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Ballistic aggregation in systems of inelastic particles: Cluster growth, structure, and aging
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We study far-from-equilibrium dynamics in models of freely cooling granular gas and ballistically aggregating
compact clusters. For both the cases, from event-driven molecular dynamics simulations, we have presented
detailed results on structure and dynamics in space dimensions d = 1 and 2. Via appropriate analyses it has been
confirmed that the ballistic aggregation mechanism applies in d = 1 granular gases as well. Aging phenomena
for this mechanism, in both the dimensions, have been studied via the two-time density autocorrelation function.
This quantity is demonstrated to exhibit scaling property similar to that in the standard phase transition kinetics.
The corresponding functional forms have been quantified and the outcomes have been discussed in connection
with the structural properties. Our results on aging establish a more complete equivalence between the granular
gas and the ballistic aggregation models in d = 1.
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I. INTRODUCTION

Structure and dynamics during cooling in systems of
inelastically colliding particles have been of much research
interest [1–23]. An importance of this topic stems from the
relevance of it in the process of agglomeration of cosmic
dust [21,22]. Two models in this context have been of
significant importance, viz., the granular gas model (GGM)
and the ballistic aggregation model (BAM). In the BAM,
following a collision between two freely moving clusters,
the colliding partners form a single larger object. In one
dimension this corresponds to the sticky gas. While collisions
trigger clustering immediately in the case of BAM, for the
GGM (with coefficient of restitution 0 < e < 1) the system
remains in a homogeneous density state during an initial
period, referred to as the homogeneous cooling state (HCS)
[3,18]. The dynamics in the latter then crosses over to an
inhomogeneous cooling state (ICS) [3], where particle-poor
and particle-rich domains coexist. Time scale for such a
crossover gets shorter with the decrease of e. These domains
or clusters may grow for an indefinite period of time, if the
system size is thermodynamically large [23]. Thus, even if not
a phase transition, it is quite natural to study the clustering
phenomena in these models from the perspectives of phase
transition kinetics [24–26].

Like in phase transitions, in the case of a collection of
inelastic particles also, considered to be hard spheres in many
theoretical studies, power-law growths,

� ∼ tα, (1)

of the average domain length (�), with time (t), have been
observed [5,8–11,13]. In phase transitions, � can be connected
to the interfacial energy. Even though a connection with
interfacial energy does not exist here, for the BAM the average
cluster mass (m ∼ �d , d being the space dimension) has been
related with the average kinetic energy (E) [21] as

m ∼ 1

E
∼ t

2d
d+2 . (2)
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Despite these and other advancements, many questions in this
area remain open, including issues related to the equivalence
between the BAM and the GGM.

In d = 1, validity of Eq. (2) has been confirmed, via
simulations, for the BAM as well as the GGM [6,7,10,11,21].
In higher dimensions, on the other hand, the status is not
satisfactory with respect to the equivalence between the two
models. Even though the time-dependence of E has been
reported to be consistent with Eq. (2), for the growth of m in the
GGM there exists evidence for dimension independence [13].
This raises concern whether the complete validity of Eq. (2)
in d = 1, for both the models, is accidental. Thus, even in this
dimension, direct confirmation of the mechanism of growth,
if possible, in the GGM is essential, to draw a conclusion
on this matter [6]. For d > 1, strictly speaking, even for the
BAM the time dependence in Eq. (2) requires modification,
since in that case one expects isolated fractal clusters [27]
with fractal dimension df (<d) such that m ∼ �df . This fact
is not included in Eq. (2), and due to technical difficulties, in
existing simulation studies also spherical (compact) structural
assumption [14,15] of the growing clusters became necessary.

Furthermore, as discussed above, while some aspects of
growth have been studied, aging property [26,28–34] of the
density-field evolution did not receive attention for these
models, though important [35]. We stress that knowledge of
aging, along with its connection to pattern and growth, is
crucial to the understanding of out-of-equilibrium systems. To
the best of our knowledge, there exists only one study [36] that
addresses scaling property of a two-time correlation function,
to be introduced in the next section, in the context of aging in
granular-matter. This, however, considers aging in a different
quantity, for a model different from the ones considered here.

Various scaling aspects that have been established with
respect to aging are related to the approach of a far-from-
equilibrium system to an equilibrium state, like in phase
transitions. Given that the systems of inelastically colliding
particles are always out of equilibrium, examination of the
validity of these properties in such systems should be of
genuine importance. If scaling exists, it is of interest then
to compare the scaling functions associated with the GGM
and the BAM cases, to establish a more complete equivalence
between the two models.
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In this work, our primary objective is to identify the scaling
property of the above-mentioned two-time correlation function
in situations where growth occurs via ballistic aggregation. For
this purpose, it has been shown, via a state-of-the-art dynamic
renormalization group theoretical method of analysis [37], that
the growth law for the one-dimensional GGM in ICS is same
as that for the BAM. In this dimension, we also directly show
that the mechanism of aggregation in the GGM is indeed
ballistic. These, along with our results on aging, establish a
more complete equivalence between the GGM and the BAM
in d = 1. On the other hand, in d = 2 we have pointed out
vast differences between the structure and growth in the GGM
and the corresponding theoretical expectations for the BAM.
In the latter dimension, thus, for aging property, we work only
with the BAM. In d = 2, via accurate analyses, we also check
the validity of a hyperscaling relation, which combines the
exponents for the decay of kinetic energy and the growth of
clusters, for the BAM.

