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Linear and nonlinear response of the Vlasov system with nonintegrable Hamiltonian
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Linear and nonlinear response formulas taking into account all Casimir invariants are derived without use of
angle-action variables of a single-particle (mean-field) Hamiltonian. This article deals mainly with the Vlasov
system in a spatially inhomogeneous quasistationary state whose associating single-particle Hamiltonian is not
integrable and has only one integral of the motion, the Hamiltonian itself. The basic strategy is to restrict the
form of perturbation so that it keeps Casimir invariants within a linear order, and the single particle’s probabilistic
density function is smooth with respect to the single particle’s Hamiltonian. The theory is applied for a spatially
two-dimensional system and is confirmed by numerical simulations. A nonlinear response formula is also derived
in a similar manner.
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I. INTRODUCTION

Long-range interaction systems show several phenomena
which are out of scope of the equilibrium statistical mechanics
[1,2]. One of them is that such a system is likely trapped
in out-of-equilibrium quasistationary states (QSSs) whose
duration increases with the number N of elements in a system
and diverges when the large population limit N → ∞ is taken
[1–5]. Then, if the system of interest is huge enough, the
relaxation time is so long that one cannot see the thermal
equilibrium state. It is hence interesting to investigate the
nonequilibrium statistical mechanics or thermodynamics of
QSSs. In particular, the focus of this article is on the effect of
external forces in the QSSs.

When N is huge enough, the temporal evolution of
the long-range interaction system is well described by the
Vlasov equation [6–8] (also called the collisionless Boltzmann
equation [3]), which describes the evolution of a density
function defined on a μ space, a single-particle phase space.
The QSSs are interpreted as stable stationary solutions to the
Vlasov equation [4]. The Vlasov equation has unique solutions
for each given initial state [7,8], and thus the QSSs depend not
only on macroscopic variables such as temperature and energy
but also on mesoscopic things, details of the single-particle
density function. Thus the study on responses to external forces
in QSSs should be based on the Vlasov equation.

The linear response theory for the Vlasov systems has been
developed for stability analysis in self-gravitating systems [3],
for looking into plasma responses in magnetically confined
plasmas [9], for computing the time asymptotic response to
the external forces in both spatially homogeneous [10] and
inhomogeneous [11] QSSs, and for a kind of fluid systems
[12]. By use of this theory, critical phenomena in QSSs [13]
are investigated, and some information of unforced systems is
extracted by observing responses to oscillating external forces
[11]. Furthermore, the nonlinear response theory has been
developed to investigate the response to the finite size external
forces in QSSs near or on the critical point in which the linear
response theory does not work [14,15]. These response formu-
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las have been derived only when the single-particle effective
Hamiltonian is integrable and the angle-action variables are
used for solving test particle dynamics.

Analyzing the linearized equation with the nonintegrable
effective Hamiltonian is practically important, because sys-
tems in multidimensional spaces are more realistic (for ex-
ample, self-gravitating systems in the three-dimensional (3D)
space [3], and magnetically confined hot plasmas [9]) and their
effective Hamiltonians are nonintegrable in general. To tackle
this problem, one method to take into account constraints
a posteriori is proposed to obtain linear response formulas
approximately [16]. This method provides canonical (taking
into account the normalization) and microcanonical (taking
into account the normalization and the energy conservation)
linear responses and other kinds of linear responses with
a finite number of constraints systematically. However, one
cannot obtain the linear response of the isolated systems with
this method because it is practically impossible to take into
account infinitely many Casimir constraints with this method.
The same problem lies in the stability analysis of the Vlasov
equation [17]. If the effective Hamiltonian is not integrable,
it is impossible to obtain the precise stability criterion with a
finite time step procedure in general, since one should obtain
an infinite number of Lagrangian multipliers associated with
the Casimir constraints [18].

The above problems in the linearized equation should be
solved as the first step to understand the dynamics around the
QSSs with nonintegrable effective Hamiltonian. After that, we
are able to continue tackling more difficult problems on nonlin-
ear Landau damping, nonlinear stability, nonlinear response,
critical phenomena and their universality, and finite N effects.

In this article, we first obtain the linear response of
Vlasov systems in multidimensional spaces without solving
the linearized Vlasov equation and without using the angle-
action variables. Let an initial state without external field be
f0(q, p) and let a final state be fh(q, p) after exerting an
external field h. The linear response is obtained by restricting
the form of accessible perturbation by assuming smoothness of
fh with respect to h, and by taking into account the constraint
conditions that the perturbation should be on a tangent “plane”
of a constraint surface at f0.

Furthermore, we mention the nonlinear response for-
mula [14] derived via the transient (T) linearization method
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developed by Lancellotti and Dorning [19–21] to analyze
the plasma oscillation and nonlinear Landau damping. In this
theory, the Vlasov equation is linearized around an “unknown”
asymptotic stationary state. Solving this equation, we obtain a
self-consistent equation determining the asymptotic state. The
asymptotic solution is obtained by redistributing the initial
density function along iso asymptotic-effective-Hamiltonian
sets, and this formula is called the rearrangement formula [22].
The same formula is also derived for predicting the QSSs in
a one-dimensional (1D) system [23] and a 3D self-gravitating
system [24] via another consideration when nonstationary
initial states satisfy a (generalized) viral condition and there is
no parametric resonance. It is derived that the rearrangement
formula keeps Casimir invariants at the order of T linearization.
Then, the nonlinear response formula is derived in a similar
manner to derive the linear response formula in this article.

