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For fluctuating currents in nonequilibrium steady states, the recently discovered thermodynamic uncertainty
relation expresses a fundamental relation between their variance and the overall entropic cost associated with the
driving. We show that this relation holds not only for the long-time limit of fluctuations, as described by large
deviation theory, but also for fluctuations on arbitrary finite time scales. This generalization facilitates applying
the thermodynamic uncertainty relation to single molecule experiments, for which infinite time scales are not
accessible. Importantly, often this finite-time variant of the relation allows inferring a bound on the entropy
production that is even stronger than the one obtained from the long-time limit. We illustrate the relation for the
fluctuating work that is performed by a stochastically switching laser tweezer on a trapped colloidal particle.
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I. INTRODUCTION

The arguably most prominent characteristics of a thermal
system driven into a nonequilibrium steady state (NESS) is
its rate of entropy production σ , i.e., the amount of heat that
is transferred to a heat bath per unit of time. For an exact
experimental determination of σ , however, one would have to
measure either the temperature change of a large but yet finite
heat bath or to keep track of the net (free) energy input of
all the driving forces. For micro- and nanosystems, such as
present in single molecule or soft matter experiments [1–3],
the temperature changes of a macroscopic heat bath are by
far too small for the first method to be feasible. The second
method is viable only if the system is driven by mechanical
forces acting on observable degrees of freedom or for small
electronic circuits [4,5]. However, the quantitative energetic
input of chemical driving maintained by macroscopic particle
reservoirs, so-called chemostats, is not yet accessible on a
molecular scale.

A lower bound on σ can be inferred from the recently
discovered thermodynamic uncertainty relation by measuring
the mean and variance of an arbitrary nonvanishing current
in a NESS [6,7]. Turning the argument around, in situations
where σ is directly accessible, the thermodynamic uncertainty
can be used to predict the minimal variance of any current.
So far, this relation has been understood in the context of
large deviation theory [7–11], which has led to refinements
[12,13] and variants for the diffusion in periodic potentials
[14], stochastic pumps [15], and first passage problems [16].
Moreover, the thermodynamic uncertainty relation has been
considered theoretically in such diverse contexts as enzyme
kinetics [17], self-propelled particles [18], magnetic systems
[19], self-assembly [20], Brownian clocks [21], and the
efficiency of molecular motors [22].

The thermodynamic uncertainty relation as established so
far, crucially relying on large deviation theory, considers
fluctuations that occur in the limiting case of large time
scales. Estimating large deviation functions experimentally is
possible on the basis of large sets of data and if the probability
of untypical fluctuations decays slowly enough to make the
long-time limit accessible [23]. In contrast, the theory of

stochastic thermodynamics [3] has proven most fruitful for
experimental applications in cases where it provides relations
that hold on finite time scales. Most prominently, the Jarzynski
relation [24] and the Crooks fluctuation theorem [25] allow
one to infer free energy differences from the measurement
of the fluctuating work during finite-time protocols (see, e.g.,
[26]). Similarly, the concept of stochastic entropy [27] allows
for a generalization of the detailed fluctuation theorem for
the entropy production in a NESS [28] to finite and thus
experimentally accessible time scales [29].

In this paper, we show, based on extensive numerical
evidence, that the thermodynamic uncertainty relation can
be generalized to fluctuations on finite time scales as well.
We illustrate this finite-time version with experimental data
for fluctuations of work performed on a colloidal particle
in a dichotomously switching trap [30–32]. This illustration
serves as a proof of principle for applying the uncertainty
relation in the future to more complex experimental systems
with more than one input or output current such as Brownian
heat engines [23,33] and molecular motors (see, e.g., [34]).
For small electronic circuits at low temperature this approach
may become complementary to the recent progress in calori-
metrically measuring heat transfer [4,5].

The paper is organized as follows. In Sec. II we state
the main result, which is then illustrated experimentally in
Sec. III. In Sec. IV the result is put on a theoretical basis,
conjecturing a bound on the generating function for currents.
This bound is illustrated and verified numerically and proven
for the limits of short times and linear response. We conclude in
Sec. V.