The balance of the paper is organized in the following way.
In Sec. II we provide an overview of various scaling properties
related to nonequilibrium dynamics during phase transitions.
We discuss the models and methods in Sec. III. The results are
presented in Sec. IV. Finally, Sec. V concludes the paper with
a summary and outlook.

II. BACKGROUND OF SCALING PROPERTIES

In problems of phase transitions [24], having been quenched
from a homogeneous state to a state inside the miscibility
gap, as a system proceeds toward the new equilibrium, one is
interested in understanding the domain pattern [24], its growth
rate [24], and aging [26]. As stated above, typically the growth
occurs in a power-law fashion, with the growth exponent
α having dependence upon transport mechanism, system
dimension, number of components of the order parameter,
and the conservation of the total value of the latter over time.
For the present problem, like in a vapor-liquid transition, the
relevant order parameter is related to the local density field,
total value of which is a conserved scalar quantity.

Typically there exists self-similarity in the growth process
[24], i.e., the patterns at two different times are similar to each
other, in a statistical sense, apart from a change in the length
scale. An appropriate method of characterization of pattern is
to calculate the two-point equal-time correlation function [24],

C(�r,t) = 〈ψ(�r,t)ψ(�0,t)〉 − 〈ψ(�r,t)〉〈ψ(�0,t)〉, (3)

where ψ is a space- (�r) and time-dependent order parameter.
In the next section we will provide description on how, in the
present problem, ψ can be obtained from the density field. The
angular brackets in Eq. (3) correspond to statistical averaging.
For an isotropic pattern, e.g., when there is no external bias,
the value of the correlation function depends only on the scalar
distance between two points. In that case, in addition to the
averaging over different initial configurations, one can take the
route of spherical averaging as well. The directly accessible
quantity in experiments [24], however, is the structure factor
S(k,t), Fourier transform of C(r,t), k being the magnitude of
the wave vector.

The above-mentioned self-similarity is reflected in the
scaling properties of C(r,t) and S(k,t) as [24]

C(r,t) ≡ C̃(r/�),S(k,t) ≡ �d S̃(k�), (4)

where C̃ and S̃ are time-independent master functions [24]. In
the area of kinetics of phase transitions, there has been strong
interest in obtaining analytical expressions for these quantities
[24,26]. While significant success has been achieved for the
situation where the order parameter is a nonconserved quantity,
for the case of the conserved order parameter only partial
understanding has been obtained. For example, behavior of
S(k,t) is analytically known only in the small and large k

limits.
For the study of aging property, one considers a two-time

autocorrelation function [28,29],

Cag(t,tw) = 〈ψ(�r,t)ψ(�r,tw)〉 − 〈ψ(�r,t)〉〈ψ(�r,tw)〉, (5)

where tw (� t) and t are referred to as the waiting time (or the
age of the system) and the observation time, respectively [26].
Unlike the equilibrium situation, there is no time translation
invariance in an evolving system. The decay of Cag(t,tw) gets
slower with the increase of tw, which can be seen by plotting
it versus t − tw. This reflects the fact that relaxation in an aged
system is weaker than that in an younger system. In kinetics of
phase transitions, Cag(t,tw) follows a scaling relation [26,28],

Cag(t,tw) ≡ C̃ag(x); x = �/�w, (6)

where �w is the domain size at tw and C̃ag is a master function
[26]. In absence of hydrodynamics, it has been shown, via
analytical theories and computer simulations [26,28,29,34,38–
40], that the decay of C̃ag follows power-law:

C̃ag ∼ x−λ. (7)

Fisher and Huse (FH) [28] provided bounds on the values
of the exponent λ as

d

2
� λ � d. (8)

The power-law scaling and the bounds can be justified from
the consideration of the values of the average order parameter
within any fixed region at times t and tw. However, while the
lower bound works, the upper bound is less strict and there
have been reports of violation of it [30,34,39]. Later, Young,
Rao, and Desai (YRD) [30] provided a stricter lower bound, by
taking the structural properties into consideration. This bound
reads

λ � d + β

2
, (9)

where β is the exponent for the small wave-number power-law
behavior of the structure factor:

S(k,t) ∼ kβ. (10)

Using the structure factors at times t and tw, and exploiting
the scaling property of S(k,t) [see Eq. (4)], YRD obtained

Cag(t,tw) � �d/2
∫ 2π/�

0
dkkd−1[S(k,tw)S̃(k�)]1/2. (11)

The bound follows when Eq. (10), for the small k behavior
of S(k,tw), is used in the above expression. In the case of
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nonconserved order parameter β = 0 and the YRD bound
coincides with the FH lower bound [30]. For phase separation
in systems with conserved order parameter [30] β > 0, and
so the YRD bound is expected to be more strict. In Ising-like
systems, where coarsening occurs via diffusive transport of
material, it has been shown that the power-law scaling and the
YRD bound are obeyed [30,39].

