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How fast does a random walk cover a torus?
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We present high statistics simulation data for the average time 〈Tcover(L)〉 that a random walk needs to cover
completely a two-dimensional torus of size L × L. They confirm the mathematical prediction that 〈Tcover(L)〉 ∼
(L ln L)2 for large L, but the prefactor seems to deviate significantly from the supposedly exact result 4/π derived
by Dembo et al. [Ann. Math. 160, 433 (2004)], if the most straightforward extrapolation is used. On the other
hand, we find that this scaling does hold for the time TN(t)=1(L) at which the average number of yet unvisited sites
is 1, as also predicted previously. This might suggest (wrongly) that 〈Tcover(L)〉 and TN(t)=1(L) scale differently,
although the distribution of rescaled cover times becomes sharp in the limit L → ∞. But our results can be
reconciled with those of Dembo et al. by a very slow and nonmonotonic convergence of 〈Tcover(L)〉/(L ln L)2, as
had been indeed proven by Belius et al. [Probab. Theory Relat. Fields 167, 461 (2017)] for Brownian walks, and
was conjectured by them to hold also for lattice walks.
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The problem of how fast a random walk covers a two-
dimensional torus was introduced in the mathematical litera-
ture by Wilf [1], who called it the “white screen problem.” But
it is also of considerable interest for other sciences, as it relates,
e.g., to how fast a grazing animal can collect as much food as
possible [2–4], or how fast information can be spread on or
collected from a network (such as a mobile ad hoc network)
whose topology is not known [5–7]. For that reason, it has also
been discussed extensively in the statistical physics literature
[8–13].

Let us denote by 〈Tcover(L)〉 the average time needed to
cover a torus of L × L sites completely, and by TN(t)=1(L) the
time at which the average number of yet uncovered sites is 1.
Naively, one would expect that both diverge in the same way
with L, at least if the distribution of cover times is not too
broad.

Aldous [14,15] proved that

〈Tcover(L)〉 � 4

π
L2 ln2 L, (1)

and proved that the rescaled time Tcover(L)/(L ln L)2 is indeed
δ distributed in the limit L → ∞. He furthermore conjectured
that Eq. (1) becomes sharp in this limit.

This conjecture was supported by heuristic arguments in
Refs. [9,10], where the main quantity of interest was not
〈Tcover(L)〉 but TN(t)=1(L). These authors argued convincingly
that

TN(t)=1(L)/(L ln L)2 → 4

π
for L → ∞, (2)

and then conjectured that the same is true also for the cover
times, because mean cover times and times at which the
average number of uncovered sites is 1 should scale in the
same way.

The story was seemingly closed when Dembo et al. [16]
proved rigorously that

lim
L→∞

Tcover(L)

(L ln L)2
= 4

π
in probability, (3)

i.e., Aldous’ inequality Eq. (1) is saturated and the limit
distribution is indeed sharp.

When I reconsidered this problem, I was primarily inter-
ested in the way how “true self-avoiding” walks (or “self-
repelling walks”) [17] cover the torus or any other finite lattice
[7,18], and wanted just to document the dramatic difference
between self-repelling and ordinary random walks. However,
soon after I started to simulate ordinary random walks on the
2-torus, it became clear that the data agreed with Eqs. (1) and
(2), but not easily with Eq. (3).

The results presented in the following come from simu-
lations that altogether took about 1 year of CPU time on
modern workstations. Lattice sizes ranged from L = 16 to
L = 65 536 in steps of powers of 2. The number of walks
simulated varied between ≈4 × 107 for L = 16 and 1350 for
L = 65 536. For easier coding and faster codes, boundary
conditions (BCs) were not strictly periodic but helical [19].
For large L the difference is negligible. In particular, also
for helical BCs the lattice is a torus, and the difference with
periodic BCs is just that one of the coordinate axes is slightly
tilted. We verified that the results obtained with periodic BCs
were identical within statistical errors for L � 16. We also
tested two different random number generators (Ziff’s four-tap
generator [20] and the UNIX generator rand48), again with no
significant differences.

