
PHYSICAL REVIEW E 96, 012114 (2017)

Requisite ingredients for thermal rectification

Emmanuel Pereira*

Departamento de Física–Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, CP 702, 30.161-970 Belo Horizonte MG, Brazil
(Received 15 May 2017; published 10 July 2017)

The present work is devoted to an analytical investigation of the thermal rectification mechanism. More
specifically, we attempt to find the requisite ingredients for such a phenomenon to occur. Starting from the
linearization of the time evolution equations of anharmonic chains of oscillators, we propose some effective
harmonic toy models with a potential that is dependent on temperature, and we investigate their steady heat
currents. This unusual temperature-dependent potential is the footprint of nonlinearity in the final effective linear
model. The approach is not restricted to any particular regime of heat transport. Our results show that thermal
rectification holds in a system if it has asymmetric parameters related to its own structure, e.g., a graded particle
mass distribution and some other parameters or features dependent on the inner temperatures that change as
we invert the baths at the boundaries. The description of rectification in these simplified models, with minimal
ingredients, shows that it is a ubiquitous phenomenon, and it may serve as a guide for further research.
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I. INTRODUCTION

One of the central issues of nonequilibrium statistical
physics is the derivation of the macroscopic laws of transport
from the underlying microscopic models. For the past few
decades, a great deal of work has been devoted to this
subject, particularly to the study of energy transport, whose
predominant mechanisms are conduction by electricity and
heat. It is interesting to note that both of these mechanisms
are of comparable importance, but they occupy a different
status in science. On the one hand, there has been amazing
progress in the field of electronics, not only in the form
of considerable theoretical and experimental advances, but
also with the incredible technological development due to the
invention of transistors and other electronic devices. On the
other hand, despite decades of research [1], the evolution of
the counterpart of electronics that is devoted to the control
and manipulation of heat current has been slow. This lack
of progress has been due mainly to a lack of efficient and
practicable thermal diodes.

A thermal diode, or rectifier, is the basic element in heat
manipulation devices. In a thermal rectifier, the magnitude of
the heat current changes as we invert the system between two
thermal baths; in other words, the current has a preferential
direction. The phenomenon of thermal rectification was
observed long ago [2], but the first manageable theoretical
rectifier was proposed only in 2002 [3]. The most recurrent
diode designs are given by the coupling of two or three different
anharmonic segments, and they present critical problems:
rectification power is small and decays rapidly to zero as
the system size increases [4]. Improvements have been made
by extending the use of a few asymmetric parts to graded
materials, i.e., inhomogeneous systems with a composition
that changes gradually in space. The first microscopic solid-
state thermal diode was built experimentally with graded
nanotubes by Chang et al. [5]. Since then, rectification in
different graded materials has been investigated numerically
[6–10] and analytically [8,11–13]. Another enhancement that
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was investigated theoretically [13] and numerically [9] was
given by the use of systems with long-range interparticle
interactions. This enhancement increases the rectification
power significantly and prevents its decay with the system size.

In short, some progress has been made in the area of thermal
rectification, but we are still waiting for results leading to an
irreproachable and reliable diode. To achieve such an end,
a much better theoretical comprehension of the ingredients
of thermal rectification is highly desirable. However, our
scenario is discouraging: since the work of Debye and Peierls,
the archetypal models for the study of heat conduction in
insulating solids have been given by anharmonic chains of
oscillators, and their analytical investigation is extremely
difficult [14].

To overcome these technical obstacles, approximations [11]
and toy models [8] have been considered in some previous
works. Moreover, there are some previous approaches for the
description of rectification that start by assuming an expression
for the heat current (instead of deriving it) [12,15], thus
they skip the nonlinear dynamical analysis of the underlying
microscopic models. However, these approaches, starting from
established expressions for the heat current, are restricted to
the case of normal transport, in which the heat current is given
by Fourier’s law.