Investigation of these facts in systems consisting of inelastic
particles should be of genuine interest, to obtain a broader
picture with respect to the concepts of nonequilibrium sta-
tistical mechanics, since these systems continuously dissipate
kinetic energy. We show that, irrespective of the dimension,
the above power-law scaling property of the autocorrelation
function holds for both the models, at least when the growth
occurs via ballistic aggregation. The corresponding exponents
have been estimated and are seen to follow the YRD bound.

III. MODELS AND METHODS

For the GGM, we use the following update rule for the
(equisized, hard-core) particle velocities. The post- and prec-
ollisional velocities of the particles are related via [3,41,42]

�v′
i = �vi −

(1 + e

2

)
[n̂ · (�vi − �vj )]n̂, (12)

�v′
j = �vj −

(1 + e

2

)
[n̂ · (�vj − �vi)]n̂, (13)

where (′) stands for the post event, �vi and �vj are velocities
of particles i and j , respectively, and n̂ is the unit vector in
the direction of the relative position of the particles i and j .
With this model, we perform event-driven [41,42] molecular
dynamics simulations, where an event is a collision. In this
method, between two collisions, since there are no interparticle
interaction or external potential, particles move with constant
velocities. For every event the collision partners and the time
are appropriately identified [41].

For the BAM case [21], following every collision, mass
of the product particle increases, which was appropriately
incorporated in the collision rule. For the BAM in d = 2 we use
the same circular approximation for the structure of the product
clusters as in the previous studies [43], which will be briefly
discussed later. Typically, in such event-driven simulations
time is specified in two different ways, viz., by using the
number of collisions per particle (τ ) and by calculating the
actual time (t), the latter can be obtained by keeping track of
the free time between the collisions. In this work, we will use
the latter.

A serious problem faced in event-driven simulations of the
GGM is the inelastic collapse [44]. This phenomenon is related
to the fact that, for very low values of the relative velocity,
collisions keep occurring only among particles within a small
group of neighbors. This essentially stops the progress of time.
The problem is more severe in lower dimension, since fewer
particles are needed to satisfy the corresponding condition.
Such singularity in collision numbers can be avoided in two
ways, viz., by setting the value of e, for the collision partners
with relative speed less than a threshold value δ, to either 0 or
1. We adopt the latter [6,44–46], given that in the experimental
situation value of e increases with the decrease of the relative

velocity [10–12,47]. In d = 2, however, we set δ to zero,
since the problem is less severe in higher dimension, and
so significantly large cluster sizes can be accessed without
encountering such collapse.

All our results will be presented from simulations with
periodic boundary conditions, by fixing the starting value of
density of particles to ρ = N/Ld = 0.30, N being the number
of particles and L the linear dimension of the system, except
for the d = 2 GGM, for which we choose ρ = 0.37. Given that
the particles have diameter unity (to start with), in d = 2 these
numbers for particle density correspond to packing fractions
0.235 (BAM) and 0.29 (GGM).

In the case of GGM, clusters were appropriately identified
as regions with density above a critical value ρc (=0.5). Higher
values of ρc also provide similar results, deviating from each
other only by constant multiplicative factors. The end-to-end
distance for a cluster, along any direction, provides a cluster
length (�c). In d = 1, the number of particles within these
boundaries is the mass (mc) of that cluster. In d = 2, one
needs to appropriately identify the closed boundaries of the
clusters, to calculate the mass. For the BAM case, information
on the cluster length and mass are contained in the particle
radius. The average values of the above-mentioned quantities
were obtained from the first moments of the distributions of
�c and mc. Ideally, � should equal m1/d , but in the case of
GGM it takes time for a cluster to settle down to a particular
density value. Thus, equality holds only at late time. For the
calculation of the correlation functions and structure factors
[8,9], the order-parameter ψ at a lattice point (for this purpose
the continuum systems were mapped onto a square lattice)
was assigned a value +1 if the density (for the GGM this
was calculated by counting the number of particles within a
preassigned radius, the point of interest being the center of the
corresponding circle) there was higher than ρc, else −1. The
average length can be calculated from the scaling property of
C(r,t) or S(k,t) as well.

IV. RESULTS

We divide the section into subparts A and B. In subsection
A, we present results from d = 1. The d = 2 results are shown
in subsection B.

A. d = 1

As mentioned above, in this dimension, via accurate
analyses, we first confirm the equivalence between the BAM
and the GGM, with respect to the energy decay, the growth
law, and the corresponding mechanism. These results are
followed by those for aging property. As we will see, the
latter, in addition to being of separate importance, will make
the above-mentioned equivalence more complete.

