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Supercritical Grüneisen parameter and its universality at the Frenkel line
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We study the thermomechanical properties of matter under extreme conditions deep in the supercritical state, at
temperatures exceeding the critical one by up to four orders of magnitude. We calculate the Grüneisen parameter
γ and find that on isochores it decreases with temperature from 3 to 1, depending on the density. Our results
indicate that from the perspective of thermomechanical properties, the supercritical state is characterized by a
wide range of γ ’s which includes solidlike values—an interesting finding in view of the common perception
of the supercritical state as being an intermediate state between gases and liquids. We rationalize this result by
considering the relative weights of oscillatory and diffusive components of the supercritical system below the
Frenkel line. We also find that γ is nearly constant at the Frenkel line above the critical point and explain this
universality in terms of the pressure and temperature scaling of system properties along the lines where particle
dynamics changes qualitatively.
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I. INTRODUCTION

Dimensionless quantities play an important role in describ-
ing physical phenomena. One such parameter, the Grüneisen
parameter (GP), has been proved to be very useful in the theory
of lattice vibrations and thermodynamics of solids. In solid
state physics, the GP describes the change in the system’s
elastic properties in response to volume change [1],

γ = −
(

∂ ln ω

∂ ln V

)
T

, (1)

where ω is the effective average frequency of particle vibra-
tions and V is the system volume. The Grüneisen parameter
can also be related to the system energy and pressure [2]:

γ = V

(
∂P

∂E

)
V

. (2)

Equations (1) and (2) are equivalent in the condensed matter
systems, but the second equation is more general and applies
to gases, high-temperature fluids, and plasma where individual
particles do not vibrate. Equation (2) leads to [2]

γ = αP BT V

CV

, (3)

where αP is the thermal expansion coefficient, BT is the
isothermal bulk modulus, and CV is the constant-volume heat
capacity.

As follows from (1) and (2), γ is a thermomechanical
quantity, which is important for thermomechanical effects,
in particular, for those involving extreme temperatures and
pressures. These include shock wave effects, rapid expansion,
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heating of systems absorbing nuclear radiation, and so on.
Here, the GP becomes particularly important: if, as is often
the case, the pulse duration is shorter than the time scale of
acoustic transport, the induced thermal pressure is directly
proportional to γ . Consequently, the GP is extensively used
in analyzing the equations of state of condensed matter and
plasma under extreme conditions.

For most condensed matter systems, the range of γ is
0.5–4. Diamond is an “ideal” Grüneisen system with γ = 1
[3]. Systems with large pressure derivatives of B (the lattice
stiffens quickly with compression) often have large γ [2].
Interestingly, since BT and CV are positive in equilibrium,
the sign of γ is governed by the sign of αP . Some systems
such as Cu2O and ScF3 have a small negative γ over a quite
large temperature and pressure range [4], accompanied by a
negative αP and softening of force constants on compression.
Negative γ ’s can also be seen in shock-wave experiments due
to nonequilibrium smeared phase transformations [5].

Compared to solids, relatively little is known about the GP
in liquids and dense gas states. For the ideal gas, γ = 2

3 is
a constant as follows from E = 3

2PV . The same result also
applies to the degenerate electron gas [6]. For the frequently
discussed hard-spheres model, γ can be calculated from the
Carnahan-Starling equation Z = PV

NkBT
= 1+η+η2−η3

(1−η)3 , where

η = π
6 ρσ 3 is the packing fraction of hard spheres of diameter

σ at density ρ [7]. This gives γ = 2
3f (ρ), where f (ρ) is a

function of the density, implying that the GP of hard spheres
is constant along isochores. For the model van der Waals
system, γ = 2

3
V

V −Nb
, where b is the cohesion volume, the

GP diverges when the volume becomes close to the critical
volume [8]. The soft-sphere interaction with weak attraction
modifies the GP, and there are analytical evaluations of this
effect [9,10]. Based on certain assumptions and in reasonable
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agreement with simulations of noble-gas systems [11], there
are numerical evaluations of the GP for the commonly used
Lennard-Jones potential [12]. For more complicated liquids
such as water and mercury, the GP was calculated using (3)
and was found to increase with pressure, in contrast to its
usual decrease in crystals [13]. The GP was also calculated
in liquid Ar over a small range of pressure and temperature
and was found to decrease upon isobaric heating [14]. Over a
wider temperature and pressure range, the γ in Ar in the dense
gas and liquid state increases upon isothermal compression
and is nearly constant upon isochoric heating [15]. γ was
also calculated from ensemble averages of fluctuations [16].
Finally, γ was evaluated using the radial distribution function
of liquids with acceptable errors [17].

