lm

l0

u∞(x)dx =
∫ lm

l0

u0(x)dx (9)

gives the correct steady-state solution of (7).

III. COMPUTING THE MOMENTS

In this section, we present an algorithm for calculat-
ing the first q moments (6), namely, Mk(x) (k = 1, . . . ,q)
for the diffusion problem (7). The derivation follows closely
the procedure taken by several authors [11,12,19] with the
exception that we are interested in the raw moments as opposed
to the central moments.

Combining Eqs. (5) and (6) gives the following expression
for the kth moment:

Mk(x) = 1

h(x)

∫ ∞

0
t k

∂

∂t
[u(x,t) − u∞(x)]dt (10)

for k = 0,1, . . ., where h(x) := u∞(x) − u0(x). Applying
integration by parts and noting that limt→∞ t k[u(x,t) −
u∞(x)] = 0 [19] yields

Mk(x) = k

h(x)

∫ ∞

0
t k−1[u∞(x) − u(x,t)]dt. (11)

For all integers k > 1, each of the above moments can be
calculated without requiring the transient solution u(x,t) by
deriving a boundary value problem satisfied by Mk(x) as
follows. Define:

Mk(x) := Mk(x)h(x)

= k

∫ ∞

0
t k−1[u∞(x) − u(x,t)]dt, (12)

and consider the derivatives,

M
′
k(x) = k

∫ ∞

0
t k−1

[
u′

∞(x) − ∂u

∂x
(x,t)

]
dt, (13)

M
′′
k (x) = k

∫ ∞

0
t k−1

[
u′′

∞(x) − ∂2u

∂x2
(x,t)

]
dt. (14)

Using Eqs. (7a) and (8a) in Eq. (14) yields

M
′′
k (x) = k

D

∫ ∞

0
t k−1 ∂

∂t
[u∞(x) − u(x,t)]dt. (15)

The above expressions lead to the following boundary-value
problem for Mk(x):

M
′′
k (x) = − k

D
Mk−1(x), x ∈ L, (16a)

aLMk(l0) − bLM
′
k(l0) = 0, (16b)

aRMk(lm) + bRM
′
k(lm) = 0, (16c)

where the right-hand side of the differential equation (16a)
is identified from (15) using Mk−1(x) = Mk−1(x)h(x) and
Eq. (10) and the boundary conditions (16b) and (16c) are
derived by utilizing Eqs. (12) and (13) and the boundary
conditions for u(x,t) and u∞(x): (7c), (7d), (8b), and (8c).

In this paper, we consider only relatively simple initial
condition functions u0(x) where the boundary value prob-
lem (16) can be solved analytically by integration. For more
complicated initial conditions, a numerical method could
easily be applied to solve (16). Integrating (16a) yields the
general solution,

Mk(x) = Gk(x) + ck,1 + ck,2x, (17)

where

Gk(x) := − k

D

∫ ∫
Mk−1(x)dx dx. (18)

The constants ck,1 and ck,2 are determined by substituting the
form of (17) into the boundary conditions (16b) and (16c) and
solving the resulting linear system,

Ac = b, (19)

where c = [ck,1,ck,2]T and

A =
[
aL aLl0 − bL

aR aRlm + bR

]
, (20)

b =
[

bLG′
k(l0) − aLGk(l0)

−bRG′
k(lm) − aRGk(lm)

]
, (21)

with

G′
k(x) = − k

D

∫
Mk−1(x)dx.

We remark that matrix A is the same as the one that appears
when using a similar strategy to solve the boundary value
problem (8) for the steady-state solution. For the Neumann
problem [M

′
k(l0) = M

′
k(lm) = 0] where the solution of the

linear system (19) [and hence the solution of the boundary
value problem (16)] is unique only up to an additive constant,
we require an additional constraint on Mk(x) similar to Eq. (9).
Note that Eq. (9) together with Neumann boundary conditions
implies conservation, that is,∫ lm

l0

u(x,t)dx =
∫ lm

l0

u∞(x)dx (22)
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for all t � 0. Integrating (12) from x = l0 to x = lm, reversing
the order of integration in the resulting double integral and
using (22) gives the required constraint on the solution of (16)
for the Neumann problem,∫ lm

l0

Mk(x)dx = 0.