This article is organized as follows: The model and the
dynamics in a mean-field limit N → ∞ are first introduced
in Sec. II, and the explicit form of the constraint condition
coming from Casimir invariants is derived in Sec. III. Based
on this constraint condition, the linear response formula is
derived in Sec. IV and several examples are exhibited in
Sec. V. We derive the nonlinear response formula, make a brief
comment on problems in the T-linearized Vlasov equation for
spatially multidimensional systems in Sec. VI, and summarize
this article in Sec. VII.

II. MODEL AND ITS DYNAMICS

A. Model and Vlasov equation

Let us consider a system with long-range interaction whose
Hamiltonian is

HN =
N∑

i=1

‖ pi‖2

2
+ 1

2N

N∑
i,j=1

V (qi − qj ) + h(t)
N∑

i=1

�(qi),

(1)

where qi denotes configuration of the ith particle, pi its
conjugate momentum, V the interparticle (intersite) potential,
and h(t)�(qi) the interaction between the external field h and
the ith particle. Taking the mean-field limit N → ∞ [6–8], the
temporal evolution of this system can be described in terms
of the single-particle density function f (q, p,t) which is a
solution to the Vlasov equation,

∂f

∂t
+ {H [f ],f } = 0, (2)

where H [f ] is an effective single-particle Hamiltonian,

H [f ] = ‖ p‖2

2
+ V [f ](q) + h(t)�(q), (3)

and {a,b} is the Poisson bracket given by

{a,b} = ∂a

∂ p
· ∂b

∂q
− ∂a

∂q
· ∂b

∂ p
. (4)

The system is initially in a QSS, f0, and the effective
Hamiltonian

H0(q, p) = H [f0](q, p) = ‖ p‖2

2
+ V [f0](q) (5)

has only one integral of motion, H0 itself. The f0 is expressed
as f0(q, p) = F0(H0(q, p)) by use of a monotonically decreas-
ing function F0. This assumption is reasonable when we are in-
terested in the asymptotic behavior of perturbations around the
formally stable solutions to the Vlasov equation [4,5,17,25].
The formal stability is defined in terms of positive or negative
definiteness of the second variation of an invariant functional
around f0 which is a solution to the optimization problem:

maximizing S [f ] =
∫∫

s(f ) dq d p,

subject to 1 = N [f ] =
∫∫

f dq d p,

E = E [f ] =
∫∫ ‖ p‖2

2
f dq d p

+ 1

2

∫∫
V [f ]f dq d p, (6)

where s is a convex function. A formally stable solution is
linearly stable [25]. By solving the optimization problem, we
have a solution,

f0(q, p) = (s ′)−1(βH0 + α) ≡ F0(H0), (7)

where s ′ denotes ds(x)/dx, and α and β are Lagrangian
multipliers with respect to the normalization and the energy
conservation. Since s is convex, then the inverse of its
first derivative, (s ′)−1, is a strictly decreasing function. The
parameter β must be positive.

B. Linear response

The external field h(t) is turned on and it converges to
a constant h(t) → h as t → ∞. In previous studies [10–12]
the asymptotic linear response δf is obtained by solving the
linearized Vlasov equation around f0,

∂gp

∂t
+ {H0,gp} + {V [gp] + h(t)�,f0} = 0,

where gp(t) ∼ O(h) is a perturbation around f0, and by taking
the limit, δf = limt→∞ gp(t). The angle-action variables of the
Hamiltonian H0 are necessary to solve the linearized Vlasov
equation, but it is impossible in general for multidimensional
systems. To avoid this problem, we focus on constraint
conditions restricting a form of perturbations, and we obtain
the linear response δf without solving the linearized Vlasov
equation.

III. CASIMIR INVARIANTS

We assume that f and its derivatives converge to zero
rapidly enough as ‖ p‖ → ∞. Furthermore, f and its deriva-
tives are assumed to vanish on the boundary of the spatial
domain or the system has a periodic boundary condition
with respect to q. Under these assumptions, it is shown (see
Appendix A) that the Vlasov equation keeps values of Casimir
functionals,

C [f ] =
∫∫

c(f (q, p,t)) dq d p, (8)

for any smooth function c. The linearized Casimir conservation
condition is expressed so that the accessible perturbation δf
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satisfies ∫∫
c′(f0(q, p))δf (q, p)dqd p = 0, (9)

where c′(x) = dc/dx for any smooth function c. Since f0(q, p) = F0(H0(q, p)), F0 is a monotonically decreasing function, and
c is chosen arbitrarily, the constraint condition (9) is equivalent to the condition

0 =
∫∫

R(H0(q, p))δf (q, p) dq d p =
∫∫

R(H0(q, p))〈δf 〉H0(q, p) dq d p (10)

for any function R [17]. The second equality is shown as follows:∫∫
R(H0(q, p))〈δf 〉H0(q, p) dq d p =

∫∫
R(H0(q, p))