In the present paper, we attempt to find the requisite ingre-
dients for the occurrence of thermal rectification, independent
of the transport regime. Here, based on our awareness of the
technical imbroglio of anharmonic models, we address two
issues: (i) first, we search for effective and treatable models,
with linear dynamics but with the footprint of the anharmonic
chains, i.e., with some residual anharmonic characteristic
related to the rectification; (ii) second, based upon our
investigation of these minimal, simplified models, we want to
point out the basic ingredients responsible for the occurrence
of thermal rectification. We believe that such knowledge will
be quite helpful in future research for efficient diodes.

Here, we show that, within a simple, linear toy model with
an effective potential that is dependent on temperature, it is
possible to guarantee the occurrence of thermal rectification.
Our results, obtained without the necessity of normal transport,
indicate that thermal rectification shall appear in a system de-
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scribed by more intricate interactions if it presents asymmetric
parameters associated with its own structure, such as a graded
particle mass distribution and some other inner parameters or
related features that are dependent on the temperatures in the
bulk, which are determined by the baths at the boundaries; that
is, parameters that are dependent on inner temperatures, which
modify as we invert the baths. In short, we point out a few ingre-
dients that guarantee the occurrence of thermal rectification.

The rest of the paper is organized as follows. In Sec. II we
present the harmonic toy model related to the linearization
in the dynamics of an anharmonic model, without normal
transport. Then, we show the existence of thermal rectification
in such linear, effective model. In Sec. III we extend our
approach, i.e., we build a toy model based on the linear
approximation for the case of a chain with inner stochastic
baths and on-site potentials. Our aim is to show that, also
for an asymmetric system with normal transport, an effective
linear potential that is dependent on temperature is sufficient to
guarantee the occurrence of rectification. Section IV is devoted
to the final remarks.

II. RECTIFICATION IN A CHAIN WITH
TRANSLATIONALLY INVARIANT POTENTIAL

In our search to find the minimal requirements for the
occurrence of thermal rectification in solid-state materials, we
aim to find a streamlined, unadorned, effective model, but with
sufficient ingredients. Moreover, we want to describe the onset
of rectification in models that do not require the local heat
flow expression F = −κ(T ,x)dT /dx (or its discrete version),
i.e., Fourier’s law, which is related to normal transport, and
which was used in some previous works devoted to the study
of rectification [12,15]. Hence, in this section we present
an analytical investigation of systems with translationally
invariant potentials in which an expression for the local heat
current (such as that given above) does not hold.

It is worthwhile to emphasize the following point: When
pursuing the basic ingredients of a given phenomenon, it may
be helpful to use simplified and even toy models, as such
models may serve to distinguish intricate but unimportant
details from the minimal ingredients. Along those lines, i.e.,
as an example of previous research using that strategy, we
recall the description of thermal rectification in the bare,
straightforward model of bars and balls [8]. The results of
that study clarified the ubiquitous occurrence of rectification
in more intricate graded models with normal transport.

One more comment is in order in the context of effective
models for the study of heat conduction: It is also interesting
to recall the harmonic chain of oscillators with inner stochastic
baths in a self-consistent condition (i.e., a condition in which
the temperatures of the inner baths are chosen such that there
is no net heat flow from the inner baths to the chain in the
steady state). It is an old and recurrently studied (harmonic)
version of an “effective anharmonic chain” [16–18]. The inner
baths represent a mechanism of phonon scattering, i.e., this
simplified model takes traces of a system with anharmonic
on-site potentials. Indeed, the Fourier law holds in such a
model, but it does not hold in the purely harmonic chain
without the inner baths [19]. However, this model does not
contain the ingredients necessary for the occurrence of thermal

rectification: in Ref. [20], it is rigorously proved that no
asymmetric version of the model results in thermal rectification
(i.e., versions with interactions that are not dependent on
temperature). See also Ref. [21]. It is very important to stress
that the existence of asymmetry in a system is absolutely not
a guarantee of thermal rectification. More comments and a
simple example are found in the introduction of Ref. [22].
However, in Sec. III, we address these self-consistent chains
of oscillators, and we show that an extended harmonic version,
in which we add an extra potential that is dependent on tem-
perature, becomes suitable to describe thermal rectification.