In Fig. 1(a) we show the time dependence of energy, for both
the models, on a log-log scale. The BAM results, for energy
and mass [see Fig. 1(b)], are already understood. Nevertheless,
we present these here, for the sake of completeness, as well
as to facilitate the discussion that follows. For the GGM,
results for a few different cutoff values of the relative velocity
are shown. For this model, in this dimension, all our results
correspond to e = 0.5. After a minor disagreement over a brief
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FIG. 1. (a) Decay of energy in the BAM and the GGM are plotted
vs. time. For the GGM, value of e has been fixed to 0.5 and results
for several choices of δ are presented. (b) Average cluster mass,
m, is plotted vs. time, for the BAM. (c) Same as (b) but for the
GGM with multiple values of δ as in (a). The solid lines in these
figures correspond to various power laws, exponents for which are
mentioned. The starting number of particles for the BAM and the
GGM are, respectively, 160 000 and 10 000. Rest of the simulations
for the GGM are done with 20 000 particles and δ = 5 × 10−5. All
results correspond to d = 1.

initial period (corresponding to HCS in the GGM), results
from the two models fall on top of each other and exhibit
power-law behavior over several decades in time, with the
expected exponent −2/3.

In Fig. 1(b) we plot m as a function of t , on a log-log
scale, for the BAM case. This shows a power-law growth
with exponent 2/3, validating Eq. (2). The m versus t results
for the GGM are shown in Fig. 1(c), for the same values
of δ as in Fig. 1(a). An interesting observation here is that,
for the GGM, even though the energy decay follows t−2/3

behavior till late for all values of δ, the picture is different
for the growth of mass. The growth stops earlier for larger
value of δ, while energy decay continues with the predicted
functional form. This should not be a finite-size effect, since
the saturation is δ dependent. Rather, this has connection
with the late time declusterization phenomena [10,11] that has
been observed for relative-velocity dependent e. Furthermore,
the m versus t data, particularly for larger values of δ, do
not appear completely consistent with the exponent 2/3,
before saturation. This discrepancy can possibly be due to the
presence of a substantial length at the beginning of the scaling
regime. In such a situation, confirmation of an exponent, from
a log-log plot, requires data over several decades in time [48].
In absence of that, alternative accurate method of analysis is
needed to obtain correct value of the exponent [37,48,49]. In
any case, the observations above, with respect to the saturation
of m, further justify the need for direct identification of the
growth mechanism. Before moving to that, we will accurately
quantify the growth law. For this purpose, in the following we
will work with the length, rather than the mass, since for the
aging study we intend to use the ratio of lengths as the scaling
variable. Unless otherwise mentioned, in this subsection, all
our results for the GGM, from here on, will be presented for
δ = 5 × 10−5.

We use a renormalization-group method of analysis [37]
for the accurate quantification of the growth in the GGM.

FIG. 2. (a) Plots of � vs. t for three different stages of renormal-
ization. The dashed horizontal line is for the extraction of times for
the same length at different levels of renormalization. The solid line
represents a power-law with exponent 2/3. (b) Plot of the effective
exponent, obtained via the renormalization-group analysis using the
combination n = 1 and 2, vs. the inverse of the original length.
The solid line is a quadratic fit to the simulation data. All results
correspond to the GGM in d = 1.

We consider a Kadanoff-type block transformation [50] of
the order parameter. For this purpose, as mentioned in the
context of calculation of the correlation functions, we have
mapped the density field to ψ = ±1, on a lattice. The blocking
exercise then becomes similar to that for the Ising model [24].
At successive iterations of the transformation, order parameter
over a length of b particle diameters is averaged over and
represented by a single point. This reduces the system size by
a factor b, for which we choose the value 2. Thus, a particular
value of � in different levels (n) of renormalization will be
obtained at different times, viz., for n = p and p + 1 one
writes [37]

�(p,t) = �(p + 1,b1/αt). (14)

This is demonstrated in Fig. 2(a), where, in addition to the
original data (n = 0), we have shown length versus time plots
for renormalizations with n = 1 and 2. The horizontal line in
this figure is related to the estimation of times for the same
length scale at different values of n. From the shifting or scaling
of time, due to the scaling in length, the growth exponent can
be estimated. However, because of technical reasons, the true
exponent will be realized only in the limit � → ∞ and at finite
time we will denote it by αeff .

Estimated values of αeff , from the combination involving
n = 1 and 2, are presented in Fig. 2(b), versus 1/�, which
indeed have time dependence [51]. Such time dependence is
due to the nonscaling early time transient and presence of a
large off-set when scaling is reached. In situations like this,
as already stated, α should be estimated from the convergence
of the data in the � → ∞ limit. By looking at the trend of
the data set, we have fitted it to the form αeff = α + a/�2,
which provides convergence to α 
 0.63. This is very close
to the ballistic aggregation [21] value 2/3. To check whether
the minor deviation of the simulation data from the theoretical
expectation is a true fact, one needs to study other values of
e as well. Such a systematic study we leave out for a future
work. The deviation could be due to the finite-size effects and
δ-dependent saturation.
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FIG. 3. (a) Mean-squared-displacement of the center of mass of a
typical cluster, for the GGM, is plotted vs. time, on a log-log scale. The
solid line corresponds to ballistic motion. (b) Number of particles in
a few different clusters, for the GGM, are plotted vs. translated time,
before they undergo collisions. (c) Root-mean-squared velocity of
the clusters are plotted vs. m, for both the models. The solid line is
a power-law decay, exponent being mentioned. All results are from
d = 1.