∫∫
δf (q ′, p′)δ(H0(q, p) − H0(q ′, p′)) dq ′d p′∫∫

δ(H0(q, p) − H0(q ′′, p′′)) dq ′′d p′′ dq d p

=
∫∫

R(H0(q, p))
[∫∫

δf (q ′, p′)δ(H0(q, p) − H0(q ′, p′))
S(H0(q, p))

dq ′d p′
]
dq d p

=
∫∫

δf (q ′, p′)
[∫∫

R(H0(q, p))δ(H0(q, p) − H0(q ′, p′))
S(H0(q, p))

dqd p
]
dq ′ d p′

=
∫∫

δf (q ′, p′)
R(H0(q ′, p′))S(H0(q ′, p′))

S(H0(q ′, p′))
dq ′ d p′

=
∫∫

R(H0(q, p))δf (q, p) dq d p, (11)

where S denotes a volume of the iso-H0 set,

S(E) =
∫∫

δ(E − H0(q ′, p′)) dq ′ d p′. (12)

More generally it is possible to show as in the 1D case [14]
that∫∫

〈a〉H0(q, p)b(q, p) dq d p =
∫∫

a(q, p)〈b〉H0(q, p) dq d p

(13)

for the functions a and b when 〈a〉H0b and a〈b〉H0 are
integrable. Thus, it has been shown that condition (10) is
equivalent to

〈δf 〉H0 = 0, for almost every (q, p). (14)

IV. LINEAR RESPONSE FORMULA

A. Implicit form of linear response

After the external field is exerted and the limit t → ∞ is
taken, the effective Hamiltonian becomes

Hh(q, p) = H0(q, p) + δV (q) + h�(q) + O(h2), (15)

where the linear response δV ≡ V [δf ]. Let the initial and final
states be denoted, respectively, as

f0(q, p) = F0(H0(q, p)) = G0(H0(q, p))
〈G0〉μ ,

fh(q, p) = Fh(Hh(q, p)) = Gh(Hh(q, p))
〈Gh〉μ , (16)

where 〈a〉μ = ∫∫
a dq d p and

Gh(Hh) = G0(Hh) + hG1(Hh) + O(h2)

= G0(H0) + G′
0(H0)(Hh − H0)

+hG1(H0) + O(h2). (17)

Expanding fh around f0, we have

fh = f0 + G′
0(H0)(δV + h�) + G1(H0)

〈G0(H0)〉μ
− 〈G′

0(H0)(δV + h�) + G1(H0)〉μG0(H0)

〈G0(H0)〉2
μ

+O(h2). (18)

We then obtain the linear response,

δf ≡ F ′
0(H0)(δV + h�) + G1(H0)

〈G0(H0)〉μ
−〈F ′

0(H0)(δV + h�)〉μF0(H0)

− 〈G1(H0)〉μF0(H0)

〈G0(H0)〉μ
, (19)

by taking the linear order. The function G1 is determined so
that 〈δf 〉H0 = 0; that is,

G1

〈G0〉μ = 〈G1〉μ
〈G0〉μ F0 − F ′

0(H0)〈δV + h�〉H0

+F0(H0)〈F ′
0(H0)(δV + h�)〉μ, (20)

where F ′
0(H0) = G′

0(H0)/〈G0(H0)〉μ. The response is there-
fore implicitly given by

δf = F ′
0(H0)(δV (q) − 〈δV (q)〉H0 )

+hF ′
0(H0)(�(q) − 〈�(q)〉H0 ). (21)
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Solving the implicit linear response formula (21) by using a
biorthogonal basis, we obtain explicitly the linear response
taking into account the constraint conditions.

We make a comment on the case that there exist two
integrals and f0 depends on both of them. Let L =∫∫

L(q, p)f dq d p be an additional integral (the angular mo-
mentum density, for example). We consider the optimization
problem (6) and we add the additional constraint L = const
to Eq. (6). A solution f0 depends on H0 and L as f0 =
F0(βH0 + νL), where β and ν are Lagrangian multipliers.
Thus, the accessible perturbation satisfies

〈δf (q, p)〉(βH0(q, p)+νL(q, p)) = 0, (22)

where the bracket 〈·〉(βH0(q, p)+νL(q, p)) means the average
taken over the iso-(βH0 + νL) set. It should be noted that a
form of constrained perturbation depends on how f0 depends
on H0 and L. We should find ways to restrict the perturbation
form for each stationary state.

If H0 has three independent integrals of motion, one can
use angle-action variables and can solve the linearized Vlasov
equation.

B. Explicit form of linear response

We introduce the biorthogonal basis [3,26,27], {di(q)}i∈I
and {ui(q)}i∈I′ , where the sets I′ and I satisfy I′ ⊂ I ⊂ Z. A
perturbation of spatial density is spanned by the base {di}i ,

δρ(q) =
∫

δf (q, p)d p =
∑
i∈I

aidi(q). (23)

The base {ui}i is introduced as

ui(q) ≡ (V ∗ di)(q) ≡
∫

V (q − q ′)di(q ′)dq ′, (24)

and the orthogonal relation∫
di(q)ūj (q)dq = λjδij (25)

holds, where λi 
= 0 when i ∈ I′ and it vanishes otherwise,
and δij is the Kronecker delta. The overbar denotes complex
conjugate. Integrating the terms including δf or δV in Eq. (21)
with respect to p, we have∫

δf d p −
∫

F ′
0(H0)(δV (q) − 〈δV (q)〉H0

)d p

=
∑
i∈I

ai

[
di −

∫
F ′

0(H0)(ui(q) − 〈ui(q)〉H0 )d p
]
. (26)

Multiplying both sides by ūj and integrating them with respect
to q, we have

∑
i∈I′

ai

[
λjδij −

∫
F ′

0(H0)(uiūj −〈ui〉H0〈ūj 〉H0 )d pdq
]

=
∑
i∈I′

[
λjδji −

∫
F ′

0(H0)(ūj ui −〈ūj 〉H0〈ui〉H0 )d pdq
]
ai.