To construct an effective system, we first analyze some
more complete, reliable models. For the sake of generality,
we consider the most basic models for the study of the heat
conduction mechanism in insulating solids, namely chains
of anharmonic oscillators. As was already mentioned, these
prototype models have been recurrently investigated since the
work of Debye and Peierls [23]. More specifically, we consider
asymmetric chains with translationally invariant potentials and
thermal baths at the boundaries.

We recall that the occurrence of thermal rectification in
some asymmetric anharmonic chains of oscillators has already
been observed, with most of the results achieved by means
of computer simulations. Some examples include the case
of anharmonic on-site potentials [11], in which Fourier’s
law holds, and even graded Fermi-Pasta-Ulam models [6]
with abnormal transport. However, the question regarding the
requisite ingredients for thermal rectification is still open.

Here, our departure point is the one-dimensional chain of
N oscillators with translationally invariant potentials (such
as in the Fermi-Pasta-Ulam case), i.e., a system with the
Hamiltonian

H(q,p) =
N∑

j=1

p2
j

2mj

+
N−1∑
j=1

[
J

2
(qj+1 − qj )2 + λ

4
(qj+1 − qj )4

]
,

where (as we want to study thermal rectification) we take an
asymmetric, graded mass version, e.g., m1 < m2 < · · · < mN .
For concreteness, we write a quartic anharmonic potential in
the above Hamiltonian, but the specific power is unimportant
in our forthcoming analysis. To describe the contact with two
thermal baths at different temperatures, we assume the usual
Langevin dynamics,

dqj = ∂H
∂pj

dt = pj

mj

dt,

dpj = − ∂H
∂qj

dt − ζjpjdt + γ
1/2
j dBj ,

= −
∑

|j−�|�1

[Jj,�q� + λ(qj − q�)3]dt

− ζjpjdt + γ
1/2
j dBj , (1)

where the harmonic interaction is written by means of
the matrix Jj,� = J

2 (−�)j,�, with � denoting the lattice
Laplacian; ζ is a dissipative constant: ζj = ζ (δj,1 + δj,N );
γj = 2ζjmjTj represents the dissipation to the temperatures
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of the baths T1 and TN ; and the baths are described by
Brownian motions B1 and BN , with

〈Bj (t)〉 = 0; 〈Bj (t)B�(s)〉 = δj,�(δj,1 + δj,N )min{t,s}
(i.e., dBj/dt are independent white noises).

It is convenient to introduce the phase-space vector φ with
2N coordinates, φ = (q,p), and to rewrite the dynamical
equations above as

dφk = −(Aφ)kdt − λP ′(φ)kdt + (σdB)k, (2)

where A and σ are 2N × 2N matrices,

A =
(

0 −M−1

J L

)
, σ =

(
0 0
0

√
�

)
,

where J is the N × N matrix for the interparticle interaction
Jlj ; M , L, and � are diagonal N × N matrices: M−1

jj = 1/mj ,
Ljj = ζ (δj,1 + δj,N ), and �jj = γj ; and

P ′(φ)k = 0 if k > N,

= λ[(φk − φk+1)3 + (φk − φk−1)3] if 1 < k < N,

= λ(φk − φk+1)3 if k = 1,

= λ(φk − φk−1)3 if k = N.

To investigate the heat flow into the system, we define, as
usual, the energy Hj of a single site j from H = ∑

j Hj (we
split the terms in H that involve two sites into two equal parts,
one for Hj and the other for Hj−1 or Hj+1). Then we study
dHj /dt , and from the continuity equation (for the inner sites),

dHj

dt
= Fj−1,j − Fj,j+1,

we determine the heat current Fj−1,j from the previous site
to j , and Fj,j+1 from j to the following site. Of course, in
the steady state we have 〈dHj /dt〉 = 0, and so 〈Fj−1,j 〉 =
〈Fj,j+1〉 ≡ F .