Having identified the growth exponent for the GGM, we,
in Fig. 3, identify the mechanism. The growth exponent 2/3
can be obtained from a (nonequilibrium) kinetic theory for
ballistic aggregation [21,27,52]. As the name suggests, growth
in this mechanism occurs due to collisions among clusters and
between collisions the clusters move with constant velocities.
Since the particles in our models are noninteracting (beyond
the hard-core diameter), it is understandable that the clusters
in the BAM will move ballistically between collisions. In the
GGM case also, following more and more collisions, particles
within a cluster may move parallel to each other, providing
collective directed motion. However, growth in this case may
as well occur due to random deposition of particles on the
clusters when the latter objects move through a reasonably
high-density vapor region. It is then necessary to check, if at a
late enough time the motion of the clusters, during the interval
between two big mass enhancing collisions, are ballistic and
during that period the growth of the clusters is negligible.

In Fig. 3(a) we show the mean-squared displacement of the
center of mass (CM), MSDCM, of a cluster, calculated as [53]

MSDCM = 〈| �RCM(t) − �RCM(0)|2〉, (15)

�RCM being the time-dependent location of the CM of the
cluster, for the GGM, over an extended period of time, before
it undergoes a collision with another cluster. On the log-log
scale, a very robust t2 behavior is visible, implying ballistic
motion [53]. In Fig. 3(b) we show the numbers of particles in
a few clusters, as a function of time, translated by subtracting
the times at the beginning of the observations. The “constant”
values over long periods confirm that the mechanism of growth
in the GGM is indeed ballistic aggregation.

The mass part of Eq. (2) can be derived from [21,27,52]

dnc

dt
= −�d−1vrmsn

2
c, (16)

where nc is the cluster density and vrms is the root-mean-
squared velocity of the clusters. An exponent 2/3 requires
vrms ∼ m−1/2, an outcome for uncorrelated cluster motion [52].

FIG. 4. (a) Plots of the autocorrelation function, vs. (t − tw), for
three different choices of tw , as mentioned, for the d = 1 GGM. (b)
Log-log plots of Cag(t,tw) vs. �/�w , using the data sets in (a). (c) Same
as (b) but for the d = 1 BAM case. The values of tw are mentioned on
the figure. The solid lines in (b) and (c) represent power-law decays
with exponent λ = 1.5.

In Fig. 3(c) we plot vrms versus m, for the BAM as well as the
GGM. Results from both the models show consistency with
the requirement. The reasonable agreement of vrms with the
m−1/2 form, that is observed, should, however, be checked for
other values of density and e (latter applies to the GGM). Any
deviation, though does not invalidate the ballistic aggregation,
can change the growth exponent. Here, as a passing remark,
we mention that for the ballistic aggregation of fractal clusters
in d dimensions, with vrms ∼ m−γ , the exponent for the time
dependence of mass will have the form

ζ = df

1 − d + df (1 + γ )
, (17)

if Eq. (16) is a good starting point. Given that for the present
problem df = d = 1 and our estimate of γ for the GGM is
0.55, we obtain ζ = 0.645, which is in agreement with the
conclusion from Fig. 2(b). We find similar value for ζ from
the analysis of the instantaneous exponent. For d = 2, we will
adopt this method, instead of the renormalization group.

Next, we present results for the aging property [26,28]. We
stress again, not only in the granular matter context, to the
best of our knowledge, aging has not been studied previously
for ballistic aggregation in any other system. In Fig. 4(a) we
show Cag(t,tw) versus t − tw, for a few different values of tw,
for the GGM. As expected, no time translation invariance is
noticed, which is an equilibrium [53] (or steady-state) property.
Sticky gas (BAM) results are similar (not shown). In Fig. 4(b)
we show Cag(t,tw) versus �/�w, on a log-log scale, for the
GGM. Nice collapse of data, for all chosen values of tw,
are seen, as in kinetics of phase transition. Deviations of the
data sets from the master curve, appearing earlier for larger
values of tw, are due to finite-size effects [38]. In phase
transitions, the system moves toward an equilibrium state.
Interestingly, similar scaling is observed in the present case,
despite the fact that the system is continuously dissipating
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FIG. 5. Scaling plot of the equal-time structure factors for the
d = 1 GGM. Here we have shown collapse of S(k,t)/�(t), when
plotted as a function of y = k�(t), using data from three different
times. Inset shows the same exercise as in the main frame but for the
d = 1 BAM. In the main frame as well as in the inset, the dashed and
the solid lines correspond to ∼y2 and ∼y−2, respectively.

kinetic energy. Corresponding plots for the BAM are shown
in Fig. 4(c). Again, very good quality collapse is observed. In
both the cases, power-law decays [28] [recall Eq. (7)] of the
scaling function are observed for x � 1, the exponent values,
mentioned on the figures, being same (or close to each other) in
the two cases. This further confirms the equivalence between
the BAM and the GGM. To check whether λ obeys the bound
in Eq. (9), we analyze the structure.