Incorporating this constraint into the linear system (19) yields
the slightly modified form

A =
⎡⎣ 0 −1

0 −1

lm − l0
1
2

(
l2
m − l2

0

)
⎤⎦, (23)

b =
⎡⎣ G′

k(l0)
G′

k(lm)
Kk(l0) − Kk(lm)

⎤⎦, (24)

where

Kk(x) =
∫

Gk(x)dx,

which has a unique solution provided that G′
k(l0) = G′

k(lm).
Once ck,1 and ck,2 are identified and Mk(x) is determined, the
kth moment is computed as follows:

Mk(x) := 1

h(x)
[Gk(x) + ck,1 + ck,2x]. (25)

Noting that M0(x) = 1, and hence M0(x) = h(x) = u∞(x) −
u0(x), allows the Gk(x) functions (18) and the moments to be
calculated recursively as outlined in Algorithm 1.

Algorithm 1. (Moments.)

M0(x) := u∞(x) − u0(x)
for k = 1, . . . ,q

G′
k(x) := − k

D

∫
Mk−1(x)dx

Gk(x) := ∫
G′

k(x)dx

Compute ck,1 and ck,2 by solving the linear system
defined by Eqs. (19)–(21) or in the case of Neumann
boundary conditions the linear system defined by
Eqs. (19), (23), and (24).
Mk(x) := Gk(x) + ck,1 + ck,2x

Mk(x) := Mk(x)/M0(x)
end

IV. TRANSITION TIME ESTIMATION

Using the moments derived in the previous section, we
now present three estimates of the local transition time
(Definition 1), labeled t (n)

s (x) for n = 1–3. For each estimate,
the corresponding estimate of the global transition time is
defined according to Definition 2 as

t̂ (n)
s := sup

x∈R
t (n)
s (x). (26)

A. Low accuracy estimates using the first and second moments

1. Mean action time

The mean action time MAT(x), which is often used as an
estimate of the time required to reach steady state [5,7,8],

defines the following estimate of the local transition time
(Definition 1):

t (1)
s (x) := MAT(x) = M1(x). (27)

Although t (1)
s (x) and the corresponding estimate of the global

transition time t̂ (1)
s do not depend on the tolerance δ, it will

be interesting to investigate how closely the transient solution
u(x,t), evaluated at t = t̂ (1)

s , is to the steady-state solution.

2. Mean plus one standard deviation of action time

For most problems, it is probably unreasonable to expect
that t̂ (1)

s is an accurate estimate of the time required to reach
steady state since it is unlikely that the cumulative distribution
function F (t ; x) evaluated at t = t̂ (1)

s (x) is close to one1 for all
x ∈ R since t (1)

s (x) is the mean of the distribution. Simpson
et al. [5] suggest the mean action time plus one standard
deviation of action time (square root of the variance of action
time) as a way to improve estimation. Hence, we also will
investigate the following estimate of the local transition time
(Definition 1):

t (2)
s (x) := MAT(x) +

√
VAT(x)

= M1(x) +
√

M2(x) − M1(x)2, (28)

which has equivalently been expressed in terms of the first
and second moments. Analogous to t (1)

s , Eq. (28) also does not
depend on the tolerance δ. We remark that the choice of one
standard deviation is subjective and there is no reason why any
number of standard deviations could not be used. However,
we will not pursue this further as, unlike for the normal
distribution, in general one cannot determine the probability
that a random variable is greater than the sum of its mean and
a given number of standard deviations.