To proceed, we first perform a general analysis of the
stochastic dynamics. From the Itô formula [24], for the
function f = (f1,f2, . . . ,fr ) of the phase-space vector φ

(which is an Itô process) and t , i.e., fj (t,φ), we have

dfj = ∂fj

∂t
dt + ∂fj

∂φk

dφk + 1

2

∂2fj

∂φr∂φ�

dφrdφ�

(the sum over repeated indices is assumed). And so, for the
case of φ given by Eq. (2) above and f not an explicit function
of t , i.e., fj ≡ fj (φ), we obtain

fj (φ(t))

= fj (φ(0)) +
∫ t

0

∂fj

∂φi

(φ(s))γ 1/2
i dBi(s)

+
∫ t

0

[
1

2
γi

∂2fj

∂φ2
i

(φ(s)) − [Aφ + λP ′(φ)]k
∂fj

∂φk

(φ(s))
]
ds.

With the notation Qtf ≡ 〈f (φ(t))〉, the Itô formula gives, for
the dynamics,

Qt (fj ) = fj (φ(0)) −
∫ t

0
(QsHfj )(φ(s))ds,

H = −1

2
γi

∂2

∂φ2
i

+ [Aφ + λP ′(φ)]k
∂

∂φk

. (3)

The index i above runs in {N + 1,N + 2, . . . ,2N} (i.e., φi

above represents only the variable p), and the index k runs in
{1,2, . . . ,2N}.

As is well known and mentioned repeatedly, the analytical
investigation of these nonlinear stochastic dynamical systems
is an extremely arduous task. In addition to the technical
difficulties of an intricate study with numerous expressions,
certain relations and details may camouflage the ingredients of
rectification. Consequently, in order to make the problem treat-
able and also more transparent, we pursue an effective simplifi-
cation involving harmonic interactions. That is, we aim now to
build an effective, toy model with a modified linear dynamics
with traces of nonlinearity, and one that will be beneficial for
the investigation of rectification. It is important to point out that
this strategy of finding amendments in the linear dynamics part
of the model, in some way representing nonlinear effects, is
used recurrently in the study of heat conduction. For example,
we recall the “effective phonon theory” proposed in Ref. [25],
in which the starting point is a modification in the spectrum of
the harmonic lattice in order to obtain the frequencies of the
“effective phonon,” which describe the heat in the anharmonic
lattice (see also Refs. [26,27]). As another example of a related
approach that uses corrections in the harmonic theory in order
to describe some aspect of anharmonicity, we recall Ref. [28],
in which the authors propose an effective anharmonic phonon
wave number as a function of temperature. Of course, with
such approaches we hope only to describe qualitative aspects
of the complete problem.

Here, a possible attempt is to consider some sort of mean-
field approximation for the nonlinear part of Eq. (3) above
in order to conceive a modification leading to a linear term.
Hence, we may write λx3 in λP ′ [x = (φj − φj−1)] as λ〈x2〉x,
where 〈·〉 is, e.g., the average in the steady state. Of course,
we do not know the stationary distribution for these nonlinear
stochastic dynamics, but we may consider the case of a system
subjected to a small temperature gradient, and, assuming local
thermal equilibrium, we may use the local Boltzmann-Gibbs
distribution. Roughly, for the case of large λ,

〈x2〉 ≈
∫ ∞

−∞
x2 exp

[
−

(
Jx2

2
+ λx4

4

)
1

T

]
dx/norm

= 2
∫ ∞

0 2
(

T
λ

)1/2
u1/2u−3/4 exp

[− J
T

(
T
λ

)1/2
u1/2 − u

]
du

2
∫ ∞

0 u−3/4 exp
[− J

T

(
T
λ

)1/2
u1/2 − u

]
du

= c0

(
T

λ

)1/2

+ O(λ−1), (4)

where c0 is the coefficient of the leading term in the λ

expansion above: it does not depend on λ, and it comes from
the integration; T is the local temperature (as was already
mentioned, the expression is valid for a large anharmonic term;
in the opposite, purely harmonic case with λ = 0, which does
not interest us, we obviously have 〈x2〉 = T/J ). For the case of
sharp anharmonicity, i.e., λxα with α large, we expect 〈xα−1〉
proportional to T : more specifically, λ〈xα−1〉 ≈ c(λ)T 1−1/α

for c(λ) some function of λ.
Hence, considering these previous arguments and manipu-