In Fig. 5 we show the scaling plot of the structure factors,
viz., we plot �−1S(k,t) versus k�, for the GGM. Nice collapse
of data from all different times imply structural self-similarity
[24]. The consistency of the long wave-vector data with k−2

imply validity of the Porod law [24,54,55],

S(k,t) ∼ k−(d+1), (18)

a consequence of short-distance singularity in C(r,t), due
to scattering from sharp interfaces. The small k behavior
appears consistent with β = 2. The corresponding results
for the BAM structure factor, shown in the inset of Fig. 5,
are very similar. The value β = 2 was predicted [56] for
coarsening in Ising-like systems in d = 1. The number is
different for higher dimensions [57]. The dimension dependent
values of β can be obtained [58] from dynamical equation of
the structure factor (starting from the Cahn-Hilliard equation
[58]) in k space, by arguing that for d = 1 thermal energy
is dominant, whereas for d > 1 interfacial free energy takes
over. Agreement of our results with such prediction is very
interesting. The information on the consistency, for both short-
and long-scale structures, between the GGM and the BAM, that
these data sets convey, is further supportive of the presence of
sharp interfaces, compact clusters, and ballistic aggregation in
the GGM.

The observed value of β sets the lower bound for λ at 1.5.
Thus, this bound is obeyed in both the cases and the actual
values of the aging exponent, in fact, are very close to this
lower bound. Here, note that violation of such power-law decay

FIG. 6. (a) A snapshot during the evolution in GGM with e = 0.9
in d = 2. Only a part of the snapshot is shown. The particles are
marked by dots. (b) Log-log plot of the energy as a function of t , for
the system in (a). (c) Log-log plot of mass vs. time, for the GGM in
(a). All results are obtained with L = 512. The solid lines in (b) and
(c) represent power laws, exponents for which are mentioned.

of the autocorrelation function was demonstrated recently
[33,34], for advective transport in fluid phase separations.
Even for conserved order parameter with diffusive dynamics,
though power-law, the decays in d > 1 are observed [39] to
be significantly faster than the ones provided by this (lower)
bound (9). However, in the latter example, agreement with
the bound gets better as the dimension decreases [39]. With
the lowering of d, particularly for Ising kinetics, motion of the
boundaries of domains (during no growth periods) gets
restricted. However, since the mechanism is ballistic in the
present problem, boundary movement does exist even during
no growth period, though decreases with the increase of mass,
thus time. Nevertheless, the agreement with the lower bound
is rather close.

B. d = 2

In this subsection, first we briefly discuss the case of GGM,
to convince ourselves that the growth in this case does not
occur via the ballistic aggregation mechanism. Unlike the
simulations of GGM in d = 1, we do not use any nonzero
cutoff value (δ) for the relative velocity here. This is because,
for high enough value of e, in this dimension, we are able
to access relevant scaling regime without encountering an
inelastic collapse [13].

In Fig. 6(a) we show an evolution snapshot for the
d = 2 GGM with e = 0.9. Interesting pattern, consisting of
coexisting particle-rich and particle-poor domains, is visible. A
log-log plot of the kinetic energy in the system, as a function of
t , is presented in Fig. 6(b). The initial decay (corresponding to
HCS) is consistent with the prediction of Haff [18], E ∼ e−aτ

(a is a constant; analytical curve is not shown). The late time
data follow a power-law in t , with exponent −1. This is, thus,
consistent with the prediction of Eq. (2). In Fig. 6(c), we show
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a log-log plot of m versus t . The data in the late time scaling
regime are seen to obey a power law, the exponent being �2/3.
Here we mention that in a previous work [13], via a finite-size
scaling analysis, we had shown that the average domain length
grows as tα , with α 
 1/3. The conclusion from Fig. 6(c) is,
thus, in agreement with this earlier study. Nevertheless, given
that for the GGM there exists possibility of continuous change
of density within the domains, it is instructive to separately
analyze the results for average mass [13].

Since Eq. (2) predicts inverse relationship between mass
and energy, the kinetics of GGM is different from ballistic
aggregation, particularly when the exponents do not follow
even a hyperscaling relation [14,15] (see discussion below in
the context of BAM). Matching of the exponent for energy
decay [with Eq. (2)] is accidental. In the rest of the subsection,
therefore, we focus only on the BAM. This is by keeping
in mind that the primary objective is to study aging during
ballistic aggregation.

There are different variants of models dealing with ballistic
aggregation. For example, there exists interest in a model
where ballistically moving particles from a source get de-
posited on a fixed substrate or seed. Such models are of
relevance in situations like construction of vapor-deposited
thin films. Corresponding structures are fractal [59]. In the
present case, however, all the clusters move ballistically,
between collisions. Simulation of such a BAM in d > 1 is
not straightforward. This is because, if no deformation of the
clusters is considered, highly fractal structures are expected in
this situation as well. In that case, one needs to a priori identify
the exact points of contact, for evolving the systems via colli-
sions. This is a difficult task, particularly if the rotations of the
clusters are considered. In the left frame of Fig. 7(a), we show
a snapshot, obtained during an evolution of the BAM, without
incorporating any deformation and considering only the trans-
lational motion of the clusters. A nice fractal pattern is seen. We
have estimated the fractal dimension, which we discuss later.