B. High accuracy estimates using higher-order moments

To estimate transition times, an accurate approximation of
the cumulative distribution function F (t ; x) is required only for
large t (relative to the problem) where u(x,t) ≈ u∞(x). The
exact solution of the diffusion problem (7) has the following
functional form [20,21]:

u(x,t) = u∞(x) +
∞∑

n=1

γn(x)e−tξn , (29)

where γn and ξn > 0 depend on the eigenvalues and eigen-
functions of the transient solution. Inserting (29) into (3) it
follows that the cumulative distribution function F (t ; x) has
the functional form

F (t ; x) = 1 −
∞∑

n=1

ζn(x)e−tξn , (30)

where ζn(x) = γn(x)/[u0(x) − u∞(x)]. Assuming the ξ ’s are
arranged in ascending order (i.e., ξ1 < ξ2 < · · · ) and ζ1(x) �=
0, then the cumulative distribution function satisfies the
following asymptotic relation:

F (t ; x) ∼ 1 − ζ1(x)e−tξ1 for large t. (31)

1Or, equivalently, that P [t � t̂ (1)
s (x)] is small.
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The above analysis suggests an approximation to the large time
behavior of F (t ; x) should be sought in the form given below,

F (t ; x) 
 1 − α(x)e−tβ(x) for large t, (32)

where α(x) and β(x) are as yet unspecified functions.
If we can devise a method for accurately computing values

of α and β that are close to ζ1 and ξ1 then highly accurate
transition time estimates can be calculated. The aim being,
of course, to achieve this without explicit calculation of the
transient solution u(x,t) (i.e., without explicit computation
of any eigenvalues or eigenfunctions) and using only the
moments: Mk(x) for k = 1, . . . ,q. The probability density
function corresponding to the cumulative distribution func-
tion (30) is given via differentiation,

f (t ; x) =
∞∑

n=1

ζn(x)ξne
−tξn .

Using this form of f (t ; x) in Eq. (6), the kth moment is found
to be as follows:

Mk(x) = k!
∞∑

n=1

ζn

ξk
n

.

Since ξ1 < ξn for all n = 2,3, . . ., it follows that Mk(x)
satisfies the asymptotic relation,

Mk(x) ∼ ζ1k!

ξk
1

for large k. (33)

This latter observation motivates the following pair of coupled
equations satisfied by α(x) and β(x), formulated by matching
the (k − 1)th and kth moments:

α(x)

β(x)k−1
= Mk−1(x)

(k − 1)!
,

α(x)

β(x)k
= Mk(x)

k!
.

Provided both Mk−1(x) �= 0 and Mk(x) �= 0, the above system
of equations can be solved exactly to obtain the following
explicit formulas:

αk(x) = Mk(x)

k!

(
kMk−1(x)

Mk(x)

)k

,

βk(x) = kMk−1(x)

Mk(x)
,

where we have included the subscript k on α and β to denote
dependence on the (k − 1)th and kth moments. We remark that
Mk(x) > 0 and hence αk(x) > 0 and βk(x) > 0. The analysis
above leads to the following approximation of the large time
behavior of the exact cumulative distribution function (30):

F (t ; x) 
 1 − αk(x)e−tβk (x) for large t, (34)

which involves only the moments Mk−1(x) and Mk(x). Fol-
lowing definition (4), equating the right-hand side of (34) with
1 − δ and solving for t yields the following local transition
time estimate:

t (3)
s (x) := 1

βk(x)
ln

(
αk(x)

δ

)
, (35)

where ln is the natural (base e) logarithm. Note that t (3)
s (x)

increases with decreasing tolerance δ, which is consistent

with the fact that it takes a longer amount of time for the
transient solution to transition to within a smaller tolerance
of its steady state. Moreover, we require δ � αk(x) for all
x ∈ R to ensure the obvious physical constraint t (3)

s (x) � 0
is satisfied. Inserting the expressions for αk(x) and βk(x) into
(35), we obtain the following simple formula for estimating
the local transition time depending on the (k − 1)th and kth
moments:

t (3)
s (x) := Mk(x)

kMk−1(x)
ln

[
Mk(x)

k!δ

(
kMk−1(x)

Mk(x)

)k
]
. (36)

As a result of the asymptotic relation (33), we expect the
accuracy of t (3)

s (x) to increase as k increases, and this
hypothesis is tested in the Sec. V.

Assuming δ = 10−p, where p > 0, gives the following
alternative form:

t (3)
s (x) := ln[αk(x)] + p ln(10)

βk(x)
, (37)

which leads to the conclusion that, for fixed k and increasing
p, the local transition time estimate t (3)

s (x) increases linearly
with slope ln(10)/βk(x), e.g., the additional transition time
required when decreasing δ from 10−(p−1) to 10−p is equal to
the additional time when decreasing δ from 10−p to 10−(p+1).