lations, we propose to investigate a toy model in our search for
the basic ingredients needed for thermal rectification. This toy
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model is given by a modified linear dynamical system that is
related, in some way, to simplifications in the anharmonic
chain of oscillators. In the simplified model, an effective
anharmonicity, i.e., some vestige of anharmonic interactions,
is represented by the addition (in the linear interaction J φ)
of another linear term that is dependent on temperature. We
investigate the chain with dynamics,

dφk = −(Ãφ)kdt + (σdB)k, (5)

where

Ã =
(

0 −M−1

J̃ L

)
,

and J̃ = J + �; for example, J̃j,j+1 = Jj,j+1{1 +
c(λ)[Tj + Tj+1]/2}, where c(λ) is some properly chosen
parameter. That is, J̃ is the previous, usual harmonic
interaction J plus an extra term that depends on temperature.
For ease of computation, instead of taking � as J , with
off-diagonal elements, we assume it is a diagonal matrix, with
elements changing linearly with temperature,

�j,j ≡ aj = c(λ)

[
T1 + j − 1

N − 1
(TN − T1)

]
. (6)

T1 and TN are the temperatures of the sites at the boundaries,
linked to the baths. We emphasize that the detailed expression
for � assumed above (as a diagonal matrix and linear function
of T ) is not important to establish the occurrence of thermal
rectification: the key fact, as we will see, is the bulk of the chain
with some dependence on temperature, which will change as
we invert the baths at the boundaries.

Now, with a linear model, the problem becomes more
accessible: the analytical study of the classical harmonic
chain of oscillators is an old problem. Precise approaches

and some rigorous, exact results are well known for the
case of a homogeneous (or essentially homogeneous) system.
For example, the exact expression for the heat current in a
homogeneous chain is presented in the seminal work of Rieder,
Lebowitz, and Lieb [19]. A different approach, as well as
properties for the steady state of periodic harmonic chains, is
obtained by Casher and Lebowitz [29]. Detailed results for
chains of oscillators with alternated masses are presented in
Ref. [30]. However, the precise analytical study of a complete
inhomogeneous chain seems more complicated.

Here, we will follow the approach developed by Casher and
Lebowitz [29] to obtain an integral representation for the heat
current in the chain. The asymmetry in the system complicates
the work of solving such integrals to get an exact expression for
the current. Thus we take small systems, with few sites, and we
use numerical methods to integrate the expression for the heat
current. We compare the results for a given chain between two
thermal baths and the same chain with inverted baths in order to
confirm the occurrence of thermal rectification. The existence
of such a phenomenon in larger chains will be made clear by
the algebraic expressions in the integral representation, as we
will argue later.

According to Ref. [29], for the chain of oscillators with
dynamics given by Eq. (5), in a steady state, the heat current
from the first bath to the first site, and thus the heat current
into the chain, is given by

F1 = (T1 − TN )ζ 2m1mN

π

∫ ∞

−∞
dω ω2

∣∣Z−1
1,N (ω)

∣∣2
, (7)

where Z−1
1,N = C1,N/detZ, C1,N is the cofactor of Z1,N , and

Z1,N is the matrix involving sites 1,2, . . . ,N with

Z(ω) = J̃ − iωML − ω2M. (8)

After some algebraic manipulation, it is still possible to rewrite
the above equation for F1 as

F1 = (T1 − TN )ζ 2m1mN

π

∫ ∞

−∞
dω

ω2|C1,N (ω)|2
(K1,N − ζ 2ω2m1mNK2,N−1)2 + ζ 2ω2(m1K2,N + mNK1,N−1)2

(9)

[see Eq. (2.20) in Ref. [29]], where Kj,k is the determinant of
the matrix (J̃ − ω2M) for a chain that starts from the j th site
and ends with the kth one.