Because of the above-mentioned difficulty in dealing with
the actual physical scenario, researchers [14,15,43] have
adopted a spherical structural approximation. In this method,
after a collision between two spherical objects of diameters σ1

and σ2, the mass of the resulting cluster is (usually) uniformly
distributed over the volume of a sphere or circle (depending
upon the system dimension) of diameter

σ = (
σd

1 + σd
2

)1/d
. (19)

Many materials are indeed prone to strong deformation after
high impact collisions. This is, thus, a reasonable approxima-
tion, if the time scale of deformation is small, compared to the
mean free time. In any case, given that fractality offers larger
collision cross-section, the dynamics of the systems with such
spherical structural approximation will be different from those
without the approximation. In the rest of the subsection, unless
otherwise mentioned, by BAM we will refer to the ballistic
aggregation model with circular approximation.

In the BAM, the post-collisional position and velocity of a
new cluster can be obtained from the conservation equations
related to center of mass and linear momentum. A snapshot
during the evolution of a system with such rules is shown in the
right frame of Fig. 7(a). Before presenting results on dynamics

FIG. 7. (a) (Left frame) A snapshot during the evolution of
the fractal BAM in d = 2 with L = 512. See text for details.
(Right frame) Same as the left frame but with spherical structural
approximation and for L = 1024. In both the frames only parts of
the original systems are shown. Times are mentioned on top of the
frames. (b) Cluster mass, from a typical snapshot, is shown as a
function of the radius of gyration, Rg , for the fractal BAM case. The
solid line there is a power-law with exponent 1.8. Rest of the results
will be presented for L = 1024 and spherical BAM.

of this simplified model, in Fig. 7(b) we show data for the
fractal dimension corresponding to the snapshot in the left
frame of Fig. 7(a). Here we present mass of individual clusters
as a function of the radius of gyration (Rg), on a log-log
scale. Nice power-law behavior is visible, providing (mass)
fractal dimension df 
 1.8. As mentioned above, henceforth
we will work with only the circular BAM. Even though the
primary aim is to examine a scaling property related to aging,
in the following we present accurate results for energy decay
and cluster growth as well, from appropriate analyses. To
the best of our knowledge, such accurate analyses were not
previously performed to draw conclusions on the behavior of
these quantities.

In Fig. 8(a) we show a log-log plot of energy as a function
of time. A plot for the growth of mass is shown in Fig. 8(b).
Power laws can be identified in both the cases. While from
these log-log plots it appears that the energy and mass
are (approximately) inversely proportional to each other, as
predicted in Eq. (2), the inset of Fig. 8(b), where we show
kinetic energy as a function of mass, provides a different
information. There the exponent of the power-law decay
appears clearly higher than unity, approximately 1.15, over a
significant range. For an accurate estimate we, thus, calculate
the instantaneous exponents [49] for the time dependence of
m and E as

θi = −dlnE

dlnt
, ζi = dlnm

dlnt
. (20)
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FIG. 8. Log-log plots of the (a) kinetic energy vs. time and (b)
mass vs. time, for the d = 2 BAM. In the inset of (b) we show a
log-log plot of E vs. m. The solid lines in these figures are power-laws,
exponents for which are mentioned.

Such exercises were performed for the d = 1 BAM as well.
However, we avoided presenting those results, since this aspect
in d = 1 is better understood.

We have plotted θi , versus 1/t , and ζi , versus 1/m, in
Figs. 9(a) and 9(b), respectively. In the asymptotic limit we
obtain θ 
 1.08 and ζ 
 0.94. Thus, the predictions of Eq. (2)
are not obeyed. These numbers, however, appear consistent
with a hyperscaling relation [15] (for ballistic aggregation),
which in d = 2 has the form

θ + ζ = 2. (21)

The failure of Eq. (2) lies in the fact that at low packing fraction
the assumption related to uncorrelated velocity, inherent in the
derivation of Eq. (2), breaks down [16]. It is expected that at
higher density, where the collision events are more frequent,
this prediction will work [15,16,43]. Here we ask the question:
is it not possible to obtain the above-mentioned value of ζ from
Eq. (16) or (17)? Note that under the spherical approximation
df = 2. Thus, we need to estimate γ to find out the reason for
the deviation of ζ from unity [see Eq. (2)].

In the inset of Fig. 9(b), we plot vrms as a function of m. A
power-law behavior from the log-log plot can be appreciated.
The corresponding exponent (γ 
 0.53) provides ζ 
 0.97
[see Eq. (17)]. Even though this number is smaller than
1, no conclusive remark should be made from such small
deviation. Following Ref. [16], we state here the reason behind
a difference between θ and ζ . Via the introduction of a
dissipation parameter (α′), ratio between the kinetic energy

FIG. 9. Plots of (a) θi vs. 1/t and (b) ζi vs. 1/m, for the 2D BAM.
The solid lines are guides to the eye. Inset in (b): Log-log plot of vrms

vs. m, for the 2D BAM. The solid line there is a power-law, exponent
for which is mentioned next to it.