II. MAIN RESULT

For a thermodynamic system modeled as a Markovian
network and driven into a NESS by time-independent forces,
we consider the fluctuations of an arbitrary time-integrated
current X(t) with X(0) = 0. While the average of such a
current increases linearly in time t as

〈X(t)〉 ≡ J t, (1)
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where 〈· · · 〉 denotes the steady-state average, other charac-
teristics of the distribution of X(t) typically exhibit a more
complex dependence on the observation time t . For the
variance Var[X(t)] ≡ 〈X(t)2〉 − 〈X(t)〉2, we demonstrate that

Var[X(t)]σ/J 2t � 2kB (2)

holds for arbitrary times t > 0, where kB is Boltzmann’s
constant. Thus, the fluctuations of X(t) at finite times can be
related to the rate of total entropy production σ associated with
the driving. In the limit of large observation times the variance
of X(t) settles to a linear increase with the effective diffusion
coefficient D ≡ limt→∞ Var[X(t)]/2t . On this infinite time
scale, the uncertainty relation reads Dσ/J 2 � kB, which has
previously been reported [6] and proven [7].

III. EXPERIMENTAL ILLUSTRATION

As an experimental illustration of the relation (2), we
analyze data for a colloidal particle in a dichotomously
switching optical trap [31]. The center of the trap is switched
along a one-dimensional coordinate λ(τ ) between the positions
+λ0 and −λ0 at points in time that are generated by a Poisson
process with rate γ [see Fig. 1(a)]. The force f (τ ) which is
exerted on the bead along this dimension is measured directly
from the deflection of the light. We consider two different
definitions of work [35,36]:

w1(τ ) ≡
∫ τ

0
dλ(τ ′) f (τ ′) ≈

τ/δτ∑
n=1

(λn − λn−1)
fn + fn−1

2
(3a)

and

w2(τ ) ≡ −
∫ τ

0
df (τ ′) λ(τ ′) ≈ −

τ/δτ∑
n=1

(fn − fn−1)
λn + λn−1

2
.

(3b)

The discrete integration schemes with fn ≡ f (n δτ ) and λn ≡
λ(n δτ ) define the integrals for discontinuous λ(τ ) and f (τ )
via the limit δτ → 0 and are used to compute the work for
experimental data captured with a finite-time resolution of
δτ 	 1 ms. We interpret w1(τ ) as the work performed by
moving the trap against the force f . The second definition,
w2(τ ), is equivalent to w1(τ ) up to a finite boundary term of
the form λf . Figure 1(b) shows sample data for λ(τ ) and f (τ )
together with w1,2(τ ).

Due to the stochastic switching of the trap, the system
reaches a NESS for long observation times T . Hence, the
steady-state averages and cumulants for the work W1,2(t) ≡
w1,2(τ ) − w1,2(τ − t) performed on finite time intervals
t 
 T can be obtained from the time average over τ ∈ [t,T ].

In Fig. 2, we show the full distributions of work performed
on the colloidal particle. Unlike for deterministic switching,
these distributions can be highly non-Gaussian at finite times.
The time scale chosen in these plots covers the transition from
work fluctuations in a typically resting trap for short times to
work fluctuations that are directly affected by switching the
trap. Since the work W1 increases in a steplike fashion [see
Fig. 1(b)], its distribution exhibits a sharp peak corresponding
to time intervals where the trap does not switch. With
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FIG. 1. Experimental data for the bound (2) for a colloidal particle
in a stochastically switching trap, as sketched in (a). Panel (b) shows
the time-dependent position λ(τ ) of the trap, the force f (τ ) exerted on
the colloid, and the work w1,2(τ ) according to the two definitions (3)
for a short part of the trajectory. In (c), the quantity Var[w(t)]/〈w(t)〉
is shown as a function of the length t of the time interval and compared
to the lower bound 2 kBT . Data refer to the amplitude λ0 	 170 nm
and a trap with inverse relaxation time τ−1

rel 	 4.6 s−1 throughout. For
the blue lines the switching rate is γ 	 2.88 s−1. In (c), we show
additional data for γ 	 8.73 s−1 (red) and γ 	 12.3 s−1 (yellow).

increasing length of the time interval the height of this peak
decreases and a second bulge in the distribution starts growing.
This part of the distribution is much broader since the work
performed while switching the trap is stochastic. For the work
W2, fluctuations occur also while the trap is at rest, leading
to a broader peak at short times. With increasing switching
rate γ of the trap, the effects of the resting trap become less
pronounced, leading to an overall smoother work distribution.