As was mentioned, for our case of asymmetric interactions
it is still difficult to find the exact final expression for the
heat current given above (i.e., to perform the integral in ω).
However, it is not necessary to observe the occurrence of
thermal rectification. Indeed, according to the formulas, the
heat current is given by the integration of detZ (or equivalently,
by the integration of some Kj,�). In addition, Z involves the
sum of �, which is the effective anharmonicity represented
here by a function of temperature changing linearly as we
go along the chain, and of M , which is the particle mass
distribution. As we invert the two thermal baths, M does not
change since it is determined only by the masses of the particles
in the chain, but � does change. In our approximation, it is
given by the linear function determined by the temperatures
of the baths at the boundaries; in any case, even for other

functions of T in �, it will be related to the baths and it
will change as we invert them. In short, we expect to have
a different detZ with the inversion of the baths, and thus a
different heat current. That is, we expect the occurrence of
thermal rectification. Note that it does not hold for the purely
harmonic chain, i.e., in the absence of �: in such a case, |detZ|
does not involve the temperatures, and thus F1 only changes
sign upon the inversion of the baths due to the term in front of
the integral in Eqs. (7) and (9).

For the sake of transparency, we compute the heat current
for different chains with N = 3,4,5,6 sites subjected to
different temperatures; we repeat the computation as we
invert the baths in order to confirm the occurrence of thermal
rectification. We list the results below, computed by using
free boundary conditions, which means the end terms in
the diagonal of J are J1,1 = JN,N = 1. We repeated the
computations for the case of fixed boundary conditions,J1,1 =
JN,N = 2, and we obtained similar results (not described
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here). We define the rectification factor as the difference
between the energy flow in a given situation and the related
flow as we invert the baths, divided by the smallest of the
flows:

R ≡ ||F | − |FI ||
min{|F |,|FI |} . (10)

Such a definition is usual in the related study of rectification
in classical anharmonic chains of oscillators, and its meaning
is clear: if, for instance, the flow in a given direction is twice
the flow in the inverted chain, we obtain R = 1, which means
a difference of 100%.

In all situations, we take ζ 2 = 1/1000; a1 = T1, aN = TN ,
and of course a′

1 = TN , a′
N = T1, and a′

j = aN−j+1. aj is the
element of �, the “effective anharmonicity”; see Eq. (6).

First, we analyze some systems subjected to different
temperatures at the boundaries, with different numbers of sites
but with the same mass difference: mN = 2 and m1 = 1. The
results are as follows:

N m1 δmj a1 δaj R

3 1 0.5 0.1 0.1 0.18
3 1 0.5 0.1 0.2 0.42
3 1 0.5 1 1 2.70
3 1 0.5 1 2 5.56

4 1 * 0.1 0.1 0.31
4 1 * 0.1 0.2 0.63
4 1 * 1 1 9.75
4 1 * 1 2 36.07

5 1 0.25 0.1 0.1 0.43
5 1 0.25 0.1 0.2 0.61
5 1 0.25 1 1 23.16
5 1 0.25 1 2 53.07

6 1 0.2 0.1 0.1 0.43
6 1 0.2 0.1 0.2 0.77
6 1 0.2 1 1 231.01
6 1 0.2 1 2 762.52

An asterisk indicates that we take a nonlinear mass
distribution: as in the other cases, m1 = 1 and m4 = 2, but
m2 = 1.5 and m3 = 1.8.

The effect of increasing the mass gradient for a fixed
difference of temperature in the system is as follows:

N m1 δmj a1 δaj R

6 1 0.2 0.1 0.2 0.77
6 1 0.6 0.1 0.2 3.68
6 1 1 0.1 0.2 7.97
6 1 ** 0.1 0.2 26.15

Two asterisks indicate that we consider a geometric mass
distribution: m1 = 0.1, m2 = 0.2, m3 = 0.4, m4 = 0.8, m5 =
1.6, and m6 = 3.2.

It is clear that the simplified linear toy model, in addition to
being suited to describe the occurrence of thermal rectification,
can also show other properties already observed in related
anharmonic models by means of computer simulations [6]. For
example, the rectification factor increases with the increment

of the temperature gradient in the system, as well as with the
rise of asymmetry (mass gradient).