Results for 〈Tcover/(L ln L)2〉 against L are shown in Fig. 1.
Whenever error bars are not visible on the data points, they are
smaller than the line thickness. Also shown is the prediction
of Dembo et al. [16] (horizontal line) and a fit for large L.
This fit is a least-square fit (with all three constants fitted) to
all data with L � 128, but the quoted error in the first term
is much bigger that the purely statistical error, in order to
include plausible further correction terms, where we assume
that “plausible” correction terms do not ruin the monotonicity.
Our first conclusion is thus that

lim
L→∞

〈Tcover(L)〉
(L ln L)2

= 1.2473 ± 0.0012. (4)

The right-hand side disagrees with the supposedly exact value
4/π = 1.2732 . . . by about 22 standard deviations (similar
results have been obtained in Ref. [12], albeit with less
statistics). This discrepancy can hardly be blamed on statistical
fluctuations (the likelihood being about 10−100). It cannot be
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FIG. 1. Log-linear plot of average cover time for 2-tori of size
L × L, plotted against L. Whenever no error bars are visible on the
data points, they are smaller than the line thickness. The fit is for
all data with L � 128. The error of the leading term is supposed
to take into account the possibility of further corrections to scaling
that would, however, leave the cover times monotonically decreasing
with L.

blamed on the used random number generators, both of which
have been proven to be reliable even in problems involving
much higher statistics. In view of the extreme simplicity of
the code (about one page), also a programming error is very
unlikely.

A next problem that could cause a wrong asymptotic
estimate could be a very skewed and broad distribution of
cover times. But the distribution of normalized cover times is
expected [21] to be a (randomly shifted) Gumbel distribution
in the limit L → ∞. This gives a roughly exponential tail,
which could not significantly bias any estimates of average
cover times.

In any case, in Figs. 2 and 3 we show such distributions.
They seem to be indeed exponentially cut off at large times,
and definitely do not suggest that estimates of the averages
could be influenced significantly by large T tails.
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FIG. 2. Cumulative distributions Prob(Tcover > T ) for six values
of L.

10-6

10-5

10-4

10-3

10-2

10-1

1

-4 -2  0  2  4  6  8  10

P
ro

b(
T

co
ve

r >
 T

)

(T - <Tcover>) / (Var[Tcover])
1/2

L = 64
L = 256

L = 1024
L = 4096

L = 16384
L = 65536

FIG. 3. Same data as in Fig. 2, but (i) plotted on a logarithmic
y scale, and (ii) plotted against (T − 〈Tcover〉)/{Var[Tcover]}1/2.

To add to the last point, we show in Fig. 4 our es-
timates of the relative fluctuations of Tcover, defined as
{Var[Tcover]}1/2/〈Tcover〉. We see that they decrease with L, as
predicted by Aldous, although our data are not precise enough
to distinguish between a power-law decay with a very small
exponent (≈0.11) and a logarithmic behavior.

To shed more light on this problem, we considered next the
average number N (t) of uncovered sites at time t . For t � L2,
the number of covered sites is independent of L, and given
asymptotically by [22]

s(t) ≡ L2 − N (t) = πt

ln t

[
1 + O

(
ln ln t

ln t

)]
. (5)

The finiteness of the lattice becomes relevant for t ≈ L2, and
for t 
 L2 the decay of N (t) is purely exponential [9]. The
crossover between these two regimes is shown in Fig. 5. There
we show on the y axis not N (t)/L2 itself, but we multiplied
it with exp[t/τ (L)], where the characteristic time τ (L) (the
inverse decay rate) was estimated from fits in the regime
L2 < t < (L ln L)2. The quality of the exponential decay in
this regime is illustrated in Fig. 6 for L = 8192 (but similarly
nice exponentials were also found for all other lattice sizes).
In Fig. 6 we plotted N (t) itself, and we verified that the
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FIG. 4. Relative fluctuations of cover times, plotted against L.
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FIG. 5. The average number N (t) of uncovered sites at time,
plotted for different values of L in the regime t < L2. For clarity, we
show on the y axis not N (t) itself but N (t)/L2 exp[t/τ (L)], where
τ (L) is the numerically found inverse decay rate of N (t) for t 
 L2.
The uppermost curve is for L = 65 536, and the lowest is for L = 64.

exponential decay continued also for t 
 (L ln L)2, although
statistical errors increase rapidly for large t .