(27)

Let F = (Fji)(i,j )∈I′×I′ be a matrix whose elements are given
by

Fji =
∫

F ′
0(H0)(ūj ui − 〈ūj 〉H0〈ui〉H0 )d p dq. (28)

We further assume that the term coupling with external force
can be expanded as

�(q) =
∑
i∈I′

biui(q). (29)

We then have

h

∫
F ′

0(H0)(�(q) − 〈�(q)〉H0
)d p

= h
∑
i∈I′

bi

∫
F ′

0(H0)(ui(q) − 〈ui(q)〉H0
)d p, (30)

by integrating the term coming from the external force in
Eq. (21) with respect to p. Multiplying it by ūj and integrating
with respect to q, we have (as we have already done)

h
∑
i∈I′

Fjibi . (31)

Combining Eqs. (27) and (31), we get the linear equation
determining {ai}i∈I′ ,∑

j∈I′
(λjδij − Fij )aj = h

∑
j∈I′

Fij bj . (32)

Introducing the symbols x = (xi)i∈I′ for x = a,b and 
 =
diag(λi)i∈I′ , we can simplify the equation as follows:

(1 − 
−1F)a = h
−1Fb, (33)

and it is solved as

a = h(1 − F)−1Fb = hD−1(1 − D)b, (34)

where 1 denotes the unit matrix and D = 1 − 
−1F. The
maximal eigenvalue of D is zero when f0 might be marginally
stable, and corresponds to the critical point. When we apply
Eq. (34) to 1D systems, this explicit response formula formally
coincides with what is derived in Ref. [11].

V. EXAMPLES: HAMILTONIAN MEAN-FIELD MODELS

A. One-dimensional case

Let us examine the proposed theory by use of the Hamilto-
nian mean-field (HMF) model whose Hamiltonian is

H =
N∑

i=1

p2
i

2
− 1

2N

∑
i 
=j

cos(qi − qj ) − h

N∑
i=1

cos qi, (35)

where h is an external field, and pi ∈ R, qi ∈ [−π,π ) for
i = 1,2, . . . ,N . In the equilibrium state, this model shows
second order phase transition at the temperature T = 0.5,
where the Boltzmann’s constant kB = 1. By use of the linear
and nonlinear response formulas, the critical phenomena in
the equilibrium state and QSSs for the isolated HMF model
are investigated and it is shown that the Casimir constraints
bring about the nonclassical critical exponents [13–15]. We
here check that the present method yields the linear response
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formula same with the previously obtained one for the 1D
HMF model. The effective Hamiltonian is

H = p2

2
−

∫∫
cos(q − q ′)f (q ′,p′,t)dq ′dp′ − h cos q.

(36)

Applying Eq. (21) for the HMF model, we can derive the linear
response formula

δf = (−δM − h)F ′
0(H0)(cos q − 〈cos q〉H0 ), (37)

where δM = ∫∫
cos qδf dq dp. Multiplying both sides by

cos q and integrating over the μ space, we obtain the linear
response as

δM = 1 − D

D
h, (38)

where

D = 1 +
∫∫

F ′(H0)
(

cos2 q − 〈cos q〉2
H0

)
dq dp. (39)

This is equivalent to the linear response formula obtained in
Ref. [13].

For more general 1D systems it is obvious that Eq. (21) is
equivalent to the linear order of the nonlinear response formula
derived in Ref. [15].

B. Two-dimensional case

We next examine our theory in the two-dimensional (2D)
system whose Hamiltonian is

H =
N∑

i=1

‖ pi‖2

2
− hx

N∑
i=1

cos xi − hy

N∑
i=1

cos yi

− 1

2N

∑
i 
=j

[cos(xi − xj ) + cos(yi − yj )

+ cos(xi − xj ) cos(yi − yj )], (40)

where qi = (xi,yi) ∈ [−π,π )2 for i = 1,2, . . . ,N [28,29]. Let
us assume the initial QSS f0 with hx = hy = 0 is even with
respect to both x and y. Then, the effective Hamiltonian is

H0 = p2
x + p2

y

2
+ V (x,y),

(41)
V (x,y) = −Mx cos x − My sin y − Pcc cos x cos y,

where

Mx =
∫∫

cos xρ(q)dq, My =
∫∫

cos yρ(q)dq,

Pcc =
∫∫

cos x cos yρ(q)dq,

(42)

and where ρ(q) = ∫∫
f (q, p)d p. The effective potential is

shown in Fig. 1.
To compute the linear response of the macroscopic ob-

servables Mx , My , and Pcc to the external field hx = hy =
h, it is necessary to compute 〈cos x〉H0 , 〈cos y〉H0 , and
〈cos x cos y〉H0 . We here set Mx = My = M and Pcc = P .