Interestingly, k = 1 gives α1(x) = 1 and β1(x) = 1/M1(x)
since M0(x) = 1. In this case, the approximation (34) sim-
plifies to F (t ; x) 
 1 − e−t/M1(x) for large t , which is nothing
more than the cumulative distribution function of the exponen-
tial distribution with mean M1(x). For this simplest of cases,
the estimate of the local transition time (36) reduces to the
mean action time multiplied by a correction factor depending
on the tolerance: t (3)

s (x) := M1(x) ln(δ−1) ≡ MAT(x) ln(δ−1).

V. RESULTS AND DISCUSSION

To investigate the accuracy of the transition time estimates
presented and developed in Secs. IV A and IV B, we consider
the following three test cases:
Case A.

D = 1.0, u0(x) = 0,

u(0,t) = 1,
∂u

∂x
(1,t) = 0.

Case B.

D = 0.01, u0(x) = 1,

u(0,t) − 0.1
∂u

∂x
(0,t) = 0, u(1,t) = 0.5.

Case C.

D = 0.1, u0(x) =
{

1, if 0.25 < x < 0.75,

0, else,

∂u

∂x
(0,t) = 0,

∂u

∂x
(1,t) = 0.

where in each case [l0,lm] = [0,1]. Together, the above
problems test each of the three types of boundary conditions
(Dirichlet, Neumann, and Robin). Cases A and B resemble
classical problems in heat conduction. For example, in Case A,
a bar initially at temperature zero is suddenly heated at its left
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C 0.3125 0.5677 1.0662

FIG. 1. Plot of the transient solution u(x,t) of the diffusion problem (7) for (a) Case A, (b) Case B, and (c) Case C, depicting the transition
from initial to steady state as well as the solution at each of the global transition time estimates [defined in Eqs. (26)–(28) and (36)]. The value
of t̂ (3)

s is calculated using δ = 0.02 and k = 2. The arrows indicate the direction of increasing time.

boundary—how long does it take for the whole bar to heat up?
On the other hand, Case C is a typical problem in mathematical
biology [22] where a region initially fully occupied by cells
[u(x,0) = 1 for 0.25 < x < 0.75] is left to diffuse.

Each of the test cases satisfies the requirement that
F (t ; x) (3) defines a cumulative distribution function since, at
each position x, the solution u(x,t) is either nondecreasing for
all t > 0 if u∞(x) > u0(x) (as in Case A for all 0 < x < 1 and
Case C for 0 < x < 0.25 and 0.75 < x < 1) or nonincreasing
for all t > 0 if u∞(x) < u0(x) (as in Case B for all 0 < x < 1
and Case C for 0.25 < x < 0.75). For Case C, if the region
centered around x = 0 that is fully occupied by cells, namely,
0.25 < x < 0.75, is shortened, however, the monotonicity
property is violated.

Recall the three global transition time estimates presented
in this paper, namely, t̂ (n)

s (n = 1–3), the definitions of which
are reiterated below:

(1) t̂ (1)
s [Eqs. (27) and (26)] is based on using the mean

or first moment of the probability distribution f (t ; x) (5) (or,
equivalently, the mean action time) as an estimate of the local
transition time as described in Sec. IV A 1.

(2) t̂ (2)
s [Eqs. (28) and (26)] is based on using the sum of

the mean and standard deviation of the probability distribution
f (t ; x) (5) (or, equivalently, the mean plus one standard
deviation of action time) as an estimate of the local transition
time as described in Sec. IV A 2 and previously by Simpson
et al. [5] and Jazaei et al. [10].

(3) t̂ (3)
s [Eqs. (36) and (26)] is based on using the higher-

order moments of the probability distribution f (t ; x) (5)
to approximate the large time asymptotic behavior of the
cumulative distribution function F (t ; x) (3) as described in
Sec. IV B.