Notably, no studies or evaluations of γ were done signif-
icantly above the critical point of matter. Supercritical fluids
started to be widely deployed in many important industrial
processes [18,19] once their high dissolving and extracting
properties were appreciated. Theoretically, little is known
about the supercritical state, apart from the general assertion
that supercritical fluids can be thought of as high-density gases
or high-temperature fluids whose properties change smoothly
with the temperature or pressure and without qualitative
changes in the properties. This assertion followed from the
known absence of a phase transition above the critical point.
We have recently proposed that this picture should be modified
and that a new line, the Frenkel line (FL), exists above the
critical point and separates two states with distinct properties
[20–24].

The main idea of the FL lies in considering how particle
dynamics changes in response to the pressure and temperature.
Frenkel previously proposed that particle dynamics in the
liquid can be separated into solidlike oscillatory and gaslike
diffusive components and introduced the liquid relaxation
time τ as the average time between particle jumps between
neighboring quasiequilibrium particle positions [25]. We
proposed that this separation applies equally to supercritical
fluids and to subcritical liquids: an increasing temperature
reduces τ , and each particle spends less time oscillating and
more time jumping; an increasing pressure reverses this and
results in an increase in the time spent oscillating relative to
jumping. An increasing temperature at a constant pressure (or
a decreasing pressure at a constant temperature) eventually
results in the disappearance of the solidlike oscillatory motion
of particles; all that remains is the diffusive gaslike motion.
This disappearance represents a qualitative change in particle
dynamics and gives a point on the FL. Notably, the FL exists
at an arbitrarily high pressure and temperature, as does the
melting line. Quantitatively, the FL can be rigorously defined
by the pressure and temperature at which the minimum of
the velocity autocorrelation function (VAF) disappears [23].
Above the line defined in such a way, the velocities of a large
number of particles stop changing their sign and particles
lose the oscillatory component of motion. Above the line,
the VAF is monotonically decaying as in a gas [23]. Another
criterion for the FL, which is important for our discussion
of thermodynamic properties and which coincides with the
VAF criterion, is cv = 2kB [23]. Indeed, the loss of solidlike
oscillatory components of motion implies the disappearance of
solidlike transverse modes, which, in turn, gives cv = 2kB [20].

The qualitative change of particle dynamics and cv = 2kB at
the FL are two important insights that we use below to discuss
the universality of the GP at Frenkel line.

The aim of this paper is to calculate and analyze the GP
deep in the supercritical state. We calculate γ for two common
model systems at a temperature and pressure exceeding the
critical ones by orders of magnitude. We find that γ decreases
with temperature from solidlike to gaslike values on isochores.
This implies that from the perspective of thermomechanical
properties, the supercritical state is characterized by the range
of γ which includes the solidlike values. This is an interesting
finding in view of the common perception of the supercritical
state as being an intermediate state between gases and liquids,
which we rationalize in terms of the relative weights of the
oscillatory and diffusive components of particle motion. We
also find that γ is nearly constant at the Frenkel line in the
supercritical state. We explain this universality in terms of
pressure and temperature scaling of system properties along
the lines where the particle dynamics qualitatively changes.

II. SIMULATION DETAILS

First, we use the molecular dynamics (MD) simulation
package DL_POLY [26] to simulate the LJ model. The
simulated systems have 8000 particles with periodic boundary
conditions and the interatomic potential for argon is the
pair LJ potential [27]. We have simulated five densities:
ρ = 1.20, 1.35, 1.50, 1.90, and 2.20 g/cm3. The temperature
in each simulation varies from the melting temperature at the
corresponding density up to 10 000 K at intervals of 10 K.
The MD systems were first equilibrated in the NVE ensemble
for 40 ps. The data were subsequently collected at different
temperatures for each density and averaged over a period of
60 ps.

We have also simulated the soft-sphere system over a wide
range of density and temperature. The soft-sphere interaction
potential is U (r) = ε( σ

r
)n, where n is the softness parameter.