V(x,y)

x
y

FIG. 1. The effective potential of the Hamiltonian (41). A
minimum point is at (0,0) and min V = −2M − P . Saddle points are
at (±π,0) and (0,±π ) and V = P . A maximum point is on (±π,±π )
and max V = 2M − P , where M > P > 0.

For any smooth function g depending only on q, 〈g〉E is
expressed as follows (see derivation in Appendix B):

〈g〉E =
∫

R2
d p

∫
[−π,π)2

g(q)δ(H0(q, p) − E)dq

= 2π

∫
[−π,π)2

g(q)�(E − V (x,y))dq. (43)

Since H0 is even with respect to both x and y, we have

〈sin x〉H0 = 〈sin y〉H0 = 〈sin x cos y〉H0

= 〈sin x sin y〉H0 = 〈cos x sin y〉H0 = 0. (44)

When H0 > 2M − P = max V (x,y), we have

〈cos x〉H0 = 〈cos y〉H0 = 〈cos x cos y〉H0 = 0. (45)

Then we have to compute 〈cos x〉H0 , 〈cos y〉H0 , and
〈cos x cos y〉H0 when H0 < 2M − P , and these are exhibited
in Appendix C. We next derive an explicit form of linear
responses,

δMx =
∫∫

cos xδf dqd p, δMy =
∫∫

cos yδf dqd p,

δPcc =
∫∫

cos x cos yδf dqd p. (46)

The following notations are introduced for simplicity:

G1 = −
∫∫

F ′
0(H0)

(
cos2 x − 〈cos x〉2

H0

)
dqd p

= −
∫∫

F ′
0(H0)

(
cos2 y − 〈cos y〉2

H0

)
dqd p,

G2 = −
∫∫

F ′
0(H0)(cos x cos y − 〈cos x〉H0〈cos y〉H0 )dqd p

= −
∫∫

F ′
0(H0)

(
cos x cos y − 〈cos x〉2

H0

)
dqd p,

G3 = −
∫∫

F ′
0(H0)(cos2 x cos y − 〈cos x cos y〉H0〈cos x〉H0 )

× dqd p
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= −
∫∫

F ′
0(H0)(cos x cos2 y − 〈cos x cos y〉H0〈cos y〉H0 )

× dqd p,

G4 = −
∫∫

F ′
0(H0)

(
cos2 x cos2 y − 〈cos x cos y〉2

H0

)
dqd p.

(47)

By use of them and Eq. (21), we have⎛
⎝1 − G1 −G2 −G3

−G2 1 − G1 −G3

−G3 −G3 1 − G4

⎞
⎠

⎛
⎝δMx

δMy

δPcc

⎞
⎠

=
⎛
⎝hxG1 + hyG2

hxG2 + hyG1

(hx + hy)G3

⎞
⎠. (48)

We therefore obtain the explicit linear response formula as
follows:

δMx = χ1hx + χ2hy, δMy = χ2hx + χ1hy,

δPcc = χ3(hx + hy),
(49)

where explicit expressions of χ1, χ2, and χ3 are

χ1 = 1

det G

(
G1 − G2

1 − G1G4 + G2
2 + G2

3

+G2
1G4 − 2G1G

2
3 + 2G2G

2
3 − G2

2G4
)
, (50)

χ2 = 1

det G

(
G2 + G2

3 − G2G4
)
, (51)

χ3 = 1

det G
G3(1 − G1 + G2)

= G3

1 − G1 − G2 − G4 + G1G4 + G2G4 − 2G2
3

, (52)

respectively, where the determinant of G, the matrix in the left
hand side of Eq. (48), is

det G = (1 − G1 + G2)
(
1 − G1 − G2 − G4

+G1G4 + G2G4 − 2G2
3

)
. (53)

A way to compute terms including 〈cos x〉H0 , 〈cos y〉H0 , and
〈cos x cos y〉H0 is exhibited in Appendix D.

When F0(H0) is spatially homogeneous, that is, M = P =
0, we have G2 = G3 = 0 and G1 and G4 (1 − G1 < 1 − G4

when M = P = 0) do not vanish. Thus, the susceptibilities
are

χ1 = G1

1 − G1
, χ2 = χ3 = 0, (54)

in the disordered phase.
We numerically confirm the linear response formula. The

initial state is the Maxwell-Boltzmann (MB) type:

fMB(q, p) = exp(−H0/T )

〈exp(−H0/T )〉μ . (55)

This system shows the first order phase transition [28] and
there is no (meta)stable homogeneous state with T < 0.5.
The initial values of order parameters for T = 0.3 and 0.4
are exhibited in Table I. The external field hx = hy = h is

TABLE I. Initial equilibria and zero-field susceptibilities.