FIG. 10. (a) For the 2D BAM the autocorrelation function
Cag(t,tw) from different values of tw are plotted vs. t − tw . (b) Log-log
plots of Cag(t,tw) vs. x(= �/�w), using data sets of (a). The solid line
represents a power-law with exponent λ = 1.6. In the inset of (b) we
show the instantaneous exponent λi as a function of 1/x. The solid
line there is related to a linear extrapolation to x = ∞.

dissipation in a collision and the mean kinetic energy per
particle, these authors showed that α′ = 1 for high collision
frequency. On the other hand, for low frequency, i.e., at low
particle density, α′ > 1. In the latter scenario, the particles with
larger kinetic energy, than the mean, undergo more frequent
collisions, enhancing the dissipation. This leads to a value
of θ higher than unity. This fact becomes more prominent at
densities smaller than the one considered here. For example,
for ρ = 0.005, we find θ 
 1.15 and ζ 
 0.85. A similar fact
is observed in d = 3. There, in future, we intend to verify how
well the corresponding hyperscaling relation [15] holds. Next,
we present results for aging.

In Fig. 10(a) we show plots of Cag(t,tw), versus t − tw, for
a few different values of tw. Like in d = 1, time translational
invariance is absent, as expected. It is clearly seen that with
increasing age relaxation gets slower. In Fig. 10(b) we show
the log-log plots of Cag(t,tw), as a function of �/�w. Good
collapse of data on a master curve is visible. This confirms the
scaling property of Eq. (6). For large values of �/�w power-law
decay becomes prominent. Continuous bending of the master
curve for small abscissa variable implies early-time correction
to the power-law. The large x data appear consistent with an
exponent λ 
 1.6, the number being roughly the same as in the
d = 1 case. For aging during kinetics of phase transitions, on
the other hand, one observes strong dimension dependence of
λ [38,39]. Here, note that in d = 2 we expect [57] β = 4.
Thus, the (lower) bound in Eq. (9) is 3. This calls for a
look at the behavior of the equal-time structure factor for
the present problem. This is because, while for bicontinuous
domain structures (d > 1) the analytical prediction (β = 4)
has been numerically confirmed [57,60], the cases of discrete
domain morphology are less studied. Before taking a look at
the equal time structure factor, since a violation of the bound
appears to be a possibility, in the inset of Fig. 10(b) we plot
the instantaneous exponent

λi = −dlnCag

dlnx
, (22)

as a function of 1/x, to accurately quantify λ. The data set
provides an asymptotic value λ 
 1.5.
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FIG. 11. Log-log plots of �−2S(k,t) vs. k�, for the BAM in d = 2.
The solid lines are power laws, exponents for which are mentioned
on the figure.

In Fig. 11, we present a scaling plot of S(k,t), viz., we
show �−2S(k,t) versus k�, on a log-log scale. The large k

data are consistent with the power-law exponent −3, which
corresponds to the Porod law [54] in d = 2 for a scalar
order parameter. In the small k region, on the other hand,
the enhancement is much weaker than k4. In fact, in the
relevant region, we observe β � 1, a number similar to the one
we observed in recent studies of kinetics of phase transition
with conserved off-critical composition as well, for which one
naturally obtains circular or spherical domain structures. In
that case, we have the lower bound �1.5, which is satisfied by
the above estimated value of λ.

V. CONCLUSION

We have studied kinetics of clustering in GGM and BAM,
in d = 1 and 2. It is shown that the average size of the
clusters grows as power law with time. In d = 1, via a dynamic
renormalization group theoretical method of analysis [37], the
corresponding exponent for the GGM has been identified to
be approximately 2/3, which is in agreement with that for
the BAM. In this dimension, for both the models, the growth
appears inversely proportional to the energy decay, showing
consistency with the scaling predictions of Carnevale et al.

[21] for ballistic aggregation. The growth mechanism, for the
GGM case, has been identified directly by calculating the
mean-squared-displacements [53] of the centers of mass of
clusters. To avoid the inelastic collapse, for the GGM, in this
dimension, we have used a cutoff δ. For relative velocities <δ,
the value of e was set to unity for the colliding partners [6].
We observed δ-dependent saturation in the growth of mass,
appearing earlier for larger values of δ. Interestingly, in such
saturation regime also the energy decay continued to follow the
theoretical form t−2/3. This calls for further investigation. In
d = 2, on the other hand, any equivalence between the GGM
and the BAM is shown to be absent.

In both the dimensions, for the density field, we have studied
the aging property [26,28] for ballistic aggregation, which is
first in the literature. It is shown that, like in kinetics of phase
transitions, the order-parameter autocorrelation function scales
with �/�w. The asymptotic forms of the scaling functions
have been identified to be power laws. The corresponding
exponents have been estimated and discussed with reference
to the structural property. It is shown that the exponents obey
dimension-dependent lower bounds [30], predicted for kinetics
of phase transitions. However, unlike in the kinetics of phase
transitions, the aging exponents here appear to be very close
to the lower bounds, irrespective of the dimension. The similar
values of the exponent for the GGM and the BAM cases in
d = 1, further suggests close equivalence of the dynamics in
the two cases, in this dimension. We intend to undertake similar
studies in d = 3.

With respect to the more realistic ballistic aggregation, the
simulations are rather challenging for d > 1. This is due to
the formation of fractal structures. Because of this reason,
like in the existing simulation studies, spherical structural
approximation has been used by us. It will be interesting to
investigate the scaling properties related to aging and other
aspects without such approximation.
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