For each global transition time estimate, the maximization
problem implied by Eq. (26) is solved by first noting
that Eq. (26) is equivalent to t̂ (n)

s = − minx∈R[−t (n)
s (x)]

and then using MATLAB’s FMINBND function with option
TOLX = 1 × 10−14 [23]. To calculate the moments we have
implemented Algorithm 1 in MATLAB using the SYMBOLIC

MATH TOOLBOX [24].
Recall that t̂ (3)

s depends on two parameters that are free to
choose: the prescribed tolerance δ and index k which specifies
which two consecutive moments [i.e., Mk−1(x) and Mk(x)] are
utilized. Initially, we present results for δ = 0.02 and k = 2
with the tolerance value chosen to ensure that the solution
at the global transition time is visibly distinguishable if only
slightly from the steady state u∞(x). With k = 2, the local
transition time estimate t (3)

s (x) (36) simplifies to

t (3)
s (x) = M2(x)

2M1(x)
ln

(
2M1(x)2

M2(x)δ

)
,

which is comparable to t (2)
s (x) (28) in its simplicity and

dependence on the first and second moments only.
Figure 1 plots the solution u(x,t) of the diffusion prob-

lem (7) for each of the three test cases, depicting the transition
from initial to steady state. In these plots, u(x,t) also is
given at each of the global transition time estimates with the
calculated values of t = t̂ (n)

s for n = 1–3 (rounded to four
decimal places) tabulated in Fig. 1. In addition to the visual
comparison provided by Fig. 1, in Table I we include errors,

ε(n)
s = max

x∈R

[
u(x,̂t (n)

s ) − u∞(x)

u0(x) − u∞(x)

]
, n = 1–3, (38)

as a quantitative measure of how close the transient solution
at each estimate is to the steady-state solution. The transient
solution u(x,̂t (n)

s ) is evaluated by taking the first 50 terms in the
classical eigenfunction expansion solution [20,21], which is
more than sufficient since the values of t̂ (n)

s are relatively large.
For t̂ (3)

s , we compute errors corresponding to three different
tolerances δ = 0.02,10−3,10−5. Noting the definition of the
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TABLE I. Errors (38), corresponding to the three different global transition time estimates [defined in Eqs (26)–(28) and (36)] for each of
the three test cases. The value of ε(3)

s is calculated using different combinations of tolerance δ and moment index k.

ε(3)
s ε(3)

s ε(3)
s ε(3)

s

Case ε(1)
s ε(2)

s

[k = 2, δ = 0.02] [k = 2, δ = 10−3] [k = 2, δ = 10−5] [k = 5, δ = 0.02]

A 0.3708 0.1354 0.0189 8.69 × 10−4 7.64 × 10−6 0.0200
B 0.3721 0.1356 0.0188 8.58 × 10−4 7.43 × 10−6 0.0200
C 0.3708 0.1354 0.0189 8.69 × 10−4 7.64 × 10−6 0.0200

local transition time (Definition 1), ε(n)
s ideally should be close

to the prescribed tolerance δ.
The following observations can be drawn from Fig. 1 and

Table I:
(1) t̂ (1)

s underestimates the time required to effectively
reach steady state for all three test cases. The transition from
initial to steady state is far from complete, and this is confirmed
by the large values of ε(1)

s in Table I.
(2) t̂ (2)

s significantly improves on t̂ (1)
s (as has been reported

previously by Simpson et al. [5] and Jazaei et al. [10] for a
groundwater modeling problem), however, in all three test
cases it is clearly visible that the transition from initial to
steady state is still not complete.

(3) t̂ (3)
s uses the the same moments as t̂ (2)

s but produces
a far superior estimate of the global transition time with the
transient solutions at t = t̂ (3)

s (see Fig. 1) very close to steady
state. For all three test cases, the accuracy of t̂ (3)

s is quite
remarkable. Using only the first and second moments, t̂ (3)

s

leads to errors ε(3)
s that are less than, and very close to, the

prescribed tolerances of δ = 0.02,10−3,10−5 (Table I). Taking
higher consecutive moments, that is, increasing k, further
improves accuracy since the asymptotic relation (33) is more
accurate for larger k. This is demonstrated by choosing k = 5,
which gives ε(3)

s = 0.0200 = δ (to the four decimal places
displayed) for all three test cases.