We have considered n = 6 and n = 12, respectively. For
n = 6, we performed MD simulations of energy and pressure
and calculated γ using Eq. (2). This part of the simulation
work was performed using the LAMMPS MD package [36].
A system of 4000 particles in a cubic box with periodic
boundary conditions is simulated. The reduced densities of the
system are ρ∗

1 = 1.0 and ρ∗
2 = 1.5 and the temperatures vary

from T ∗ = 2.7 to T ∗ = 3.4 in soft-sphere units. The Frenkel
temperature of this system at this density is T ∗

F = 3.1. The
equilibration and production runs involved 106 steps with the
time step set to 0.0001.

III. RESULTS AND DISCUSSION

We have calculated γ using two methods. In the first
method, we use V , P , and E from the MD simulations,
calculate γ using Eq. (2), and fit the resulting values to the
polynomial. In the second method, we first fit V , P , and E to
the respective polynomials and then calculate γ using Eq. (2).
Both methods result in close curves for γ as follows from
Figs. 1 and 2, discussed below.

We show the γ calculated for Ar using both methods along
five isochores in Figs. 1 and 2. We note that the range of
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FIG. 1. Grüneisen parameters calculated for the Lennard-Jones
(Ar) system at two lower densities. Dashed red lines and solid blue
lines are calculated using the two methods described in the text.
Arrows show the temperature at the Frenkel line.

thermodynamic parameters we used is a record high: the
highest temperature and pressure exceed the critical ones by
more than one to two orders of magnitude. At each density,
the arrow shows the corresponding temperature of the FL.

We observe that γ calculated by Eq. (2) decreases from 2.5
to 1 with temperature at a low density and from about 3 to
1.2 at a high density. Notably, γ = 2.5–3.5 is characteristic
of the solid state. Therefore, our results indicate that from the
perspective of thermomechanical properties, the supercritical
state is characterized by a range of γ which includes the
solidlike values. This is an interesting finding in view of
the common perception of the supercritical state as being an
intermediate state between gases and liquids [18,19].

The solidlike values of supercritical γ at low temperatures
can be explained by considering the relative weight of
the oscillatory and diffusive components of motion in the
supercritical state. This weight can be quantified by the R
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FIG. 2. Grüneisen parameters calculated for the Lennard-Jones
(Ar) system at three higher densities. Dashed red lines and solid
blue lines are calculated using the two methods described in the text.
Arrows show the temperature at the Frenkel line.
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FIG. 3. Grüneisen parameters at the Frenkel line for the five
densities used in Figs. 1 and 2. γ values are plotted in the range
corresponding approximately to the largest and smallest γ in Figs. 1
and 2.

parameter [20],

R = ωF

ωD

, (4)

where ωF = 1
τ

and ωD is the Debye frequency.
Recall that the oscillatory component of particle motion

disappears at the Frenkel line. However, if the supercritical sys-
tem is sufficiently below the FL, particles spend most of their
time oscillating, and diffusive jumps between quasiequilibrium
positions are rare. This gives R � 1. It is easy to show [20] that
in this case the average system energy is well approximated
by the energy of the oscillatory motion. Therefore, the basic
thermodynamic properties of the supercritical system below
the FL are solidlike, as are the dynamical properties related to
phonons. Hence we expect γ to be characterized by solidlike
values in this regime.

We can explore the similarity between the γ values of the
supercritical systems below the FL and their solidlike values
further by using the solidlike equation, (1). We have earlier
evaluated the Debye frequencies ωD for the LJ system for
two supercritical densities below the FL: ωD = 7.2 THz for
ρ = 1.50 g/cm3 and ωD = 18.4 THz for ρ = 1.90 g/cm3

[28]. Using these values and ω ∝ ργ , which follows from
(1), gives γ ≈ 3.8. This is in reasonable agreement with the
γ calculated in the MD simulation at a high density, given the
approximations involved in finding ωD .

We now address the behavior of γ at the FL and plot the
GP at all five densities and temperatures corresponding to the
FL in Fig. 3. γ values are plotted in the range corresponding
approximately to the largest and smallest γ in Figs. 1 and 2. We
observe that γ is nearly constant at the FL: γ = 1.6–1.7. This is
an interesting result, given that the corresponding temperature
at the FL varies by more than an order of magnitude.

