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Machine-learning approach for local classification of crystalline structures in multiphase systems
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Machine learning is one of the most popular fields in computer science and has a vast number of applications.
In this work we will propose a method that will use a neural network to locally identify crystal structures in a
mixed phase Yukawa system consisting of fcc, hcp, and bcc clusters and disordered particles similar to plasma
crystals. We compare our approach to already used methods and show that the quality of identification increases
significantly. The technique works very well for highly disturbed lattices and shows a flexible and robust way
to classify crystalline structures that can be used by only providing particle positions. This leads to insights into
highly disturbed crystalline structures.
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I. INTRODUCTION

Identifying crystalline structures is a common task in
physics. The behavior of solids strongly depends on the un-
derlying structural properties. Various analysis methods have
been developed to retrieve reliable information about crystals.
Some of the most popular methods are bond-orientational
order parameter (BOOP) [1], bond angle analysis (BAA)
[2], common neighbor analysis (CNA) [3], centrosymmetry
parameter (CSP) [4], common neighborhood parameter (CNP)
[5], and topological cluster classification (TCC) [6].

In the case of BOOP, BAA, and CSP the algorithms
implement an order parameter derived from the location of
neighboring particles, while methods like CNA and TCC
identify topological symmetries of the neighborhood of a
particle. CNP combines the features of CSP and CNA.

These methods all have in common that they try to find
certain symmetries to identify crystalline structures. In other
words, all of these methods solve classification problems,
because they assign particles into categories. This work will
consider the structures fcc, hcp, and bcc.

Fortunately, classification problems are a large part of the
thriving field of machine-learning algorithms, with powerful
libraries like Tensorflow [7] and scikit-learn [8] being freely
available. For example, these algorithms have been success-
fully applied to find structural flow defects in disordered solids
[9] and for characterizing the “softness” of particles in glassy
liquids [10]. A crystal analysis method capable of finding
structures autonomously using machine-learning techniques
was recently published by Reinhart et al. [11].

It is also possible to calculate physical quantities in theo-
retical physics using machine learning. The Curie temperature
of an Ising model could be predicted with surprising accuracy
using a neural network [12]. A combination of unsupervised
feature extraction and a neural network was able to predict
phase transitions in a Kitaev chain [13].

Machine-learning algorithms are designed for a general
purpose, which means that they have to “learn” the properties
of a specific classification problem from labeled data. Because
of this, we train such an algorithm from artificial fcc, hcp,
and bcc lattices in three dimensions using only the particle
positions as input. By restricting the method only to the
positions, it is possible to apply it to a wide area of struc-
tural analysis problems, for example, plasma crystals [14],

molecular-dynamical simulations [15], or colloidal crystals
[16].

However, it is required to choose a well-defined representa-
tion of the structural properties in which the different structures
can be well separated. This representation is called “feature
vector.”

II. FEATURE VECTOR

The features of a particle which is in a crystalline structure
can be described by the relative coordinates of a particle i and
its neighbors j . In the case of 12 neighbors, this would lead
to a 36-dimensional feature vector, which could be used for
classification. However, this would not be a robust method. The
rotations of the crystal would have to be considered and trained,
leading to an inflated dimensionality of the problem. Scaling
or translating the crystal would be an analogous challenge,
which needs to be addressed. This is why we propose
a feature vector that is translational, rotational, and scale
invariant.

We use several proven methods and generalize them in a
fixed neighborhood to create such a feature vector, which we
call “crystal signature.”

First of all, it is important to choose the definition of
neighborhood to be used. Because we intend to calculate
Voronoi cells later on, the most natural neighborhood is
the corresponding Delaunay neighborhood [17]. Alternatives
would be the use of a cutoff radius or n-nearest neighbors,
however, they are not automatically well defined for mixed
phase systems, because they do not adapt to the local structure
(unless additional information for the structure is used [15]).
Also they require an additional input by the user, which
can significantly influence the quality of identification and
unnecessarily complicates the process.