In Fig. 2, we plot the exact local transition time ts(x)
(Definition 1) and local transition time estimate t (3)

s (x) (36) for
all three test cases and four different choices of the tolerance
δ. To calculate ts(x) we solve Eq. (1) [with the first 50 terms

used in the eigenfunction solution expansion for u(x,t)] using
MATLAB’s FZERO function with the default tolerance [25].
Recall that ts(x) provides the finite time required for the
solution at position x to transition to within a specified
tolerance δ of the steady-state solution at position x [as defined
in Eq. (1)] and t (3)

s (x) is an estimate of that value. The local
transition time profiles are therefore useful for determining the
position(s) that take the shortest or longest time to reach steady
state. For example, for Case C, the steady state is reached in the
longest time at x = 0,0.5,1 and the shortest time near x = 0.25
and x = 0.75 where the solution is u(x,t) = 0.5 = u∞(x) for
all t > 0. Both t (1)

s (x) and t (2)
s (x) are also useful in this regard

as their shape follows closely that of ts(x): for both Cases A
and C, the value of x that maximizes (minimizes) t (1)

s (x) and
t (2)
s (x) also maximizes (minimizes) the exact local transition

time ts(x). As observed previously, increasing k leads to a
better match with the exact transition time with the curves
almost indistinguishable for k = 10. Finally, one must take
care when using t (3)

s (x) for moderately large values of the
tolerance δ. As previously remarked in Sec. IV B, t (3)

s (x) is
nonphysical if αk(x) < δ, and this behavior is observed in
Fig. 2 for δ = 10−1 near x = 0 in Case A and near x = 1
in Case B. This anomaly is tied to the inaccuracy of taking
only the leading term in the transient solution u(x,t) [which
is effectively being approximated in Eq. (32)] for moderately
small values of time t .

In Table II, the new global transition time estimate t̂ (3)
s

is compared to the exact global transition time t̂s for several
values of the tolerance δ and index k. Using only the moments

ts(x) t = t
(1)
s (x) t = t

(2)
s (x) t = t

(3)
s (x) [k = 2] t = t

(3)
s (x) [k = 10]
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FIG. 2. Comparison of the exact transition time ts(x) [defined in Eq. (1)] and local transition time estimates t (n)
s (x) for n = 1–3 [defined

in Eqs. (26)–(28) and (36)] for (a) Case A, (b) Case B, and (c) Case C. The function t (3)
s (x) is shown for each combination of tolerance

δ = 10−1,10−2,10−3,10−4 and moment index k = 2,10.
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TABLE II. Comparison of the exact global transition time t̂s [defined in Eq. (2)] and the global transition time estimate t̂ (3)
s [defined by

Eqs. (36) and (26)] for each combination of tolerance δ = 10−1,10−2,10−3,10−4,10−5,10−6 and moment index k = 1,2,5,10.

δ = 10−1 δ = 10−2 δ = 10−3 δ = 10−4 δ = 10−5 δ = 10−6

t̂s 1.0311 1.9643 2.8975 3.8307 4.7639 5.6971
t̂ (3)
s [k = 1] 1.1513 2.3026 3.4539 4.6052 5.7565 6.9078
t̂ (3)
s [k = 2] 1.0354 1.9948 2.9542 3.9136 4.8730 5.8324
t̂ (3)
s [k = 5] 1.0311 1.9643 2.8975 3.8308 4.7640 5.6973