For long time intervals t , both definitions of the work
measure the area enclosed by the trajectory in the (λ,f )
space up to a finite contribution that does not scale with t .
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FIG. 2. Full distributions of the work underlying the data for mean and variance in Fig. 1(c). Left column: γ 	 2.88 s−1 [blue in Fig. 1(c)],
middle column γ 	 8.73 s−1 [red in Fig. 1(c)], and right column γ 	 12.3 s−1 [yellow in Fig. in 1(c)]. Time t increases from 0.1 s (black) to
1 s (light brown) in steps of 0.1 s.

Thus, in the long-time limit, cumulants of W1(t) become
equal to the respective cumulants of W2(t) to leading order
in time. In particular, as the mean is independent of t , we have
〈W1(t)〉/t = 〈W2(t)〉/t = σT , where T is the temperature of
the surrounding heat bath. Since the work that is performed
on the system must ultimately be dissipated, we can indeed
identify these averages with the rate of entropy production σ .
Thus, specifying W1,2(t) as integrated current in (2), we obtain
the bound

Var[W1,2(t)]

〈W1,2(t)〉 � 2kBT (4)

on the fluctuations of W1,2. As Fig. 1(c) shows, this bound is
satisfied for arbitrary times t , various values of the switching
rate γ , and for both definitions W1(t) and W2(t). In the limit of
large t , for which the uncertainty relation has previously been
shown to hold, the expression on the left-hand side of Eq. (4)
becomes equal for both definitions. In contrast, for finite time
intervals the fluctuations of W1(t) and W2(t) differ by a whole
order of magnitude. Thus, the finite-time generalization of the
uncertainty relation allows one to infer stronger lower bounds
on the entropy production by choosing the most suitable among
various currents that become equivalent in the long-time limit.
Most remarkably, the difference to the bound can be smaller for
finite times than it is in the long-time limit, as the minimum
of the blue dashed curve in Fig. 1, corresponding to a slow
switching rate γ , shows. The finite-time bound evaluated at
t 	 0.03 s yields 5.4 kBT and is thus about a factor of 2 better
than the long-time value 12.0 kBT .

The relation between the variance and mean of work
fluctuations has previously been discussed for transient
nonequilibrium processes [37,38]. For those, it is possible to
obtain a ratio of these quantities that is smaller than the bound
set by Eq. (4), which applies to steady states.

IV. BOUND ON THE GENERATING FUNCTION

A. General formulation

In the following, we discuss the evidence for the finite-time
bound (2) in a broader theoretical framework. We represent
the system as a set of states {i} and Markovian transition rates
kij � 0 from state i to state j and denote the corresponding
stationary distribution as ps

i . A time-integrated current X(t) is
defined by specifying its change dij = −dji upon a transition
from i to j . The steady-state average of this current is

J = 〈Ẋ(t)〉 =
∑
ij

ps
i kij dij . (5)

In particular, the choices

dm
ij ≡ ln

kij

kji

and ds
ij ≡ ln

ps
i kij

ps
j kji

(6)

define the entropy production in the medium sm(t) and the total
entropy production stot(t), respectively, which are rendered
dimensionless by setting kB = 1 here and in the following [27].
The steady-state averages (5) of these two currents are equal,
defining the entropy production rate σ ≡ 〈ṡm〉 = 〈ṡtot〉. The
fluctuations of any current X(t) can conveniently be analyzed
in terms of the generating function

g(z,t) ≡ 〈ezX(t)〉 = 〈1|etL(z)|ps〉 (7)

with the tilted transition matrix

Lij (z) ≡ kji exp(zdji) − δij

∑
�

ki� (8)

and the vector 〈1| containing 1 in every entry. This function
allows one to infer the mean of the current as

〈X(t)〉 = ∂z ln g(z,t)|z=0 (9)
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and its variance as

Var[X(t)] = ∂2
z ln g(z,t)

∣∣
z=0. (10)

In extensive numerical checks described below, we find that
the logarithm of the generating function satisfies the parabolic
lower bound

(1/t) ln g(z,t) � Jz(1 + zJ/σ ), (11)

which is our most general theoretical result. In the limit
t → ∞, the left-hand side of this expression converges to the
Legendre transform of the large deviation function associated
with the current X(t). In this limit, the parabolic bound
has been conjectured in [10] and proven in [7]. Our new
finding generalizes this result to the regime of fluctuations
on finite time scales, which are inherently not accessible
by large deviation theory. Crucially, the difference between
(1/t) ln g(z,t) and the parabolic bound can be smaller for finite
times t than it is in the long-time limit. Such a behavior of
the generating function is necessary for a minimum of the
ratio Var[X(t)]/〈X(t)〉 at finite time t as in our experimental
illustration in Fig. 1 for the work W2(t) at low switching rate.