T M P dδMx/y/dh|h=0 dδPcc/dh|h=0

0.3 0.90223 0.81556 0.034428 0.059089
0.4 0.84269 0.71910 0.071298 0.099709

exerted. Theoretically obtained susceptibilities are exhibited
in Table I when the temperature T = 0.3 and 0.4, so that the
initial equilibria are spatially inhomogeneous. We integrate
an equation of motion derived from the Hamiltonian (40) by
using a fourth order symplectic integrator [30] and compute
the order parameters of N -body systems, given respectively by

MN
xc(t,h) = 1

N

N∑
i=1

cos xi(t,h),

MN
yc(t,h) = 1

N

N∑
i=1

cos yi(t,h),

MN
xs(t,h) = 1

N

N∑
i=1

sin xi(t,h),

MN
ys(t,h) = 1

N

N∑
i=1

sin yi(t,h), (56)

P N
cc (t,h) = 1

N

N∑
i=1

cos xi(t,h) cos yi(t,h),

P N
cs (t,h) = 1

N

N∑
i=1

cos xi(t,h) sin yi(t,h),

P N
sc (t,h) = 1

N

N∑
i=1

sin xi(t,h) cos yi(t,h),

P N
ss (t,h) = 1

N

N∑
i=1

sin xi(t,h) sin yi(t,h), (57)

for null amplitude h = 0 and nonzero h. We compare the
theoretically obtained linear response δMx , δMy , and δPcc

with the numerically obtained responses given respectively by

δMN
x (h) = M̄N

x (h) − M̄N
x (0),

δMN
y (h) = M̄N

y (h) − M̄N
y (0),

δP N
xy(h) = P̄ N

xy(h) − P̄ N
xy(0),

(58)

where MN
x , MN

y , and P N
xy are given by

MN
x =

√
MN

xc
2 + MN

xs
2
,

MN
y =

√
MN

yc
2 + MN

ys
2
,

P N
xy =

√
P N

cc
2 + P N

cs
2 + P N

sc
2 + P N

ss
2
,

(59)

and where overbars in Eqs. (58) denote the time average:

M̄N
xc(h) = 1

τ

∫ t0+τ

t0

MN
xc(t,h)dt. (60)
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Mx

t

h=0.025

(a)

(b)

h=0

t

h=0.025

h=0

Pxy

FIG. 2. Time series of order parameters for (a) Mx and (b) Pxy .
The temperature is T = 0.3, the number of particles is given by
N = 4 × 106, and the time step is δt = 0.05. For each panel, the
upper (red) curve is for h = 0.025 and the lower (blue) one is for
h = 0.

For the 2D HMF model there is an error between M̄N
x (0)

and M which is a solution to the self-consistent equation.
We then focus on the difference M̄N

x (h) − M̄N
x (0) rather than

M̄N
x (h) − M . We set t0 = 200, τ = 200, N = 4 × 106, and

the time step δt = 0.05. Figure 2 shows that these t0 and τ

are appropriate, and Fig. 3 shows the numerically obtained
results confirm the theory.

VI. NONLINEAR RESPONSE FORMULA

The nonlinear response formula [14], which is called the
rearrangement formula in Ref. [22], keeps the Casimir invari-
ants within an order of the T linearization, the linearization
around an asymptotic (A) state fA(q, p) = limt→∞ f (q, p,t)
assumed to be stationary. We derive the nonlinear response
formula via the same strategy for deriving the linear response
formula in the present article. We assume that the asymptotic

h

T=0.3

(a) (b)

(c) (d)

(e) (f)

δMx

Theory
+ Numerics

h

T=0.3

δMy

h

T=0.3

δPxy

h

T=0.4

δMx

h

T=0.4

δMy

h

T=0.4

δPxy

FIG. 3. δMx , δMy , and δPxy as functions of h. The lines are the
linear responses obtained theoretically and the crosses are responses
obtained numerically. We set the temperature of the initial states as (a,
c, e) T = 0.3 (left column) and (b, d, f) T = 0.4 (right column), the
number of particles as N = 4 × 106, and the time step as δt = 0.05.

effective Hamiltonian

HA = ‖ p‖2/2 + VA + h�, VA = V [fA], (61)

has only one integral of a single-particle motion and fA

depends only on HA. Furthermore, fA = FA(HA) is as-
sumed to be monotonically decreasing with respect to HA.
Under these assumptions, expanding Eq. (8) around fA

as done in Sec. III, the constraint condition coming from
Casimir invariants within an order of T linearization can be
expressed as∫∫

R(HA(q, p))(f0(q, p) − fA(q, p))dqd p = 0, (62)

for any smooth function R onR. By use of Eq. (13), it is shown
that Eq. (62) holds true if and only if

fA = 〈f0〉HA (63)

for almost every (q, p) in the μ space. Deriving a self-
consistent equation

VA(q) =
∫∫

V (q − q ′)〈f0〉HA(q ′, p′)dq ′d p′ (64)

from Eq. (63) and solving it, one can obtain HA and the
nonlinear response δf = fA − f0.