After the neighborhood is obtained for a particle i, the
signature can be defined. For the first part of the signature, we
determine all of the distances between neighbors j and k:

djk(i) = 1

d0(i)
‖rj − rk‖ (j �= k), (1)

d0(i) = 1

6

6∑
j=1

‖ri − rj‖, ‖ri − rj‖ � ‖ri − rj+1‖. (2)
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Scale invariance can be achieved by normalizing the distances
with a characteristic length d0, which is the average distance
between a particle and its nearest six neighbors. We choose
the six nearest neighbors, because this is the minimal number
of neighbors we can expect in a three-dimensional Delaunay
neighborhood.

Because the number of neighbors N may vary for every
particle and there are N/2(N − 1) distances djk , it is practical
to calculate a histogram from all djk with a certain number of
equidistant bins, in this case Nbins = 12, as feature space. This
number of bins works best for the method proposed here and
is determined by trial and error.

We will not only consider distances, but also the angles
between neighbors. The so-called “bond angles” between the
particle i and a pair of neighbors j and k can be calculated as
follows [2]:

cos[θjk(i)] = (ri − rj ) · (ri − rk)

‖ri − rj‖‖ri − rk‖ (j �= k). (3)

Analogous to the neighbor distances, we calculate a histogram
with Nbins = 8 from the bond angles (borrowed from Ackland
and Jones [2]) and extend the signature vector with it.

Because a clear distinction of fcc and hcp is challenging [2],
a method based on the well-known BOOP of a particle i will be
helpful. An improved and more robust implementation based
on Voronoi cells, called Minkowski structure metric (MSM)
by Mickel et al. [17], will be used throughout this work:

q ′
lm(i) =

∑
f ∈F(i)

A(f )

A
Ylm(θf ,φf ), (4)

q ′
l (i) =

√√√√ 4π

2l + 1

l∑
m=−l

∣∣q ′
lm

∣∣2
. (5)

The parameter q ′
l is the second order rotational invariant

and will be calculated for l = 4,6 [1]. The azimuthal angle
is denoted by θf and the polar angle by φf . The spherical
harmonics Ylm are weighted by the Voronoi facet area A(f )
for all facets f ∈ F(i). The sum of all facet areas is denoted
as A = ∑

f ∈F(i) A(f ) [17].
We will also calculate the third order rotational invariant w′

l

based on the MSM [18]:

w′
l(i) =

∑
m1,m2,m3

m1 + m2 + m3 = 0

(
l l l

m1 m2 m3

)

× q ′
lm1

(i)q ′
lm2

(i)q ′
lm3

(i)

q ′
l (i)

3
. (6)

The Wigner 3-j symbol [19] is denoted by the expression
within large parentheses.

The MSM possesses some drawbacks for phase mixtures of
bcc and fcc (or hcp), such that an improved implementation,
called BCCMSM, has been recently proposed [20]. However,
this is not needed in our signature, because it is easy to
distinguish bcc from fcc or hcp using neighbor distances and
bond angles. On the contrary, the latter methods are not well
suited to distinguish between fcc and hcp, which is where
the MSM does particularly well. This means that the different

TABLE I. Composition of the crystal signature used for
classification.

Name Symbol Dimensions

Neighbor distances dij 12
Bond angles cos(θijk) 8
Minkowski structure metric q ′

l , w′
l 4

Minkowski tensor ζ1, . . . ,ζ6 6
Number of neighbors N 1

methods will complement their weaknesses and add to their
strengths.

A method based on Minkowski tensors has been proposed
to distinguish between fcc and hcp [21], which will be used to
further improve the classification. These tensors can precisely
quantify the shape of a convex surface. To be able to distinguish
the isotropic cells of fcc and hcp, a translational and scale
invariant tensor of fourth rank is needed [21]:

(
W

0,4
1

)
αβγ δ

=
∑
f

A(f )

A
nαnβnγ nδ. (7)

The Cartesian components of the triangulated facet normals
are denoted by nα for α = 1,2,3. Similar to the MSM, the facet
normals are weighted by the facet area A(f ). Writing the tensor
as a symmetric 6×6 matrix using the Voigt notation [22,23]
enables us to calculate the eigenvalues. The eigenvalues
(ζ1, . . . ,ζ6) are rotational invariant and will be included in
the crystal signature [21].

Last but not least, the number of Delaunay neighbors itself
depends on the local crystal structure (12 for undisturbed
fcc/hcp and 14 for undisturbed bcc). Although this is easily
disturbed with noise, this quantity is naturally available and
can be included in the signature resulting in a small increase
of the quality of classification. Table I shows an overview of
the different components of the signature.