The bound (11) is globally saturated for a Gaussian
distribution of the current [39], as observed for a biased
diffusion in a flat potential. This process can be approximated
by a discrete asymmetric random walk on a ring where the
number of states is let to infinity while the affinity per step
is let to zero. Otherwise, the bound is only trivially saturated
for z = 0 and, as a consequence of the fluctuation theorem
[27], for the generating function of stot at z = −1. For other
currents that become equal to stot on large time scales, such as
the medium entropy production sm, the bound is approached
at z = −1 only in the long-time limit.

Of experimental relevance is mainly the variance (10) of the
current X(t). Since (1/t) ln g(z,t) touches the bound at z = 0
for all t , the finite-time version (2) of the thermodynamic
uncertainty relation follows from the relation (11).

B. Illustration for unicyclic networks

As a simple example, for which the generating function
can be calculated explicitly, we consider the asymmetric
random walk on a ring with N states and uniform forward and
backward transition rates k+ and k−. For the current averaged
along all links, the tilted transition matrix (8) reads

Lij (z) = k+ez/Nδi,j+1 + k−e−z/Nδi+1,j − (k+ + k−)δi,j ,

(12)

where we identify the states N + 1 ≡ 1. The average current
is J = (k+ − k−)/N and the entropy production is σ =
(k+ − k−) ln(k+/k−). The stationary distribution ps

i = 1/N

is an eigenvector of L(z) for every z, hence the generating
function (7) becomes

g(z,t) = exp[t(k+ez/N + k−e−z/N − k+ − k−)]. (13)

It can be easily checked that this generating function satisfies
the bound (11) at all times t . The bound is saturated for small
z in the linear response limit of vanishing affinity ln(k+/k−)
per step.

We observe numerically that these unicyclic asymmetric
random walks are “optimal” in the sense that they minimize
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FIG. 3. Generating function of the average current at time
t = 1 in a unicyclic network with perturbations of strength ε ∈
{0.05,0.1,0.5,5} (from blue to orange). The unperturbed network has
five states and rates k+ = e1 and k− = 1. The bound (11) is shown as
a red curve.

the generating function at any given z and t . Changing the rates
nonuniformly and adding further cycles only increases the
distance from the bound. In order to illustrate this observation,
we show in Fig. 3 the effects of perturbations of the rate matrix
of the type

kij = k+eεθ+
i δi,j+1 + k−eεθ−

i δi+1,j + εφij , (14)

where the θi are independently drawn from a standard
normal distribution and the φij are zero for |i − j | � 1 and
exponentially distributed otherwise. While the terms with θ±

i

make the unicyclic rates nonuniform, the terms φij add further
cycles to the network. We calculate the generating function
numerically for t = 1, which qualifies as an intermediate time
scale for transition rates of order 1. The bound (11) is satisfied
in all cases.

C. Short-time and linear response limits

While a full proof of the parabolic bound (11) seems to
be currently out of reach, we can prove a weaker bound,
which becomes equivalent to (11) for small t . We start with
the fluctuation relation

p(−stot,−X,t)/p(stot,X,t) = exp(−stot) (15)

for the joint probability distribution of the total entropy
production and the current of interest at arbitrary time t ,
which follows directly from the time reversal of the trajectories
contributing to a fixed value of stot [3]. Using this relation, the
generating function (7) can be written (dropping the index
“tot”) as

g(z,t) =
∫

ds

∫
dX p(s,X,t)ezX = 1

2
〈ezX + e−zX−s〉

= 〈e−s/2 cosh(zX + s/2)〉. (16)

Bounding the hyperbolic cosine by a parabola that touches it
at z = 0 and z = −s/X, we obtain

g(z,t) � 1 + 〈
(1 − e−s)zX(1 + zX/s)