We propose the following explanation of the near-constancy
of γ at the FL. The universality of γ is related to scaling. At
a high energy (e.g., high pressure or temperature), particle
interactions mostly involve the repulsive part of the potential.
Therefore, the interatomic potential for Ar (as well as for many
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FIG. 4. Dependence of pressure on energy for the soft-sphere
system with n = 6 at ρ∗ = 1.0. Pressure and energy are shown in
soft-sphere units. Inset: Grüneisen parameter at two densities at the
FL: ρ∗ = 1.0 and ρ∗ = 1.5.

other systems) becomes effectively close to the soft-sphere
potential U ∝ 1

rn [29,30], the classic example of a homoge-
neous potential. According to the Klein theorem [31–33], the
nonideal part of the partition function depends on the density ρ

and temperature as ρ
n
3

T
rather than on ρ and T separately.

The resulting relationship between temperature and pressure at

the melting line is Pm ∝ T
1+ 3

n
m [33]. (Interestingly, the kinetic

energy is also a homogeneous function of the second order,
leading to scaling of kinetic coefficients such as viscosity and
diffusion [34,35]). Zhakhovsky extended the scaling argument
[35] and noted that, more generally, scaling always exists along
those lines in the phase diagram where particle trajectories
are similar or change in a way similar to what they do at,
for example, the melting line. Recall that the Frenkel line
separates the combined oscillatory and diffusive motion below
the line from purely diffusive motion above the line [20–24].

Therefore, we expect the scaling relationship PF ∝ T
1+ 3

n

F to
hold at the FL as it does at the melting line. Such a relationship
has indeed been ascertained in the soft-sphere system as well as
the LJ system at high pressures on the basis of MD simulations
[23]. Then γ = V dP

dE
= V dP

dT
dT
dE

∝ V T
3
n

1
CV

. Using the scaling

relationship V ∝ T − 3
n from the Klein theorem, this gives

γ = f (n) 1
Cv

, where f (n) is a function of n only. As mentioned
earlier, Cv is constant at the FL [20,23]. Hence, γ at the FL
does not depend on the temperature and pressure, i.e., it is a
universal parameter for a system with a given n.

To compare the results of the scaling argument with MD
simulations further, we have calculated γ for the soft-sphere
system over a wide range of density and temperature. We show
the results for n = 6 in Fig. 4 for two densities, ρ∗ = 1.0 and
ρ∗ = 1.5. Consistent with the scaling argument above (the
soft-sphere system obeys the scaling argument) we observe
that γ is nearly constant at the FL.

We note that γ for the soft-sphere system at the FL increases
with n: using the previous data [37] we calculate γ to be 1.5
for n = 12 at the FL. This is close to γ at the FL for the LJ
system (see Fig. 3). This can be understood because the LJ
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potential becomes close to the soft-sphere potential at high
pressures and high temperatures as discussed above.

Before concluding, we make two remarks. First, we recall
the earlier observation that γ is constant along the isochore
[15]. This was related to a narrow range of pressure and
temperature in which the system can be approximated by a
soft-sphere system with nearly constant effective radii and
packing fraction and whose GP is constant along the isochore
as mentioned earlier. At the same time, our results involving a
large range of pressure and temperature indicate that γ can vary
substantially, from values typical of solids to dense-gas values.

Second, it will be interesting to evaluate the GP in the
vicinity of the critical point. According to (3), γ is governed by
quantities which diverge at the critical point: compressibility,
thermal expansion, and heat capacity. Assuming, as is often
done in the theory of critical phenomena, that the divergences
of α and βT are equivalent, γ at the critical point is governed
by the behavior of Cv . For real systems, Cv has a weak power
divergence at the critical point, and γ can be predicted to be
close to 0. This point warrants further investigation.

IV. CONCLUSIONS

In summary, we have calculated the Grüneisen parameter
of supercritical matter for two model systems over a very wide
range of pressure and temperature. We find that γ varies over
a wide range which interestingly includes solidlike values.
We also find that γ is nearly constant along the Frenkel
line and rationalize this finding using the scaling of system
properties along the lines where the particle dynamics changes
qualitatively. It is likely that a more general statement applies:
any dimensionless parameter is universal at the line where
scaling operates.
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