Is it possible to derive Eq. (63) for multidimensional
systems as was done in Refs. [14,15]? There is some difficulty
to derive the same formula from the T-linearization method
for multidimensional systems. To see this, let us exhibit a
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sketch of this T-linearization method (see Refs. [14,20–22] for
details). We first divide f (q, p,t) in two ways: One is the naive
perturbation decomposition,

f = f0 + gp, (65)

where gp is the perturbation around f0, and the other one is
the asymptotic-transient (AT) decomposition,

f = fA + gT, (66)

where gT is the T term satisfying limt→∞ gT = 0. According
to the AT decomposition, the potential is also decomposed as

V [f ] + h(t)� = VA + VT + h�,

VT = V [gT] + (h(t) − h)�. (67)

Substituting Eqs. (65) and (67) into the Vlasov equation, and
omitting the nonlinear term coupling with the T-field VT, we
have the T-linearized Vlasov equation:

∂f

∂t
+ {HA,f } + {VT,f0} = 0. (68)

It should be noted that the nonlinearity still remains in the
term {HA,f }. A solution fTL to the T-linearized equation is
implicitly given by

fTL(q, p,t) = fON(q, p,t) + fLA(q, p,t),

fON(q, p,t) = e−t{HA,•}f0(q, p),

fLA(q, p,t) = −
∫ t

0
e−(t−s){HA,•}

(
FT · ∂f0

∂ p

)
ds,

(69)

where we introduce the operator {HA,•}a = {HA,a} for any
function a(q, p), and FT = −∂VT/∂q. The terms fON and fLA

are the O’Neil term and the Landau term, respectively [20,21].
When the asymptotic stationary state fA exists, it can be

picked by taking the long-time average of fTL, and we have

fA(q, p) = lim
τ→∞

1

τ

∫ τ

0
fTL(q, p,t)dt (70)

within an order of the T-linearization method. Then, our next
job is to compute the long-time average of fON and fLA, but
there are several difficulties in doing this for multidimensional
systems.

In 1D systems, it is shown that

lim
τ→∞

1

τ

∫ τ

0
e−t{HA,•}a(q, p)dt = 〈a〉HA(q, p) (71)

by use of the angle-action variables of HA [20,21]. However,
in our case, the angle-action variables cannot be constructed,
so it is unclear if this ergodiclike formula holds true or not.

There is another problem: slow algebraic damping of the
T force field FT. In Ref. [14] we use the fact that FT damps
rapidly (∼t−ν with ν � 2) for the 1D systems [26] and

lim
t→∞

∫ ∞

t

FT(t)dt = 0 (72)

when we compute limt→0 fLA. Meanwhile, in the multidimen-
sional Vlasov systems [27] and the 2D Euler equations [31],
the T force field FT damps as or slower than t−1, so the integral∫ ∞

0 FT(t)dt is not defined in the L1 meaning apparently.
Sometimes, the transient part is asymptotically FT � e−i�t t−γ

(0 < γ � 1) with � 
= 0, and the integral
∫ ∞

0 FT(t)dt exists
in the Riemannian meaning. In this case, one should be more
careful when one computes the integrals and takes the limit.
It should be remarked that there exists a case that � = 0 [27],
so it should be checked for each system.

The relation between the nonlinear response formula ob-
tained by considering the constraint conditions and a solution
to the T-linearized Vlasov equation might be an interesting
future problem.

VII. SUMMARY AND PERSPECTIVE

The linear response formula has been derived without
use of the analytic solution of the single-particle orbit or
the angle-action variables of the effective Hamiltonian. The
present method improves the generalized linear response
formula obtained in Ref. [16] when the background density
function is a monotonically decreasing function of the ef-
fective Hamiltonian H0. The response formula (21) results
in the one obtained in the previous studies for 1D systems
[10,11,13,15] and is numerically confirmed by use of the 2D
HMF model. Furthermore, the nonlinear response formula
[14] has been derived via the same strategy, when the
asymptotic solution fA to the T-linearized Vlasov equation
is a monotonically decreasing function of the effective
Hamiltonian HA.

The nonlinear response theory based on the T-linearization
method deals with the nonlinearity of order O(hν) with 1 <

ν < 2 [14]. It should be noted that it is difficult to obtain the
nonlinear response successively via the proposed method, so
that the error O(h2) is unavoidable. Let δfn be a response
of order O(hn) for n ∈ Z. The condition in Eq. (10) in the
nonlinear regime O(h2) is written as

0 =
∫∫ (

R1(H0)δf2 + R2(H0)δf 2
1

)
dqd p

=
∫∫ (

R1(H0)〈δf2〉H0 + R2(H0)
〈
δf 2

1

〉
H0

)
dqd p, (73)

where R1 = c′(f0) and R2 = c′′(f0)/2. Unlike the linear
regime, it is quite difficult to obtain explicitly δf2 satisfying
this equation for any c. Then, the error O(h2) is unavoidable
in both naive perturbation and T-linearization methods.

In the present article, the form of perturbation is restricted
so as to subject it to the constraint conditions coming from
Casimir invariants at the linear order. By use of the form of
constraint conditions (14), it is possible to take into account
the Casimir constraints when we derive the formal stability
criterion without use of angle-action variables, and this is the
topic of a forthcoming paper [32].

In this article, we exert the uniform external force on the
systems without integrability. We may also consider the case
where the unperturbed system is integrable but an external
force breaks its integrability. It might be an interesting future
work to explore how the local chaos induced by the static
external field affects meso- or macroscopic properties of
systems. Such a phenomenon is found in a toy model with one
charged particle confined in cylindrical or toroidal magnetic
fields [33,34].
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APPENDIX A: CONSERVATION OF THE CASIMIR FUNCTIONALS (8)

It is shown that the Casimir functional (8) is conserved in the Vlasov dynamics. Taking the time derivative of C [f ], we have

dC [f ]

dt
=

∫∫
∂f

∂t
c′(f )dqd p = −

∫∫
{H [f ],f }c′(f )dqd p. (A1)

Under the conditions asserted above Eq. (8), the boundary terms vanish and the left hand side of Eq. (A1) is written as

−
∫∫

{H [f ],f }c′(f )dqd p =
∫∫

H [f ]{f,c′(f )}dqd p = 0 (A2)

because {f,c′(f )} = 0. It is then shown that dC [f ]/dt = 0.