III. THE EFFECTIVE LINEAR MODEL RELATED TO A
SYSTEM WITH ON-SITE ANHARMONIC POTENTIAL

AND INNER RESERVOIRS

To confirm that harmonic chains of oscillators with effec-
tive, temperature-dependent potentials contain features that are
sufficient to describe the intricate properties of anharmonic
chains, specifically thermal rectification, we proceed with a
rapid investigation starting from the model with self-consistent
inner stochastic baths. As was previously recalled, in this old
and recurrently studied model, an effective anharmonicity (or
at least some mechanism of phonon scattering) is already
represented by the inner baths: even in the harmonic ver-
sion, Fourier’s law of heat conduction holds [17,18], and it
disappears if we turn off the inner reservoirs. However, these
inner baths, which lead to Fourier’s law, are not sufficient
to guarantee thermal rectification, which is indeed absent
in any asymmetric version of the model (as was proven
in Ref. [20]). An important comment is in order: in these
models with self-consistent inner baths, the average energy is
conserved in the steady state, thus the models are suitable for
the investigation of heat conduction.

In this section, we show that if we add a temperature-
dependent interaction in the harmonic model with inner reser-
voirs while maintaining the linear dynamics, i.e., following
the strategy described in the previous section, then thermal
rectification emerges.

Let us present some technical details. In order to derive the
effective linear toy model, we start from N oscillators with the
Hamiltonian

H (q,p)=
N∑

j=1

⎡
⎣

⎛
⎝ p2

j

2mj

+ μjq
2
j

2
+

∑
l 	=j

qlJlj qj

⎞
⎠ + λjP(qj )

⎤
⎦,

(11)

where J is symmetric, Jj l = Jlj (a nearest-neighbor inter-
action, as in the previous section), μj > 0, and P is the
anharmonic on-site potential, e.g., P(qj ) = q4

j /4. In addition,
for the dynamics,

dqj = (pj/mj )dt,

dpj = −(∂H/∂qj )dt − ζjpjdt + γ
1/2
j dBj , (12)

where γj = 2ζjmjTj , ζj is the coupling between site j and
its reservoir, and Tj is the temperature of the j th bath; Bj are
independent Wiener processes. With the phase-space notation
φ = (q,p), we have

φ̇ = −Aφ − λP ′(φ) + ση, (13)

where ηj = dBj/dt are independent white noises; A and σ

are 2N × 2N matrices,

A =
(

0 −M−1

J + M L

)
, σ =

(
0 0
0

√
�

)
, (14)

where M , L, M, and � are the diagonal matrices with Mjj =
mj , Ljj = ζj , Mj,j = μj , and �jj = γj . P ′ is the derivative
of P .
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Hence, from Itô’s formula,

Qt (f ) ≡ 〈f (φ(t))〉 = f (φ(0)) −
∫ t

0
(QsHf )(φ(s))ds,

H = −1

2
γi∇2

i + [Aφ + λP ′(φ)] · ∇,

where ∇ means the derivation with respect to φ (i takes
values in [N + 1, . . . ,2N ]). Again, a possible linearization
is obtained with the replacement

Aφ + λP ′(φ) −→ [A + λ〈φ2〉]φ,

where, for the case of weak interparticle interaction J and
large anharmonicity λ, the average is essentially given by [see
Eq. (4)]

〈φj 〉 ≈
∫ ∞

−∞
q2 exp

[
− 1

Tj

(
μq2

2
+ λq4

4

)]
dq/norm

≈ c

(
Tj

λ

)1/2

,

where Tj is the temperature of the j th bath.
That is, a toy model related to this anharmonic problem is

given by the stochastic dynamics

φ̇ = −Ãφ + ση, (15)

where now

Ã =
(

0 −M−1

J + M + cλT
α L

)
, σ =

(
0 0
0

√
�

)
,

cλ is some function of λ (and gives the “anharmonicity”
strength), T is the diagonal matrix Tj,k = δj,kTj , and α is some
parameter also related to the anharmonicity. It is important to
stress that, for the occurrence of thermal rectification, as we
show below, it is only necessary to have α 	= 0, i.e., the precise
dependence on temperature of the sites in the bulk does not
matter.