〉
/2

= 1 + zJ t + z2σ t

∫ ∞

0
ds

∫ ∞

−∞
dX ψ(s,X) (X/s)2

� 1 + tJ z(1 + zJ/σ ). (17)
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FIG. 4. Numerical illustration of the bound on the generating
function for a fully connected network with five states and random
transition rates, as shown in the inset of the left panel and indicated by
the different thicknesses of the arrows. We show generating functions
g(z,t = 1) for stot (left) and sm (right) calculated numerically for
uniformly distributed ln kij ∈ [−5,5] and scaled by the entropy
production rate σ (blue). For each set of rates a local minimization
of g(z = −0.5, t = 1) was performed; the corresponding generating
functions are shown in red. In all cases, the bound σz(z + 1) (shown
in black) is satisfied.

In the last step we have used Jensen’s inequality for the av-
erages with the distribution ψ(s,X) ≡ p(s,X,t)s(1 − e−s)/σ t

for s � 0, which is non-negative, normalized, and gives

∫ ∞

0
ds

∫ ∞

−∞
dX ψ(s,X) (X/s) = J/σ. (18)

While the bound (17) is rigorous for arbitrary times t , it is
useful mainly for short times as a first-order expansion of the
otherwise stronger bound on g(z,t) that follows from Eq. (11).
Indeed, for the variance of the current, the bound (17) implies
for arbitrary t

〈X(t)2〉 � 2tJ 2/σ. (19)

Equation (2) differs from this relation only by the term
〈X(t)〉2 = J 2t2 and is thus proven for small times t in linear
order.

In the linear response regime for small driving affinity A,
the current scales as J 	 A and the entropy production rate
as σ 	 A2. Hence the bound (19) implies Eq. (2) in the linear
response limit for any fixed time, as follows from the scaling
J ∼ A and σ ∼ A2 for small driving affinities A.

D. Numerical check for intermediate times

On intermediate time scales we have verified the bound
(11) numerically using a combination of random search
and optimization techniques. At first, we have generated
in total more than 3 × 105 fully connected networks with
N ∈ {3,4,5,7,10} states and random transition rates with ln kij

distributed uniformly between −12 and 5. A sample of such
a network with N = 5 states is illustrated in the inset of
Fig. 4. For these networks we have calculated the stationary
distribution and the generating function g(z,t = 1) via Eq. (7)
with Jz/σ ranging from −2 to 1. It is sufficient to check the
bound for t = 1, since the large range of the choice of transition
rates effectively covers different time scales. This procedure
has been repeated for the currents of total entropy production
[dij = ds

ij in Eq. (6)] and medium entropy production (dij =
dm

ij ), as shown in Fig. 4, the current along an individual link
i → j , and a current defined by a random asymmetric matrix
dij . Each of the random networks has then been used as a
starting point for a constrained local minimization procedure
that varies the rates kij to minimize g(z,t = 1) while keeping
σ and Jz/σ fixed (without this constraint the algorithm
quickly finds the linear response regime, for which we have
proven the validity of the bound). As Fig. 4 illustrates for
a small set of networks, the bound (11) has proven valid
for all of the random networks as well as for the optimized
networks.

V. CONCLUSION

We have shown that the thermodynamic uncertainty relation
between the fluctuations of any current and the rate of entropy
production in a NESS holds on arbitrary time scales. This result
follows from a parabolic bound on the cumulant generating
function associated with such a current. The fluctuation
theorem for entropy production allows proving this bound in
the limit of short time scales, complementing the previously
known proof based on large deviation theory for the long-time
limit. For intermediate time scales the bound is a conjecture
that we have verified using extensive numerical checks. A
full proof in this regime seems to call for new mathematical
methods for the description of nonequilibrium steady states,
which go beyond fluctuation theorems and large deviation
theory.

For an experimental illustration in the case where the
entropy production is measurable, we have analyzed this
finite-time uncertainty relation with the work that is performed
on a colloidal particle in a stochastically switching trap. As
a next experimental step, it will be interesting to apply this
relation to systems driven by chemical reactions like molecular
motors, in order to bound the then a priori unknown rate
of entropy production from below. Our generalization of the
thermodynamic uncertainty relation should then become a
valuable tool for inferring hidden thermodynamic properties of
driven systems from experimental trajectories of finite length.

Note added. Recently, a proof of Eq. (2) for the special
case X = stot and Langevin dynamics has been reported in a
preprint [40].
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