Topological methods like CNA or TCC are not used. The
CNA is (compared to MSM) sensitive to noise and cannot be
calculated using only one Voronoi cell, because next-to-nearest
neighbors have to be taken into account [20]. This contradicts
the goal of a strictly local method using only the direct Voronoi
neighbors. The TCC requires a modified Voronoi algorithm to
work reliably in thermally dislocated structures [6]. However,
a core idea of the MSM is the use of a standard Voronoi
neighborhood to mitigate inconsistencies due to different
definitions of neighborhood [17], which is why the TCC will
not be considered. A recent machine-learning approach from
Reinhart et al. [11] exclusively relies on topological methods,
which is in contrast to the methods proposed in this work.

The CSP has been tested as part of the signature, but it did
not significantly improve the precision of classification.

Overall, the mixed crystal signature (MCS) consists of
31 dimensions, which allows for a reliable classification of
different crystalline structures. Instead of using hard coded
decisions [2,15] or polygonial regions in a diagram [20] to
classify the structures, we will apply a machine-learning algo-
rithm to this problem. With this approach, the classification is
utterly separated from the signature, which adds flexibility to
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the method. Also, this means that both parts of the method can
be optimized separately.

III. MACHINE LEARNING

We choose to only identify the crystalline structure of the
particle, not whether the particle is in a solid or disordered
state. To achieve this, we filter the disordered particles out by
using a modified scalar product of BOOPs [24,25], which can
be analogously defined for MSM [14]:

S(i) = 1

N

N∑
j=1

6∑
m=−6

q̃ ′
6m(i)q̃ ′∗

6m(j ), (8)

q̃ ′
6m(i) = q ′

6m(i)(∑6
m=−6 |q ′

6m(i)|2
)1/2 . (9)

The number of neighbors is denoted by N and the scalar
product is averaged over all neighbors j . This method allows
us to set a single threshold for a particle i to decide whether it
is in the solid or disordered phase. We consider a particle solid
if S(i) < 0.55, which works best for our case.

With the filtering in place, we will then use a multilayer
perceptron (MLP) with one hidden layer consisting of 250
neurons to classify fcc, bcc, and hcp using the scikit-learn
library [8].

The feature space behaves nonlinearly and due to the
artificially created datasets, it is possible to generate as much
data as is needed to prevent the neural network from overfitting.

The MLP network has to be trained with an appropriate
dataset to learn how to classify the crystal structures in
our signature. To achieve this, we compute artificial data of
fcc, hcp, and bcc lattices, called “training data.” These three
datasets will be disturbed by different levels of Gaussian noise,
which resembles a Brownian motion of the particles. The noise
is controlled by the width σ of the Gaussian and is displayed
in percent of the characteristic length d0.

The training data has been created for a noise of 1%–20%
with roughly 38 000 particles for the different crystal structures
(a volume of 34×34×34 with d0 = 1 was used). Particles at
the border of the volume are not considered. The trend for
every structure with filtering is shown in Fig. 1.

We normalize the number of detected particles to 100% in
the unperturbed case. It is apparent that the structures gradually
decrease due to excluding “disordered” particles using the
scalar product of the MSM. Also, it is visible that hcp particles
are more affected by noise than fcc or bcc particles. Although
this is an unwanted behavior, it could not be mitigated by
choosing different thresholds of S(i). We will use the 10%
mark to quantify the performance of the method because it
is the highest noise level which can realistically occur on
crystalline systems (such as plasma crystals).

At a noise of 10% there is still ∼64% of hcp present. The
numbers for fcc (∼84%) and bcc (∼88%) are even higher.

The MLP has then been trained with 3%–15% noise to
achieve the best possible classification. The classification has
to be verified which is done by using a new set of artificial data.
This data is called “test data” and is identical to the training
data but with a different random seed used for the Gaussian

FIG. 1. Trend of the different crystal structures, which is used to
train a MLP network.

noise. The prediction of the MLP on the test data can be seen
in Fig. 2.