Similar linear stochastic dynamical systems have already
been investigated exhaustively [17,18], and detailed expres-
sions for the heat current, in different situations, have been
derived. In the steady state, for the heat flow between sites j

and j + 1, in the case of weak nearest-neighbor interparticle
interaction [i.e., small J in J (φj+1 − φj )2], uniform μj = μ,
and cλ = c, we have for the leading order in an expansion in
powers of J ,

Fj,j+1 = 2J 2ζm−1
j m−1

j+1(μ+cT α
j

mj
− μ+cT α

j+1

mj+1

)2 + 2ζ 2
(μ+cT α

j

mj

) (Tj − Tj+1).

(16)

Therefore, taking for example a system with graded mass
distribution m1 < m2 < · · · < mN , in the formula Fj,j+1 =
κ(Tj ,Tj+1,mj ,mj+1)(Tj − Tj+1), with κ as given above, we
note that we have sufficient ingredients for the occurrence
of thermal rectification, as described in detail in Ref. [12]:
namely, we have a Fourier-like expression for the local heat
flow, local thermal conductivity that is dependent on tem-
perature, and other local parameters with graded distribution,
such as the particle masses. Here, for these systems with inner
stochastic baths, we have the condition of normal heat transport

that was absent in the previous section. That is, after detailed
computations, a Fourier-like expression for current appears.
Note, however, that we do not take it as part of the starting
assumptions. As was mentioned earlier, it emerged after the
calculations.

IV. FINAL REMARKS

A central issue in the study of energy transport in nonequi-
librium statistical physics is the theoretical understanding of
thermal rectification mechanisms. It is a problem with both
theoretical and experimental concerns, which are motivated
by the need for efficient thermal diodes to be used in the
manipulation and control of heat flow.

In this context, in the present paper we propose an analytical
investigation of some effective harmonic toy models related
to more intricate systems, i.e., those built after a profitable
linearization of their stochastic dynamics.

We do not know how different these toy models are from the
related anharmonic ones, but it is clear that these minimalistic
structures retain some of the features of the more realistic
versions. The main message of this paper is the occurrence of
thermal rectification even in a poor, quite simplified model.
As we already mentioned, when searching for the minimal
ingredients needed for a given phenomenon to occur, an
analysis of toy models may enable us to discard complicated
but unimportant details. In addition, the use of minimalistic
models allows us to unveil the basic properties of more
intricate systems. For example, in Ref. [8] a simple chain of
elastically colliding particles of two different kinds (bars and
bullets) is used to show the ubiquitous occurrence of thermal
rectification in graded materials. A minimal model of heat
and particle transport based on zero-dimensional dynamics is
considered in Ref. [31] in order to understand thermoelectric
and thermochemical efficiency. Local hierarchical models are
built to clarify the intricate properties of renormalization-group
flow in quantum field theory [32].

Some improvements to the analysis carried out herein are
possible. For example, we can improve the choice of the
effective harmonic potential that is dependent on temperature:
for the case of original systems with translational invariance,
the effective potential could be taken as cλ(Tj ,Tj+1)(φj+1 −
φj )2, as commented on in a previous section. In any case, the
results described in the present work are already enough to
reveal the ingredients needed for the occurrence of thermal
rectification in a chain. Specifically, the phenomenon holds if
the system has asymmetric inner parameters that are related to
its own structure, e.g., a graded mass distribution, and some
other inner parameters or features related to temperature. Our
results also show which of those parameters are linked to the
baths at the ends. Note that the anharmonic potentials in more
realistic versions of oscillator systems do not explicitly depend
on temperature, but they indeed bring some temperature
dependence to the heat flow problem. For example, in a chain
with normal transport, anharmonic potentials lead (due to an
intricate nonlinear dynamics) to a local thermal conductivity
that depends on temperature.

Once again, our approach is not limited by the validity of
Fourier’s law, which was assumed in some previous analytical
studies of thermal rectification mechanisms. To conclude, it is
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worthwhile to stress that the description of rectification in a
simple model, with minimal ingredients, shows the ubiquity
of rectification, and it may serve to guide additional work in
the search for effective thermal diodes.
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