APPENDIX B: DERIVATION OF EQ. (43)

We derive Eq. (43). All we have to do is to perform integration with respect to p in the left hand side of Eq. (43),∫
R2

δ(H (q, p) − E)d p =
∫ π

−π

dθp

∫ ∞

0
pδ(H (q, p) − E)dp

= 2π

∫ ∞

0
pδ

(
p2

2
+ V (x,y) − E

)
dp = 2π�(E − V (x,y)),

where �(x) = 0 (1) when x < 0 (x � 0) is the Heaviside step function, and we have used the relation

δ(f (x)) =
∑

x∗=f −1(0)

δ(x − x∗)

|f ′(x∗)| , f ′(x∗) 
= 0.

Thus, we have

〈g(q)〉E =
∫

(−π,π]2 g(x,y)�(E − V (x,y))dxdy∫
(−π,π]2 �(E − V (x,y))dxdy

. (B1)

APPENDIX C: COMPUTATION OF 〈cos x〉H0 AND 〈cos x cos y〉H0

On the iso-H0 curve, x and y satisfy

cos x = −H0 + M cos y

M + P cos y
, cos y = −H0 + M cos x

M + P cos x
. (C1)

Thus, ∫
(−π,π]2

g(x,y)�(H0 − V (x,y))dxdy = 4
∫ arccos(− H0+M

M+P
)

0
dx

∫ arccos(− H0+M cos x

M+P cos x
)

0
g(x,y)dy

= 4
∫ arccos(− H0+M

M+P
)

0
dy

∫ arccos(− H0+M cos y

M+P cos y
)

0
g(x,y)dx (C2)

for H0 ∈ [−2M − P,P ] and∫
(−π,π]2

g(x,y)�(H0 − V (x,y))dxdy = 4
∫ arccos(− H0−M

M−P
)

0
dx

∫ π

0
g(x,y)dy + 4

∫ π

arccos(− H0−M

M−P
)
dx

∫ arccos(− H0+M cos x

M+P cos x
)

0
g(x,y)dy

= 4
∫ arccos(− H0−M

M−P
)

0
dy

∫ π

0
g(x,y)dx + 4

∫ π

arccos(− H0−M

M−P
)

∫ arccos(− H0+M cos y

M+P cos y
)

0
g(x,y)dx

(C3)

for H0 ∈ [P,2M − P ].
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Let us compute 〈cos x〉H0 = 〈cos y〉H0 and 〈cos x cos y〉H0 as follows, respectively. When −2M − P < H0 < P , we have

〈cos x〉H0 = 〈cos y〉H0 = 8π

σ (H0)

∫ arccos(− H0+M

M+P
)

0

√
1 −

(
H0 + M cos x

M + P cos x

)2

dx, (C4)

〈cos x cos y〉H0 = 8π

σ (H0)

∫ arccos(− H0+M

M+P
)

0
cos x

√
1 −

(
H0 + M cos x

M + P cos x

)2

dx, (C5)

where

σ (H0) = 8π

∫ arccos(− H0+M

M+P
)

0
arccos

(
−H0 + M cos x

M + P cos x

)
dx, (C6)

and where a range of the arccosine function is [0,π ]. When P < H0 < 2M − P , we have

〈cos x〉H0 = 〈cos y〉H0 = 8π

σ (H0)

∫ π

arccos(− H0−M

M−P
)

√
1 −

(
H0 + M cos x

M + P cos x

)2

dx, (C7)

〈cos x cos y〉H0 = 8π

σ (H0)

∫ π

arccos(− H0−M

M−P
)
cos x

√
1 −

(
H0 + M cos x

M + P cos x

)2

dx, (C8)

where

σ (H0) = 8π

∫ π

arccos(− H0−M

M−P
)
arccos

(
−H0 + M cos x

M + P cos x

)
dx + 8π2 arccos

(
−H0 − M

M − P

)
. (C9)

APPENDIX D: INTEGRAL IN Gn (n = 1,2,3,4)

The integral
∫∫

F ′
0(H0)〈cos x〉2

H0
dqd p included in G1 and G2 is computed as follows:∫∫

F ′
0(H0)〈cos x〉2

H0
dqd p = 2π

∫
pdp

∫
F ′

0(H0)〈cos x〉2
H0

dq

= 2π

∫ 2M−P

−2M−P

dH0F
′
0(H0)〈cos x〉2

H0

∫
�(H0 + V (x,y))dq

= 2π

∫ 2M−P

−2M−P

F ′
0(H0)〈cos x〉2

H0
σ (H0)dH0, (D1)

where p = ‖ p‖ = √
2(H0 + V (x,y)) and σ (H0) is defined in Eqs. (C6) and (C9). The similar terms in G2 and G4 are computed

in the same manner.
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