The prediction shows no falsely classified particles for up
to 6% of noise. The number of false classifications increases to
11% at 10% noise. We are able to detect ∼79% of particles at
a noise of 10% while having considerably lower false positives
compared to similar methods. Comparing with BCCMSM
[20], we are able to detect 98% more particles with 39%
less false classification at 10% noise. In [20] it was also
demonstrated that a-CNA [15] and BOOP perform worse
than BCCMSM regarding the yield of particles. The artificial
dataset used in this work differs slightly from the data in [20],
because we only consider particles in the bulk crystal.

The falsely classified particles can be resolved for the
different structures, which is shown in Table II.

It is clearly visible that distinguishing fcc from hcp is the
most difficult part of the classification. Overall, identifying the
hcp structure is the most challenging. This means that hcp will
be under-represented in highly disturbed lattices.

The method shows excellent performance at levels of high
noise. Fortunately, the number of falsely classified particles
can be easily adapted to specific requirements by adjusting the

FIG. 2. Prediction of the MLP network to classify hcp, fcc, and
bcc including falsely classified particles.
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TABLE II. Percentage of false classification for every crystal
structure at a noise of 10%.

Structure False fcc False hcp False bcc

fcc 2.4% 1.0%
hcp 3.3% 2.0%
bcc 0.9% 1.3%

threshold of S(i). Thus, a trade-off between yield and false
classification can be made.

However, using only artificial data is not enough to verify
the advantages of such a method. Because of this, we simulate
a Yukawa system using LAMMPS [26], which crystallizes as a
true multiphase system consisting of fcc, hcp, and bcc domains.
The system consists of charged microparticles (spherical, 3
μm diameter), which are levitated in a harmonic potential
while being compressed by gravity. This is a simple model
for a plasma crystal under laboratory conditions, which has
the properties needed to verify the performance of the method
[20]. The prediction from MCS for this system compared with
the BCCMSM method is shown in Fig. 3.

FIG. 3. Structural composition of a slowly cooled down Yukawa
system for MCS using machine learning (a) and BCCMSM using
manual classification (b).

It is visible that the method performs well for simulated
data. The phase transition at 3×104 K is more pronounced and
considerably steeper using the MCS method. Interestingly, the
numbers of hcp and fcc are significantly higher than the results
from BCCMSM indicates. With MCS we can accurately
classify 99% of the particles as solid at low temperatures
and are able to get the complete picture of our data, while
BCCMSM is only able to detect 73% of the particles. Also, the
BCCMSM does not drop down to 0% for high temperatures,
which indicates falsely classified particles. This does not occur
applying MCS.

Because we are now able to classify in structures at higher
temperatures, it is observed that the numbers of bcc and
hcp are regressing after the phase transition at 104 K, which
suggests that rearrangements from hcp and bcc to fcc on lower
temperatures took place. We cannot observe this behavior
using BCCMSM and are now able to investigate the phase
transition with complete structural information.

IV. CONCLUSION

We have presented an approach for crystal analysis which
works very well for highly disturbed lattices while using
already proven methods which can be easily implemented.
Also, it could be verified that this method is able to successfully
classify structures in true multiphase systems consisting of
small fcc, hcp, and bcc clusters. Because the method only
uses a Delaunay neighborhood around a particle, it is strictly
local. This will be particularly useful for applications such as
three-dimensional plasma crystals which often is a multiphase
system with high noise and small crystalline clusters. Also, we
could see that a much higher number of hcp and rearrange-
ments of hcp and bcc particles is detected for crystalline mixed
phase systems. Having the complete structural information
will make it possible to efficiently compare our simulations of
Yukawa systems with the results from plasma crystals and use
them to make assumptions about particle charge and screening
length.

With appropriate training data the method could be taught
to detect phase transitions in amorphous materials, defects
in crystals, or anisotropic structures in complex plasmas
without having to change the algorithm. Only the particle
locations and a set of labeled data has to be provided,
which makes the method suitable for a broad variety of
applications.

Additionally, the accuracy of MCS can be matched to
specific requirements by adjusting a single threshold, which
makes the method flexible and user-friendly. Because we rely
on standard methods (Voronoi and MLP), the MCS can be
implemented using well-established libraries.

Overall, the method significantly improves the state of
three-dimensional crystal analysis and leads to a more com-
plete picture where only static data is available.
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