Case A t̂ (3)
s [k = 10] 1.0311 1.9643 2.8975 3.8307 4.7639 5.6971

|̂ts − t̂ (3)
s |/|̂ts | [k = 1] 1.17 × 10−1 1.72 × 10−1 1.92 × 10−1 2.02 × 10−1 2.08 × 10−1 2.12 × 10−1

|̂ts − t̂ (3)
s |/|̂ts | [k = 2] 4.14 × 10−3 1.55 × 10−2 1.96 × 10−2 2.16 × 10−2 2.29 × 10−2 2.38 × 10−2

|̂ts − t̂ (3)
s |/|̂ts | [k = 5] 4.54 × 10−5 2.63 × 10−6 1.23 × 10−5 2.05 × 10−5 2.52 × 10−5 2.84 × 10−5

|̂ts − t̂ (3)
s |/|̂ts | [k = 10] 2.28 × 10−9 5.79 × 10−8 3.98 × 10−7 5.45 × 10−11 1.06 × 10−10 2.39 × 10−8

t̂s 31.0746 59.1707 87.2666 115.3624 143.4582 171.5541
t̂ (3)
s [k = 1] 34.5967 69.1934 103.7901 138.3867 172.9834 207.5801
t̂ (3)
s [k = 2] 31.1946 60.1603 89.1312 118.1046 147.0794 176.0552
t̂ (3)
s [k = 5] 31.0689 59.1697 87.2706 115.3715 143.4724 171.5733

Case B t̂ (3)
s [k = 10] 31.0749 59.1707 87.2665 115.3624 143.4582 171.5541

|̂ts − t̂ (3)
s |/|̂ts | [k = 1] 1.13 × 10−1 1.69 × 10−1 1.89 × 10−1 2.00 × 10−1 2.06 × 10−1 2.10 × 10−1

|̂ts − t̂ (3)
s |/|̂ts | [k = 2] 3.86 × 10−3 1.67 × 10−2 2.14 × 10−2 2.38 × 10−2 2.52 × 10−2 2.62 × 10−2

|̂ts − t̂ (3)
s |/|̂ts | [k = 5] 1.83 × 10−4 1.63 × 10−5 4.64 × 10−5 7.87 × 10−5 9.86 × 10−5 1.12 × 10−4

|̂ts − t̂ (3)
s |/|̂ts | [k = 10] 8.09 × 10−6 1.55 × 10−7 6.07 × 10−8 1.26 × 10−8 1.66 × 10−8 3.63 × 10−8

t̂s 0.6444 1.2277 1.8109 2.3942 2.9774 3.5607
t̂ (3)
s [k = 1] 0.7196 1.4391 2.1587 2.8782 3.5978 4.3173
t̂ (3)
s [k = 2] 0.6471 1.2467 1.8464 2.4460 3.0456 3.6453
t̂ (3)
s [k = 5] 0.6444 1.2277 1.8110 2.3942 2.9775 3.5608

Case C t̂ (3)
s [k = 10] 0.6444 1.2277 1.8109 2.3942 2.9774 3.5607

|̂ts − t̂ (3)
s |/|̂ts | [k = 1] 1.17 × 10−1 1.72 × 10−1 1.92 × 10−1 2.02 × 10−1 2.08 × 10−1 2.12 × 10−1

|̂ts − t̂ (3)
s |/|̂ts | [k = 2] 4.14 × 10−3 1.55 × 10−2 1.96 × 10−2 2.16 × 10−2 2.29 × 10−2 2.38 × 10−2

|̂ts − t̂ (3)
s |/|̂ts | [k = 5] 4.56 × 10−5 2.78 × 10−6 1.26 × 10−5 2.08 × 10−5 2.51 × 10−5 2.83 × 10−5

|̂ts − t̂ (3)
s |/|̂ts | [k = 10] 2.76 × 10−7 2.02 × 10−7 9.79 × 10−8 3.20 × 10−7 5.92 × 10−8 7.36 × 10−8

and without explicit calculation of the transient solution u(x,t),
it is evident that t̂ (3)

s is able to very accurately estimate t̂s .
Rough rule-of-thumb values are obtained for k = 1, whereas
for k = 2, the relative errors are all between 10−1 and 10−3

indicating an accuracy of at least one and at most three
significant digits. Increasing k increases the accuracy [due
to the accuracy of the asymptotic relation (33) improving]
with at least three and and at most six significant digits
obtained for k = 5, which is probably sufficient for most
applications. For k = 10, one obtains the exact value to
all four decimal places displayed with the relative errors
indicating an accuracy of between 6 and 11 significant digits
(inclusive).