This purely exponential decay can be used to determine
τ (L) either by a fit in the regime L2 < t < (L ln L)2 or by just
finding the value of t where N (t) = 1. In the second method we
of course have to take into account that the exponential decay
holds only for t > L2, but this correction becomes negligible
for L → ∞, i.e.,

TN(t)=1 = 2τ (L) ln L[1 + O(1/ ln2 L)]. (6)

Direct numerical estimates of TN(t)=1/(L ln L)2 are shown
in Fig. 7. We see a much slower (probably logarithmic)
convergence than for average cover times, but the data are
completely compatible with Eq. (2).

A last reason for a wrong asymptotic estimate would be
a very slow (and nonmonotonic) convergence with L. We
found no indication for this in our data, but it is conjectured in
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FIG. 6. The average number N (t) of uncovered sites at time,
plotted against t , for L = 8192. The horizontal and vertical straight
lines indicate the values N (t) = 1 and t = 〈Tcover〉.
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FIG. 7. Direct estimates of TN(t)=1/(L ln L)2 plotted against L on
a log-linear plot. The fit just demonstrates that the data are compatible
with Eq. (2).

Ref. [23] that the behavior for walks on the square lattice is as
for off-lattice Brownian walks, which would suggest [23]

π〈Tcover(L)〉
4(L ln L)2

= 1 − 1

2
ln ln L/ ln L + D/ ln L + o(1/ ln L),

(7)
with an unknown constant D (indeed, the conjecture in
Ref. [23] for lattice walks was slightly weaker). In Fig. 8
we show the data shown already in Fig. 1, together with
two analytic curves representing Eq. (7): one with D = 0,
and the other with D = 2. We see that the latter gives a
very good fit, from which we conclude that the mathematical
predictions are presumably all correct, and D = 2.02(2). We
should warn, however, that we could also give decent fits with
different coefficients of the ln ln L/ ln L term (and, of course,
different D).

Finally, we show in Fig. 9 the ratios TN(t)=1/〈Tcover〉. For
very small L, they are <1, because the large-T tails contribute
more to 〈Tcover〉 than to TN(t)=1. For larger L, this effect is
outweighed by the fact that N (〈Tcover〉) > 1 because walks
that do not yet cover at t = 〈Tcover〉 might have 
1 uncovered
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FIG. 8. Same data as in Fig. 1, but with two additional analytic
curves. Both represent Eq. (7), one with D = 0 and the other with
D = 2.
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FIG. 9. Ratios TN(t)=1/〈Tcover〉 plotted against L on a log-linear
plot.

sites. Finally, at very large L, the ratio seems to decrease again,
although this is not significant in view of the large error bars.
Yet it suggests that the ratio converges to 1 for L → ∞, which
would completely reconcile our data with the mathematical
proofs. This is supported by the fact that the ln ln L/ ln L term
is absent in TN(t)=1.

In summary, our numerical data suggest at face value that
TN(t)=1 and 〈Tcover〉 do not scale in the same way with L, in
contrast to rigorous proofs. But they can be reconciled with the
proofs if the (predicted) corrections to scaling are taken into
account. As a result, the convergence towards the asymptotic
behavior should be extremely slow (and nonmonotonic). Thus,
without knowing the subleading terms, attempts to verify the
leading behavior numerically would be futile.

The present paper can be seen as a warning that supposedly
rigorous proofs can be wrong (and should thus be checked
numerically), but more so as a warning that extrapolations
of numerical data can be very subtle and misleading, even if
they look completely benign and harmless. The vast number
of wrong critical exponent estimates found in the literature
bears ample witness to that. Combining rigorous mathematics
and numerics can be useful if, as in the present case, the
mathematics exclude too naive parametrizations, and the
numerics can suggest the value(s) of constants that remain
undetermined by the mathematical arguments.
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carefully reading the manuscript, and to R. Mendonça
for pointing out Ref. [12]. To all of them and also to D. Belius,
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