To conclude this section, we provide some observations
regarding the following generalized version of Case A where
the constant diffusivity D is arbitrary and the boundary
conditions are specified as

u(0,t) = cL,
∂u

∂x
(L,t) = 0.

For this problem, computing the three local transition time
estimates and evaluating them at x = L where the max-
imum occurs yields the following global transition time

estimates:

t̂ (1)
s = L2

2D
, (39)

t̂ (2)
s = L2

2D

(
1 +

√
6

3

)
, (40)

t̂ (3)
s = γk

L2

D
ln

(
θk

δ

)
, (41)

where γk and θk are constants that depend on the chosen
moment index k.

Note that all three estimates are proportional to the diffusive
time scale L2/D, differing only by a multiplicative factor,
which for t̂ (3)

s depends on the tolerance δ. As a result, for
two different diffusion processes, the question of which takes
longer can be answered by choosing any of the global transition
time estimates (39)–(41) and comparing its value for both
processes.

Each of the global transition time estimates (39)–(41) were
calculated in MAPLE2 where exact fractional expressions for

2With the environment variable DIGITS set to 50 [26].
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TABLE III. Computed values of the constants γk and θk that
appear in the global transition time estimate (41) for the generalized
version of Case A.

k γk θk |γk − 4/π 2| |θk − 4/π |
2 0.4167 1.2000 1.14 × 10−2 7.32 × 10−2

4 0.4054 1.2712 1.60 × 10−4 2.08 × 10−3

6 0.4053 1.2732 2.03 × 10−6 3.90 × 10−5

8 0.4053 1.2732 2.51 × 10−8 6.41 × 10−7

10 0.4053 1.2732 3.10 × 10−10 9.86 × 10−9

12 0.4053 1.2732 3.83 × 10−12 1.46 × 10−10

14 0.4053 1.2732 4.72 × 10−14 2.10 × 10−12

16 0.4053 1.2732 5.83 × 10−16 2.95 × 10−14

18 0.4053 1.2732 7.20 × 10−18 4.10 × 10−16

20 0.4053 1.2732 8.89 × 10−20 5.62 × 10−18

the constants γk and θk appearing in Eq. (41) can be obtained.
In Table III, we give the corresponding values in decimal form
and rounded to four decimal places to improve readability.
For increasing values of k, observe in Table III that γk and θk

are approaching the values of 4/π2 (≈ 0.4053) and 4/π (≈
1.2732). Hence, t̂ (3) is approaching

4

π2

L2

D
ln

(
4

πδ

)
,

which is precisely the global transition time derived by using
the leading term of the transient solution, namely,

u(x,t) ∼ cL

[
1 − 4

π
exp

(
−D

π2

4L2
t

)
sin

( π

2L
x
)]

,

in the definition of the local transition time (Definition 1),
solving Eq. (1) for t and evaluating the result at x = L where
the maximum occurs.

VI. CONCLUSIONS

To summarize, we have derived a simple formula, denoted
by t (3)

s (x) and given in Eq. (36), for calculating a finite measure
of the time required for a diffusion process to reach steady
state. This formula estimates the local transition time defined
as the time required for the transient solution to transition to
within a prescribed tolerance 0 < δ � 1 of its steady state at
position x. A finite measure of the time required for the entire
diffusion process to reach steady state is then obtained by
evaluating t (3)

s (x) at the value of x that produces a maximum.
This formula is attractive as it: (i) avoids explicit calculation
of the transient solution, (ii) depends only on the prescribed
tolerance δ and the (k − 1)th and kth moments, and (iii) can
be used to calculate the exact transition time to effectively
any number of significant digits by increasing k. Our results
confirm that, even for k = 2 for which t (3)

s (x) utilizes only
the first and second moments (or, equivalently, the mean and
variance of action time), the accuracy is quite remarkable. In
all cases, the approach comprehensively outperforms existing
strategies based on the mean action time and variance of action
time, which, although useful at characterizing the associated
time scale, significantly underestimate transition times for
diffusion processes.

This paper has presented a proof of concept for the
simple problem of homogeneous diffusion. Future work will
focus on extending the method to heterogeneous and higher-
dimensional problems as well as other transport processes
(e.g., advection diffusion).
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